Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
J Biol Chem ; 300(9): 107720, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39214308

ABSTRACT

Site-specific nucleases are crucial for genome engineering applications in medicine and agriculture. The ideal site-specific nucleases are easily reprogrammable, highly specific in target site recognition, and robust in nuclease activities. Prokaryotic Argonaute (pAgo) proteins have received much attention as biotechnological tools due to their ability to recognize specific target sequences without a protospacer adjacent motif, but their lack of intrinsic dsDNA unwinding activity limits their utility in key applications such as gene editing. Recently, we developed a pAgo-based system for site-specific DNA cleavage at physiological temperatures independently of the DNA form, using peptide nucleic acids (PNAs) to facilitate unwinding dsDNA targets. Here, we fused catalytically dead pAgos with the nuclease domain of the restriction endonuclease FokI and named this modified platform PNA-assisted FokI-(d)pAgo (PNFP) editors. In the PNFP system, catalytically inactive pAgo recognizes and binds to a specific target DNA sequence based on a programmable guide DNA sequence; upon binding to the target site, the FokI domains dimerize and introduce precise dsDNA breaks. We explored key parameters of the PNFP system including the requirements of PNA and guide DNAs, the specificity of PNA and guide DNA on target cleavage, the optimal concentration of different components, reaction time for invasion and cleavage, and ideal temperature and reaction buffer, to ensure efficient DNA editing in vitro. The results demonstrated robust site-specific target cleavage by PNFP system at optimal conditions in vitro. We envision that the PNFP system will provide higher editing efficiency and specificity with fewer off-target effects in vivo.


Subject(s)
DNA Cleavage , Deoxyribonucleases, Type II Site-Specific , Deoxyribonucleases, Type II Site-Specific/metabolism , Deoxyribonucleases, Type II Site-Specific/chemistry , Deoxyribonucleases, Type II Site-Specific/genetics , Argonaute Proteins/metabolism , Argonaute Proteins/chemistry , Argonaute Proteins/genetics , Gene Editing/methods , DNA/metabolism , DNA/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Peptide Nucleic Acids/metabolism , Peptide Nucleic Acids/chemistry , Escherichia coli/metabolism , Escherichia coli/genetics
2.
Bio Protoc ; 14(13): e5026, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39007161

ABSTRACT

Diseases caused by trypanosomatid parasites remain a significant unmet medical need for millions of people globally. Trypanosomatid parasites such as Trypanosoma cruzi and subspecies of Trypanosoma brucei cause Chagas disease and human African trypanosomiasis (HAT), respectively. Although efforts to find novel treatments have been successful for HAT, Chagas disease is still treated with decades-old therapies that suffer from long treatment durations and severe safety concerns. We recently described the identification and characterization of the cyanotriazole compound class that kills trypanosomes, in vitro and in vivo, by selective inhibition of the trypanosome nuclear topoisomerase II enzyme. To evaluate whether inhibition of the topoisomerase II enzyme led to parasite death due to lethal double-strand DNA breaks, we developed assays for detecting DNA damage in both intracellular amastigotes of T. cruzi and bloodstream-form T. brucei by using the canonical DNA damage marker γH2A. Herein, this article describes the protocols for detecting DNA damage using an immunofluorescence assessment of γH2A by microscopy in trypanosome parasites. Key features • Immunofluorescence-based assay to detect the γH2A response in T. brucei and T. cruzi parasites. • Robust DNA damage pathway-based cellular assays to evaluate topoisomerase II poisons' ability to cause DNA damage. • A 384-well plate-based T. cruzi protocol allows high-resolution and high-throughput evaluation of compounds that cause DNA damage by measuring γH2A in intracellular parasites. • This assay could be modifiable for evaluation of DNA damage responses in various intracellular and extracellular eukaryotic pathogens.

