Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 747
Filter
1.
Curr Issues Mol Biol ; 46(9): 10677-10695, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39329985

ABSTRACT

Rice (Oryza sativa L.), as one of the most significant food crops worldwide, holds paramount importance for global food security. Throughout its extensive evolutionary journey, rice has evolved a diverse array of defense mechanisms to fend off pest and disease infestations. Notably, labdane-related diterpenoid phytoalexins play a crucial role in aiding rice in its response to both biotic and abiotic stresses. This article provides a comprehensive review of the research advancements pertaining to the chemical structures, biological activities, and biosynthetic pathways, as well as the molecular regulatory mechanisms, underlying labdane-related diterpenoid phytoalexins discovered in rice. This insight into the molecular regulation of labdane-related diterpenoid phytoalexin biosynthesis offers valuable perspectives for future research aimed at improving crop resilience and productivity.

2.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4054-4068, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39307757

ABSTRACT

C_(20)-diterpenoid alkaloids are mainly distributed in plants of genus Aconitum, Delphinium, and Consolida in the Ranunculaceae. Their chemical structures are mainly categorized into nine types such as atisines, denudatines, hetidines, and hetisines. Bioactivity studies have shown that C_(20)-diterpenoid alkaloids have exhibited superior anti-tumor, analgesic, antiarrhythmic, and anti-inflammatory effects. In this review, the chemical structures and biological activities of 190 C_(20)-diterpenoid alkaloids reported in the Ranunculaceae from 2002 to the present were summarized, so as to provide a reference for the subsequent research on C_(20)-diterpenoid alkaloids in plants of Ranunculaceae.


Subject(s)
Alkaloids , Diterpenes , Ranunculaceae , Alkaloids/chemistry , Alkaloids/pharmacology , Diterpenes/chemistry , Diterpenes/pharmacology , Animals , Humans , Ranunculaceae/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
3.
Int Microbiol ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39307851

ABSTRACT

A series of known diterpenoids from Isodon serra (Maxim.) Hara exhibited antibacterial activities against Staphylococcus aureus and even methicillin-resistant S. aureus (MRSA). Among these diterpenoids, hebeirubescensin K (7), effusanin E (8), and nodosin (9) showed the optimal minimum inhibitory concentration (MIC) values ranging from 3.12 to 6.25 µg/mL against tested MRSA strains, and they also inhibited bacterial proliferation, biofilm formation, and key gene expressions related to adhesion and virulence of MRSA. In vivo experiments also demonstrated the antibacterial abilities of 7-9 as topical drugs and promoted wound healing caused by a MSRA infection. It is the first time that the anti-S. aureus and MRSA activities of diterpenoids from I. serra has been systematically reported. These current findings provide insight into the anti-MRSA mechanism of diterpenoids from I. serra; indicating these compounds may be used as antimicrobial agents and contribute to the development as well as application of I. serra in phytomedicine for MRSA infections.

4.
Chem Biodivers ; : e202401871, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223085

ABSTRACT

Two new indole-diterpenoids, penpaxilloids F and G (1 and 2), along with 11 known analogues (3-13), were isolated from the marine fungus Penicillium sp. ZYX-Z-718. The structures of the new compounds were identified by extensive spectroscopic analyses including HR-ESI-MS, UV, and NMR, as well as theoretical NMR chemical shifts and ECD calculations. Compounds 6 and 10 showed antibacterial activity against Gram-positive bacteria including Staphylococcus aureus, Bacillus subtilis, and MRSA with MIC values ranging from 16.0 to 32.0 µg/mL.