3.
Cells ; 13(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38994946

ABSTRACT

Although more difficult to detect than in the cytoplasm, it is now clear that actin polymerization occurs in the nucleus and that it plays a role in the specific processes of the nucleus such as transcription, replication, and DNA repair. A number of studies suggest that nuclear actin polymerization is promoting precise DNA repair by homologous recombination, which could potentially be of help for precise genome editing and gene therapy. This review summarizes the findings and describes the challenges and chances in the field.


Subject(s)
Actins , Cell Nucleus , DNA Repair , Genetic Therapy , Polymerization , Humans , Actins/metabolism , Cell Nucleus/metabolism , Genetic Therapy/methods , Animals
4.
Chemosphere ; 362: 142622, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880264

ABSTRACT

The heterogeneity and complexity of solvent-extracted organic matter associated with PM2.5 (SEOM-PM2.5) is well known; however, there is scarce information on its biological effects in human cells. This work aimed to evaluate the effect of SEOM-PM2.5 collected in northern Mexico City during the cold-dry season (November 2017) on NL-20 cells, a human bronchial epithelial cell line. The SEOM obtained accounted for 15.5% of the PM2.5 mass and contained 21 polycyclic aromatic hydrocarbons (PAHs). The cell viability decreased following exposure to SEOM-PM2.5, and there were noticeable morphological changes such as increased cell size and the presence of cytoplasmic vesicles in cells treated with 5-40 µg/mL SEOM-PM2.5. Exposure to 5 µg/mL SEOM-PM2.5 led to several alterations compared with the control cells, including the induction of double-stranded DNA breaks based (p < 0.001); nuclear fragmentation and an increased mitotic index (p < 0.05); 53BP1 staining, a marker of DNA repair by non-homologous end-joining (p < 0.001); increased BiP protein expression; and reduced ATF6, IRE1α, and PERK gene expression. Conversely, when exposed to 40 µg/mL SEOM-PM2.5, the cells showed an increase in reactive oxygen species formation (p < 0.001), BiP protein expression (p < 0.05), and PERK gene expression (p < 0.05), indicating endoplasmic reticulum stress. Our data suggest concentration-dependent toxicological effects of SEOM-PM2.5 on NL-20 cells, including genotoxicity, genomic instability, and endoplasmic reticulum stress.


Subject(s)
Air Pollutants , Bronchi , Cell Survival , Epithelial Cells , Particulate Matter , Polycyclic Aromatic Hydrocarbons , Solvents , Humans , Epithelial Cells/drug effects , Particulate Matter/toxicity , Cell Line , Air Pollutants/toxicity , Cell Survival/drug effects , Bronchi/cytology , Bronchi/drug effects , Solvents/toxicity , Solvents/chemistry , Polycyclic Aromatic Hydrocarbons/toxicity , Mexico , Reactive Oxygen Species/metabolism
5.
Chem Biol Interact ; 397: 111088, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38823534

ABSTRACT

Tris(2-butoxyethyl) phosphate (TBOEP) is an organophosphorus flame retardant ubiquitously present in the environment and even the human body. TBOEP is toxic in multiple tissues, which forms dealkylated and hydroxylated metabolites under incubation with human hepatic microsomes; however, the impact of TBOEP metabolism on its toxicity, particularly mutagenicity (typically requiring metabolic activation), is left unidentified. In this study, the mutagenicity of TBOEP in human hepatoma cell lines (HepG2 and C3A) and the role of specific CYPs were studied. Through molecular docking, TBOEP bound to human CYP1A1, 1B1, 2B6 and 3A4 with energies and conformations favorable for catalyzing reactions, while the conformations of its binding with human CYP1A2 and 2E1 appeared unfavorable. In C3A cells (endogenous CYPs being substantial), TBOEP exposing for 72 h (2-cell cycle) at low micromolar levels induced micronucleus, which was abolished by 1-aminobenzotriazole (inhibitor of CYPs); in HepG2 cells (CYPs being insufficient) TBOEP did not induce micronucleus, whose effect was however potentiated by pretreating the cells with PCB126 (CYP1A1 inducer) or rifampicin (CYP3A4 inducer). TBOEP induced micronucleus in Chinese hamster V79-derived cell lines genetically engineered for stably expressing human CYP1A1 and 3A4, but not in cells expressing the other CYPs. In C3A cells, TBOEP selectively induced centromere protein B-free micronucleus (visualized by immunofluorescence) and PIG-A gene mutations, and elevated γ-H2AX rather than p-H3 (by Western blot) which indicated specific double-strand DNA breaks. Therefore, this study suggests that TBOEP may induce DNA/chromosome breaks and gene mutations in human cells, which requires metabolic activation by CYPs, primarily CYP1A1 and 3A4.