5.
Chem Biol Interact ; 402: 111191, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39121898

ABSTRACT

Hepatocellular carcinoma (HCC) is a significant global health concern, with high rates of morbidity and mortality. Bucidarasin A, a natural diterpenoid, has been shown to exert notable cytotoxic effects across a range of tumor cell lines. However, the underlying mechanisms responsible for this cytotoxicity remain unclear. In this study, we sought to elucidate the antitumor mechanisms of bucidarasin A, a natural diterpenoid derived from Casearia graveolens, with a particular focus on its effects on HCC. Furthermore, we employed surface plasmon resonance (SPR), molecular docking, and cellular thermal shift assay (CETSA) to gain further insight into the target protein of bucidarasin A. Our findings revealed that bucidarasin A exhibited pronounced cytotoxicity towards HepG2 cells. In vitro analysis indicated that bucidarasin A interrupted the cell cycle at the S phase and inhibited the proliferation and metastasis of HepG2 cells by modulating the FAK and STAT3 signaling pathways. Moreover, in vivo studies demonstrated that bucidarasin A not only exhibited antitumor effects but also impeded neovascularization, a finding that was corroborated by SPR interactions between vascular endothelial growth factor (VEGF) and bucidarasin A. This research substantiated that bucidarasin A, a clerodane diterpenoid, held promise as a therapeutic candidate against HCC, showcasing substantial antitumor efficacy both in vitro and in vivo through direct targeting of the STAT3 and FAK signaling pathways.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , Diterpenes , Liver Neoplasms , Molecular Docking Simulation , STAT3 Transcription Factor , Signal Transduction , Humans , STAT3 Transcription Factor/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Cell Proliferation/drug effects , Hep G2 Cells , Diterpenes/pharmacology , Diterpenes/chemistry , Signal Transduction/drug effects , Animals , Mice , Mice, Nude , Mice, Inbred BALB C , Neoplasm Metastasis , Vascular Endothelial Growth Factor A/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Movement/drug effects
6.
Bioorg Chem ; 151: 107701, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39154520

ABSTRACT

Four new diterpenoid tropolones, salvirrddones A-D (1-4), and four new icetexanes, salvirrddices A-D (9-12), along with thirteen new 11,12-seco-norabietane diterpenoids, salvirrddnor A-M (14-24, 31, 32) and sixteen known compounds (5-8, 13, 25-30, 33-37), were isolated from the roots and rhizomes of Salvia castanea Diels f. tomentosa Stib. Their structures were elucidated by comprehensive spectroscopic analyses, quantum chemical calculations, and X-ray crystallography. Structurally, compounds 1-8 represent a class of rare natural products featuring a unique cyclohepta-2,4,6-trienone moiety with diterpenoid skeletons. Bioassays showed that only diterpenoid tropolones 3, 5, 6, and 7 exhibited significant activity against several human cancer cell lines with IC50 values ranging from 3.01 to 11.63 µM. Additionally, 3 was shown to inhibit Hep3B cell proliferation, block the G0/G1 phase of the cell cycle, induce mitochondrial dysfunction and oxidative stress, promote apoptosis, as well as inhibit migration and invasion in vitro. Meanwhile, 3 demonstrated anti-proliferative, pro-apoptotic, and migration-inhibitory effects in the Hep3B xenograft zebrafish model in vivo. Network pharmacological analysis and molecular docking results suggested that 3 may treat hepatocellular carcinoma (HCC) through the PI3K-Akt signaling pathway, as well as by binding PARP1 and CDK2 targets. Overall, the present results extremely expand the repertoire of diterpenoids from natural products and may provide a novel chemical scaffold for the discovery of new antitumor drugs.


Subject(s)
Antineoplastic Agents, Phytogenic , Apoptosis , Cell Proliferation , Diterpenes , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Salvia , Zebrafish , Humans , Salvia/chemistry , Cell Proliferation/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Structure-Activity Relationship , Animals , Molecular Structure , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Apoptosis/drug effects , Cell Line, Tumor
7.
Phytochemistry ; 228: 114233, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39111380

ABSTRACT

Nine previously unreported lathyrane diterpenoids named euphorantesters A-I, along with 16 known analogues, have been separated from the tubers of Euphorbia antiquorum. Their structures were established by means of spectroscopic analyses, time-dependent density functional theory based electronic circular dichroism calculation and single crystal X-ray crystallography. Their reversal ability against P-glycoprotein-mediated multidrug resistance (MDR) in MCF-7/ADR cell line was then evaluated, and 15 ones exhibited moderate MDR reversal activity with reversal fold falling in the range of 1.12-13.15. The most active euphorantester B could effectively increase the sensitivity of MCF-7/ADR cell to adriamycin comparably to the reference drug verapamil.