Subject(s)
Cytochrome P-450 Enzyme System , Flame Retardants , Molecular Docking Simulation , Animals , Humans , Flame Retardants/toxicity , Cricetinae , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Mutagens/toxicity , Organophosphorus Compounds/toxicity , Cricetulus , Organophosphates/toxicity , Hep G2 Cells , Micronucleus Tests
6.
J Alzheimers Dis ; 97(4): 1861-1875, 2024.
Article in English | MEDLINE | ID: mdl-38306051

ABSTRACT

Background: DNA breaks accumulate in Alzheimer's disease (AD) brains. While their role as true genomic lesions is recognized, DNA breaks also support cognitive function by facilitating the expression of activity-dependent immediate early genes. This process involves TOP2B, a DNA topoisomerase that catalyzes the formation of DNA double-strand breaks. Objective: To characterize how AD impacts adaptive DNA breaks at nervous system genes. Methods: We leveraged the ability of DNA single- and double-strand breaks to activate poly(ADP-ribose) polymerases (PARPs) that conjugate poly(ADP-ribose) (PAR) to adjacent proteins. To characterize the genomic sites harboring DNA breaks in AD brains, nuclei extracted from 3 AD and 3 non-demented autopsy brains (frontal cortex, all male donors, age 78 to 91 years of age) were analyzed through CUT&RUN in which we targeted PAR with subsequent DNA sequencing. Results: Although the AD brains contained 19.9 times more PAR peaks than the non-demented brains, PAR peaks at nervous system genes were profoundly lost in AD brains, and the expression of these genes was downregulated. This result is consistent with our previous CUT&RUN targeting γH2AX, which marks DNA double-strand breaks. In addition, TOP2B expression was significantly decreased in the AD brains. Conclusions: Although AD brains contain a net increase in DNA breaks, adaptive DNA breaks at nervous system genes are lost in AD brains. This could potentially reflect diminished TOP2B expression and contribute to impaired neuron function and cognition in AD patients.


Subject(s)
Alzheimer Disease , Humans , Male , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , DNA/genetics , DNA Breaks, Double-Stranded , Brain/pathology
7.
Int J Mol Sci ; 24(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37958890

ABSTRACT

Over the course of long-term evolution, cells have developed intricate defense mechanisms in response to DNA damage; these mechanisms play a pivotal role in maintaining genomic stability. Defects in the DNA damage response pathways can give rise to various diseases, including cancer. The DNA damage response (DDR) system is instrumental in safeguarding genomic stability. The accumulation of DNA damage and the weakening of DDR function both promote the initiation and progression of tumors. Simultaneously, they offer opportunities and targets for cancer therapeutics. This article primarily elucidates the DNA damage repair pathways and the progress made in targeting key proteins within these pathways for cancer treatment. Among them, poly (ADP-ribose) polymerase 1 (PARP1) plays a crucial role in DDR, and inhibitors targeting PARP1 have garnered extensive attention in anticancer research. By delving into the realms of DNA damage and repair, we aspire to explore more precise and effective strategies for cancer therapy and to seek novel avenues for intervention.


Subject(s)
DNA Repair , Neoplasms , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , DNA Damage , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Genomic Instability
8.
Cell Chem Biol ; 30(12): 1601-1616.e6, 2023 12 21.
Article in English | MEDLINE | ID: mdl-37939709

ABSTRACT

Type 1 IFN expression is critical in the innate immune response, but aberrant expression is associated with autoimmunity and cancer. Here, we identify N-[4-(1H46 pyrazolo[3,4-b] pyrazin-6-yl)-phenyl]-sulfonamide (Sanofi-14h), a compound with preference for inhibition of the AGC family kinase SGK3, as an inhibitor of Ifnb1 gene expression in response to STING stimulation of macrophages. Sanofi-14h abrogated SGK activity and also impaired activation of the critical TBK1/IRF3 pathway downstream of STING activation, blocking interaction of STING with TBK1. Deletion of SGK1/3 in a macrophage cell line did not block TBK1/IRF3 activation but decreased expression of transcription factors, such as IRF7 and STAT1, required for the innate immune response. Other AGC kinase inhibitors blocked TBK1 and IRF3 activation suggesting common action on a critical regulatory node in the STING pathway. These studies reveal both SGK-dependent and SGK-independent mechanisms in the innate immune response and indicate an approach to block aberrant Ifnb1 expression.


Subject(s)
Immunity, Innate , Membrane Proteins , Protein Serine-Threonine Kinases , Phosphorylation , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Membrane Proteins/metabolism , Animals , Mice , RAW 264.7 Cells
9.
J Gastrointest Oncol ; 14(5): 2249-2259, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37969835

ABSTRACT

Background and Objective: Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers. A major recent advance has been the identification of a subset of patients with PDAC who harbor inherited or somatic genetic alterations that result in homologous recombination deficiency (HRD) in tumor cells. These patients often respond favorably to drugs that can exploit this vulnerability. This review outlines the biomarkers that have been developed to predict HRD and their performance related specifically to PDAC, as well as novel HRD-targeted therapies for PDAC. Methods: We conducted a narrative review of the HRD in PDAC based on PubMed, Google Scholar, website and citation searches. Key Content and Findings: Germline mutations in BRCA1 and BRCA2 remains the only validated biomarker for the HRD state but various platforms are now available to define HRD beyond BRCA1/2 alterations. Currently, the available evidence supports the use of platinum-based chemotherapy as well as PARP inhibitors, and there is also emerging data that immune checkpoint inhibitors can produce some durable responses in these patients. Conclusions: Consistently detecting clinically significant the HRD status in PDAC has remained challenging with current commercially available platforms. Multiple novel HRD-targeted therapies for PDAC are currently in development and clinical trials, offering new opportunities for these patients.

10.
FEBS J ; 290(21): 5094-5097, 2023 11.
Article in English | MEDLINE | ID: mdl-37794568

ABSTRACT

Since the first CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system was developed for creating double-stranded DNA breaks, it has been adapted and improved for different biotechnological applications. In this issue of The FEBS Journal, Arentshorst et al. developed a novel approach to enhance transgene expression of a specific protein, patulin synthase (PatE) from Penicillium expansum, in the important industrial filamentous fungus Aspergillus niger. Their technique involved the disruption of selected genes with counter-effects on targeted protein production and simultaneous integration of glucoamylase landing sites into the disrupted gene locus such as protease regulator (prtT) in an ATP-dependent DNA helicase II subunit 1 (kusA or ku70)-deletion strain. Multiple copies of the PatE transgene expression cassette were introduced by CRISPR-Cas9-mediated insertion. The purified PatE was further used for structural and functional studies, and the technique laid the foundation for elevating the overall production of various proteins or chemicals in those industrially important fungi.


Subject(s)
Patulin , Penicillium , Gene Editing/methods , Aspergillus niger/genetics , Patulin/genetics , Patulin/metabolism , Penicillium/genetics , CRISPR-Cas Systems/genetics
11.
Chemistry ; 29(56): e202301713, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37452669

ABSTRACT

Herein, we report the synthesis of a series of colibactin warhead model compounds using two newly developed metal-free photocatalytic cyclopropanation reactions. These mild cyclopropanations expand the known applications of eosin within synthesis. A halogen atom transfer reaction mode has been harnessed so that dihalides can be used as the cyclopropanating agents. The colibactin warhead models were then used to provide new insight into two key mechanisms in colibactin chemistry. An explanation is provided for why the colibactin warhead sometimes undergoes a ring expansion-addition reaction to give fused cyclobutyl products while at other times nucleophiles add directly to the cyclopropyl unit (as when DNA adds to colibactin). Finally, we provide some evidence that Cu(II) chelated to colibactin may catalyze an important oxidation of the colibactin-DNA adduct. The Cu(I) generated as a result could then also play a role in inducing double strand breaks in DNA.