Subject(s)
Diterpenes , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Euphorbia , Plant Tubers , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/isolation & purification , Euphorbia/chemistry , Drug Resistance, Multiple/drug effects , Humans , Drug Resistance, Neoplasm/drug effects , Plant Tubers/chemistry , Molecular Structure , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , MCF-7 Cells , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Doxorubicin/pharmacology , Molecular Conformation , Models, Molecular , Dose-Response Relationship, Drug , Crystallography, X-Ray , Cell Proliferation/drug effects
8.
Nat Prod Bioprospect ; 14(1): 45, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39143298

ABSTRACT

Three new ent-kaurane diterpenoids, silvaticusins A-C (1-3), along with a new ent-kaurane dimer silvaticusin D (4) were isolated from the aerial parts of Isodon silvaticus. The structures of these new compounds were established mainly by comprehensive analysis of their NMR and MS data. The absolute configuration of compounds 1 and 4 were determined using a single-crystal X-ray diffraction and computational methods, respectively. Compounds 2 and 3 were found to exhibit remarkable cytotoxic effects against five human tumor cell lines (HL-60, A-549, SMMC-7721, MDA-MB-231, and SW-480), with IC50 values spanning from 1.27 ± 0.08 to 7.52 ± 0.33 µM.

9.
Fitoterapia ; 178: 106171, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111719

ABSTRACT

Euphorbiabietane F (1), a novel abietane diterpenoid with the unprecedented 6/6/5/6/5 carbon skeleton, one new strobane diterpenoid (2), together with one new pimarane diterpenoid (3) were isolated from the roots of Euphorbia fischeriana. The structures were elucidated by the extensive spectroscopic data, gauge-independent atomic orbital (GIAO) NMR calculations, the comparison of experimental and calculated ECD spectra, as well as single crystal X-ray diffraction. The cytotoxicity result suggested the moderate inhibition rate of 1 on the cell lines of HepG2 and A549.


Subject(s)
Abietanes , Antineoplastic Agents, Phytogenic , Diterpenes , Euphorbia , Phytochemicals , Plant Roots , Euphorbia/chemistry , Plant Roots/chemistry , Humans , Molecular Structure , Diterpenes/isolation & purification , Diterpenes/pharmacology , Diterpenes/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Hep G2 Cells , Abietanes/isolation & purification , Abietanes/pharmacology , Abietanes/chemistry , A549 Cells , China
10.
Fitoterapia ; 178: 106174, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39122119

ABSTRACT

Under the guidance of MS/MS-based molecular networking, five new clerodane diterpenoid glucosides, tinosinesides R-V (1-5), along with 15 known diterpenoids (6-20), were isolated from the stems of Tinospora sinensis. Compound 1 represents the first example of diterpenoid bearing a thio sugar and compound 5 is the first 18,19-dinor-clerodane with cis-fused A/B ring. The structures of the new compounds were elucidated by spectroscopic means, and their absolute configurations were established on the basis of time-dependent density functional theory (TD-DFT) based electronic circular dichroism (ECD) calculation and chemical methods. Selected compounds were evaluated for their immunomodulatory effect and several compounds could enhance the proliferation of B lymphocytes. Preliminary mechanistic studies disclosed that 3 could promote B cell generation and inhibit B cell differentiation.


Subject(s)
B-Lymphocytes , Diterpenes, Clerodane , Phytochemicals , Tinospora , Diterpenes, Clerodane/pharmacology , Diterpenes, Clerodane/isolation & purification , Diterpenes, Clerodane/chemistry , Tinospora/chemistry , Molecular Structure , B-Lymphocytes/drug effects , Animals , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Plant Stems/chemistry , China , Mice , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Immunomodulating Agents/pharmacology , Immunomodulating Agents/isolation & purification , Immunomodulating Agents/chemistry
11.
Nat Prod Res ; : 1-9, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976503

ABSTRACT

A previously undescribed bislabdane diterpenoid namely aframomumlabdane (1), was isolated from the seed of Aframomum arundinaceum together with seven known compounds (2 - 8). Their structures were established based on a comprehensive analysis of HR-ESI-MS, in conjunction with their 1D and 2D-NMR data. Compound 1 was evaluated for its cytotoxic activity against four cancer cell lines: A549, HepG2, SPC212 and DLD-1. The best activity was observed against SPC212 lung cancer cell line with an IC50 value of 0.52 µM.

12.
J Asian Nat Prod Res ; : 1-18, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953392

ABSTRACT

Boswellia sacra has the properties of activating blood circulation, fixing pain, subduing swelling and promoting muscle growth. However, the anti-inflammatory active ingredients and molecular mechanisms of Boswellia sacra are still not clearly explored. Boswellia sacra was grounded and extracted using 95% ethanol, the extracts were separated by column chromatography preparation to give compounds. Spectral analysis and quantum calculations confirmed the structures of compounds and identified compound 1 as a new compound. Compounds 1-3 showed potent inhibitory activities and their effects on inflammatory mediator NO and inflammatory cytokines were examined by ELISA assay. Furthermore, their modulatory mechanism on inflammatory signal pathways was explored.

13.
J Asian Nat Prod Res ; : 1-7, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975972

ABSTRACT

A chemical investigation on the roots of Aconitum nagarum afforded two undescribed C19-diterpenoid alkaloids nagarumines D and E (1 and 2). The structures of the new compounds were elucidated by spectral methods such as 1D and 2D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy, as well as HR-ESI-MS. The two isolated alkaloids were tested in vitro for cytotoxic activity against five gastric tumor cell lines. Consequently, compound 2 exhibited some cytotoxicities against several human cancer cell lines with IC50 value less than 20.0 µM.

14.
Mol Plant ; 17(8): 1307-1327, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39001606

ABSTRACT

Plant immunity is a multilayered process that includes recognition of patterns or effectors from pathogens to elicit defense responses. These include the induction of a cocktail of defense metabolites that typically restrict pathogen virulence. Here, we investigate the interaction between barley roots and the fungal pathogens Bipolaris sorokiniana (Bs) and Fusarium graminearum (Fg) at the metabolite level. We identify hordedanes, a previously undescribed set of labdane-related diterpenoids with antimicrobial properties, as critical players in these interactions. Infection of barley roots by Bs and Fg elicits hordedane synthesis from a 600-kb gene cluster. Heterologous reconstruction of the biosynthesis pathway in yeast and Nicotiana benthamiana produced several hordedanes, including one of the most functionally decorated products 19-ß-hydroxy-hordetrienoic acid (19-OH-HTA). Barley mutants in the diterpene synthase genes of this cluster are unable to produce hordedanes but, unexpectedly, show reduced Bs colonization. By contrast, colonization by Fusarium graminearum, another fungal pathogen of barley and wheat, is 4-fold higher in the mutants completely lacking hordedanes. Accordingly, 19-OH-HTA enhances both germination and growth of Bs, whereas it inhibits other pathogenic fungi, including Fg. Analysis of microscopy and transcriptomics data suggest that hordedanes delay the necrotrophic phase of Bs. Taken together, these results show that adapted pathogens such as Bs can subvert plant metabolic defenses to facilitate root colonization.