12.
Int J Mol Sci ; 24(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37298484

ABSTRACT

We investigated the role of TONSL, a mediator of homologous recombination repair (HRR), in stalled replication fork double-strand breaks (DSBs) in cancer. Publicly available clinical data (tumors from the ovary, breast, stomach and lung) were analyzed through KM Plotter, cBioPortal and Qomics. Cancer stem cell (CSC)-enriched cultures and bulk/general mixed cell cultures (BCCs) with RNAi were employed to determine the effect of TONSL loss in cancer cell lines from the ovary, breast, stomach, lung, colon and brain. Limited dilution assays and ALDH assays were used to quantify the loss of CSCs. Western blotting and cell-based homologous recombination assays were used to identify DNA damage derived from TONSL loss. TONSL was expressed at higher levels in cancer tissues than in normal tissues, and higher expression was an unfavorable prognostic marker for lung, stomach, breast and ovarian cancers. Higher expression of TONSL is partly associated with the coamplification of TONSL and MYC, suggesting its oncogenic role. The suppression of TONSL using RNAi revealed that it is required in the survival of CSCs in cancer cells, while BCCs could frequently survive without TONSL. TONSL dependency occurs through accumulated DNA damage-induced senescence and apoptosis in TONSL-suppressed CSCs. The expression of several other major mediators of HRR was also associated with worse prognosis, whereas the expression of error-prone nonhomologous end joining molecules was associated with better survival in lung adenocarcinoma. Collectively, these results suggest that TONSL-mediated HRR at the replication fork is critical for CSC survival; targeting TONSL may lead to the effective eradication of CSCs.


Subject(s)
Neoplasms , Recombinational DNA Repair , Female , Humans , DNA Damage , DNA Repair/genetics , DNA Replication/genetics , Homologous Recombination , Neoplastic Stem Cells
13.
J Alzheimers Dis ; 94(2): 519-535, 2023.
Article in English | MEDLINE | ID: mdl-37334609

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) brains accumulate DNA double-strand breaks (DSBs), which could contribute to neurodegeneration and dysfunction. The genomic distribution of AD brain DSBs is unclear. OBJECTIVE: To map genome-wide DSB distributions in AD and age-matched control brains. METHODS: We obtained autopsy brain tissue from 3 AD and 3 age-matched control individuals. The donors were men between the ages of 78 to 91. Nuclei extracted from frontal cortex tissue were subjected to Cleavage Under Targets & Release Using Nuclease (CUT&RUN) assay with an antibody against γH2AX, a marker of DSB formation. γH2AX-enriched chromatins were purified and analyzed via high-throughput genomic sequencing. RESULTS: The AD brains contained 18 times more DSBs than the control brains and the pattern of AD DSBs differed from the control brain pattern. In conjunction with published genome, epigenome, and transcriptome analyses, our data revealed aberrant DSB formation correlates with AD-associated single-nucleotide polymorphisms, increased chromatin accessibility, and upregulated gene expression. CONCLUSION: Our data suggest in AD, an accumulation of DSBs at ectopic genomic loci could contribute to an aberrant upregulation of gene expression.