Subject(s)
Bipolaris , Diterpenes , Fusarium , Hordeum , Phytoalexins , Plant Diseases , Plant Roots , Sesquiterpenes , Fusarium/pathogenicity , Fusarium/physiology , Hordeum/microbiology , Diterpenes/pharmacology , Diterpenes/metabolism , Plant Roots/microbiology , Plant Diseases/microbiology , Bipolaris/metabolism , Sesquiterpenes/metabolism , Sesquiterpenes/pharmacology
15.
J Asian Nat Prod Res ; : 1-10, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996034

ABSTRACT

Three new diterpenoid alkaloids (1, 2, 3) and seventeen known (4-20) compounds were isolated from the whole plant of Delphinium sherriffii Munz (Ranunculaceae). Their structures were elucidated by various spectroscopic analyses, including IR, HR-ESI-MS, 1D and 2D NMR spectra. All compounds were evaluated for the inhibitory activity of Sf9 cells and compound 5 exhibited the strongest cytotoxicity (IC50 = 8.97 µM) against Sf9 cell line.

16.
Phytochemistry ; 226: 114221, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39002688

ABSTRACT

An extensive phytochemical investigation on the EtOAc-soluble fraction of the 90% MeOH extract from the twigs and needles of the 'vulnerable' Chinese endemic conifer Tsuga forrestii (Forrest's hemlock) led to the isolation and characterization of 50 structurally diverse diterpenoids, including 15 unreported C-18 carboxylated ones (tsugaforrestiacids A-O, 1-15, resp.). Among them, compounds 1-7 are abieten-18-oic acids, compound 8 is an abieten-18-succinate, and compounds 10-12 are podocarpen-18-oic acids, whereas compounds 13-15 are pimarane-type, isopimarane-type, and totarane-type diterpenoid acids, respectively. Their structures and absolute configurations were determined by a combination of spectroscopic methods, GIAO NMR calculations and DP4+ probability analyses, electronic circular dichroism (ECD) data, and single crystal X-ray diffraction analyses. All the isolates were evaluated for their inhibitory activities against the ATP-citrate lyase (ACL), a key enzyme in cellular metabolism. Tsugaforrestiacids E (5) and H (8) were found to have significant inhibitory effects against ACL, with IC50 values of 5.3 and 6.2 µM, respectively. The interactions of the bioactive molecules with the ACL enzyme were examined by molecular docking studies. The isolated diterpenoids also provide chemotaxonomic evidence to support the delimitation of Tsuga from its closest sister group (Nothotsuga). The above findings highlight the importance of protecting plant species with unique and diverse secondary metabolites, which may be potential sources of new therapeutic agents for the treating ACL-associated diseases.


Subject(s)
ATP Citrate (pro-S)-Lyase , Diterpenes , Phytochemicals , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/isolation & purification , ATP Citrate (pro-S)-Lyase/antagonists & inhibitors , ATP Citrate (pro-S)-Lyase/metabolism , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , China , Molecular Structure , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Endangered Species , Molecular Docking Simulation , Structure-Activity Relationship , Plant Leaves/chemistry
17.
J Asian Nat Prod Res ; : 1-11, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082687

ABSTRACT

Four new lycoctonine-type C19-diterpenoid alkaloids kamaonensines H-K (1-4) have been isolated from the whole plants of Delphinium kamaonense, together with 12 known compounds (5-16). Interestingly, kamaonensines 1-3 contained a rare nitrone (immine N-oxide) moiety, respectively. Their structures were established by spectroscopic analyses. The active evaluation of compounds (1-16) by LPS induced RAW 264.7 macrophages showed that compounds 4 and 8 displayed strong anti-inflammatory activities. While compounds 11 and 12 also showed strong cytotoxicities by the RAW 264.7 cell viability assay.

18.
Fitoterapia ; 177: 106111, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38971330

ABSTRACT

Euphorbia lathyris L. (EL) is a traditional poisonous herbal medicine used to treat dropsy, ascites, amenorrhea, anuria and constipation. Processing to reduce toxicity of EL is essential for its safe and effective application. However, there is little known regarding the molecular mechanism of reducing toxicity after EL processing. This research aimed to screen the differential markers for EL and PEL, explore the differential mechanisms of inflammatory injury induced by EL and processed EL (PEL) to expound the mechanism of alleviating toxicity after EL processing. The results showed that 15 potential biomarkers, mainly belonging to diterpenoids, were screened to distinguish EL from PEL. EL promoted the expressions of TLR4, NLRP3, NF-κB p65, IL-1ß and TNF-α, increased lipid rafts abundance and promoted TLR4 positioning to lipid rafts. Meanwhile, EL decreased LXRα and ABCA1 expression, and reduced cholesterol efflux. In contrast to EL, the effects of PEL on these indicators were markedly weakened. In addition, Euphorbia factors L1, L2, and L3 affected LXRα, ABCA1, TLR4, NLRP3, NF-κB p65, TNF-α and IL-1ß expression, influenced cholesterol efflux and lipid rafts abundance, and interfered with the colocalization of TLR4 and lipid rafts. The inflammatory injury caused by processed EL was significantly weaker than that caused by crude EL, and reduction of Euphorbia factors L1, L2, and L3 as well as attenuation of inflammatory injury participated in processing-based detoxification of EL. Our results provide valuable insights into the attenuated mechanism of EL processing and will guide future research on the processing mechanism of toxic traditional Chinese medicine.


Subject(s)
ATP Binding Cassette Transporter 1 , Euphorbia , Liver X Receptors , Membrane Microdomains , Toll-Like Receptor 4 , Euphorbia/chemistry , Toll-Like Receptor 4/metabolism , Liver X Receptors/metabolism , Membrane Microdomains/drug effects , Membrane Microdomains/metabolism , Animals , Mice , ATP Binding Cassette Transporter 1/metabolism , Inflammation/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RAW 264.7 Cells , Humans
19.
Chem Pharm Bull (Tokyo) ; 72(6): 540-546, 2024.
Article in English | MEDLINE | ID: mdl-38866475

ABSTRACT

Three neo-clerodane diterpenoids, including two new tinocordifoliols A (1) and B (2) and one known tinopanoid R (3), were isolated from the ethyl acetate-soluble fraction of the 70% ethanol extract of Tinospora cordifolia stems. The structures were elucidated by various spectroscopic methods, including one dimensional (1D) and 2D-NMR, high resolution-electrospray ionization (HR-ESI)-MS, and electronic circular dichroism (ECD) data. The T. cordifolia extract and all isolated compounds 1-3 possessed arginase I inhibitory activities. Among them, 3 exhibited moderate competitive inhibition of human arginase I (IC50 = 61.9 µM). Furthermore, docking studies revealed that the presence of a ß-substituted furan in 3 may play a key role in the arginase I inhibitory activities.


Subject(s)
Arginase , Diterpenes, Clerodane , Enzyme Inhibitors , Molecular Docking Simulation , Plant Stems , Tinospora , Tinospora/chemistry , Arginase/antagonists & inhibitors , Arginase/metabolism , Diterpenes, Clerodane/pharmacology , Diterpenes, Clerodane/chemistry , Diterpenes, Clerodane/isolation & purification , Humans , Plant Stems/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/isolation & purification , Structure-Activity Relationship , Molecular Structure , Molecular Conformation , Dose-Response Relationship, Drug
20.
J Agric Food Chem ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840459

ABSTRACT

Sclareol, a diterpene alcohol, is the most common starting material for the synthesis of ambrox, which serves as a sustainable substitute for ambergris, a valuable fragrance secreted by sperm whales. Sclareol has also been proposed to possess antibacterial, antifungal, and anticancer activities. However, in nature, sclareol is only produced by a few plant species, including Cistus creticus, Cleome spinosa, Nicotiana glutinosa, and Salvia sclarea, which limits its commercial application. In this study, we cloned the two genes responsible for sclareol biosynthesis in S. sclarea, labda-13-en-8-ol diphosphate synthase (LPPS) and sclareol synthase (SS), and overexpressed them in tobacco (Nicotiana tabacum L.). The best transgenic tobacco lines accumulated 4.1 µg/cm2 of sclareol, which is comparable to the sclareol production of N. glutinosa, a natural sclareol producer. Thus, sclareol synthesis in tobacco represents a potential alternative means for the production of this high-value compound.

SELECTION OF CITATIONS
SEARCH DETAIL