Subject(s)
Alzheimer Disease , DNA Breaks, Double-Stranded , Male , Humans , Aged , Aged, 80 and over , Female , Alzheimer Disease/genetics , Autopsy , Chromatin , Brain
14.
Arch Toxicol ; 97(6): 1753-1764, 2023 06.
Article in English | MEDLINE | ID: mdl-36995427

ABSTRACT

Carbamazepine (CBZ, an antiepileptic) is metabolized by multiple CYP enzymes to its epoxide and hydroxides; however, whether it is genotoxic remains unclear. In this study, molecular docking (CBZ to CYPs) and cytogenotoxic toxicity assays were employed to investigate the activation of CBZ for mutagenic effects, in various mammalian cell models. Docking results indicated that CBZ was valid as a substrate of human CYP2B6 and 2E1, while not for CYP1A1, 1A2, 1B1 or 3A4. In the Chinese hamster (V79) cell line and its derivatives genetically engineered for the expression of human CYP1A1, 1A2, 1B1, 2E1 or 3A4 CBZ (2.5 ~ 40 µM) did not induce micronucleus, while in human CYP2B6-expressing cells CBZ significantly induced micronucleus formation. In a human hepatoma C3A cell line, which endogenously expressed CYP2B6 twofold higher than in HepG2 cells, CBZ induced micronucleus potently, which was blocked by 1-aminobenzotriazole (inhibitor of CYPs) and ticlopidine (specific CYP2B6 inhibitor). In HepG2 cells CBZ did not induce micronucleus; however, pretreatment of the cells with CICTO (CYP2B6 inducer) led to micronucleus formation by CBZ, while rifampicin (CYP3A4 inducer) or PCB126 (CYP1A inducer) did not change the negative results. Immunofluorescent assay showed that CBZ selectively induced centromere-free micronucleus. Moreover, CBZ induced double-strand DNA breaks (γ-H2AX elevation, by Western blot) and PIG-A gene mutations (by flowcytometry) in C3A (threshold being 5 µM, lower than its therapeutic serum concentrations, 17 ~ 51 µM), with no effects in HepG2 cells. Clearly, CBZ may induce clastogenesis and gene mutations at its therapeutic concentrations, human CYP2B6 being a major activating enzyme.


Subject(s)
Cytochrome P-450 CYP1A1 , Liver Neoplasms , Cricetinae , Animals , Humans , Cytochrome P-450 CYP2B6/genetics , Cytochrome P-450 CYP1A1/genetics , Molecular Docking Simulation , Cytochrome P-450 Enzyme System/metabolism , Carbamazepine/pharmacology , Mutation , Cricetulus , DNA Damage
15.
J Assist Reprod Genet ; 40(4): 745-751, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36823317

ABSTRACT

PURPOSE: The main objective of this opinion paper was to bring to light and enhance our understanding of the amount of double-strand DNA breaks in sperm and whether there is a threshold of no return when considering repair by the oocyte/embryo. METHODS: A brief review of literature related to the theories proposed for the appearance of double-strand breaks in human spermatozoa. Further commentary regarding their detection, how oocytes or embryos may deal with them, and what are the consequences if they are not repaired. Finally, a strategy for dealing with patients who have higher levels of double-strand DNA breaks in sperm is proposed by reviewing and presenting data using testicular extracted sperm. RESULTS: We propose a theory that a threshold may exist in the oocyte that allows either complete or partial DNA repair of impaired sperm. The closer that an embryo is exposed to the threshold, the more the effect on the ensuing embryo will fail to reach various milestones, including blastocyst stage, implantation, pregnancy loss, an adverse delivery outcome, or offspring health. We also present a summary of the role that testicular sperm extraction may play in improving outcomes for couples in which the male has a high double-strand DNA break level in his sperm. CONCLUSIONS: Double-strand DNA breaks in sperm provide a greater stress on repair mechanisms and challenge the threshold of repair in oocytes. It is therefore imperative that we improve our understanding and diagnostic ability of sperm DNA, and in particular, how double-strand DNA breaks originate and how an oocyte or embryo is able to deal with them.


Subject(s)
DNA Breaks, Double-Stranded , Semen , Pregnancy , Female , Humans , Male , Spermatozoa , DNA Repair/genetics , Embryo Implantation/genetics
16.
Front Microbiol ; 14: 1067505, 2023.
Article in English | MEDLINE | ID: mdl-36819017

ABSTRACT

Introduction: The prebiotic inulin has previously shown both protective and tumor-promoting effects in colorectal cancer (CRC). These inconsistencies may be due to the gut microbial composition as several bacteria have been associated with CRC. Specifically, polyketide synthase-positive (pks+) Escherichia coli promotes carcinogenesis and facilitates CRC progression through the production of colibactin, a genotoxin that induces double-strand DNA breaks (DSBs). We investigated whether colibactin-producing Escherichia coli changed the protection conferred by inulin against tumor growth and progression using the ApcMin/+ mouse model of CRC. Methods: Mice received a 2% dextran sodium sulfate (DSS) solution followed by oral gavage with the murine pks + E. coli strain NC101 (EcNC101) and were fed a diet supplemented with 10% cellulose as control or 10% inulin for 4 weeks. Results: Inulin supplementation led to increase EcNC101 colonization compared to mice receiving the control diet. The increased colonization of EcNC101 resulted in more DSBs, tumor burden, and tumor progression in ApcMin/+ mice. The tumorigenic effect of EcN101 in ApcMin/+ mice mediated by inulin was dependent on colibactin production. Pasteurized E. coli Nissle 1917 (EcN), a probiotic, suppressed the inulin-driven EcNC101 expansion and impacted tumor progression. Discussion: Our results suggest that the presence of pks + E. coli influences the outcome of inulin supplementation in CRC and that microbiota-targeted interventions may mitigate this effect. Given the prevalence of pks + E. coli in both healthy and CRC populations and the importance of a fiber-rich diet, inulin supplementation in individuals colonized with pks + bacteria should be considered with caution.

17.
Chem Biol Interact ; 369: 110259, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36372259

ABSTRACT

As a new-type flame retardant and toxic substance, triphenyl phosphate (TPP) is a ubiquitous pollutant present even in human blood. TPP is transformed by human CYP enzymes to oxidized/dealkylated metabolites. The impact of TPP metabolism on its toxicity, however, remains unclear. In this study, the genotoxicity of TPP in several mammalian cell lines and its relevance to CYP/sulfortransferase (SULT) activities were investigated. The results indicated that TPP induced micronucleus formation at ≥1 µM concentrations in a human hepatoma (C3A, endogenous CYPs being substantial) cell line, which was abolished by 1-aminobenzotriazole (CYPs inhibitor). In cell line HepG2 (parental to C3A with lower CYP expression) TPP was inactive up to 10 µM, while pretreatment with ethanol (CYP2E1 inducer), PCB 126 (CYP1A inducer), or rifampicin (CYP3A inducer) led to micronucleus formation by TPP. In V79-Mz and V79-derived cells expressing human CYP1A1 TPP was inactive (up to 32 µM), and in cells expressing human CYP1B1, 2B6 and 3A4 it induced micronucleus weakly (positive only at 32 µM). However, TPP induced micronucleus potently in V79-derived cells expressing human CYP1A2, while this effect was drastically reduced by human SULT1A1 co-expression; likewise, TPP was inactive in cells expressing both human CYP2E1 and SULT1A1, but became positive with pentachlorophenol (inhibitor of SULT1) co-exposure. Moreover, in C3A cells TPP selectively induced centromere-free micronucleus (immunofluorescent assay), and TPP increased γ-H2AX (by Western blot, indicating double-strand DNA breaks). In conclusion, this study suggests that TPP is potently clastogenic, human CYP1A2 and 2E1 being major activating enzymes while SULT1A1 involved in detoxification.


Subject(s)
Cytochrome P-450 CYP1A2 , Mutagens , Cricetinae , Animals , Humans , Mutagens/toxicity , Cytochrome P-450 CYP1A2/genetics , Cricetulus , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 CYP2E1/metabolism
18.
Mol Ther ; 31(3): 744-759, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36457249

ABSTRACT

Editing efficiency is pivotal for the efficacies of CRISPR-based gene therapies. We found that fusing an HMG-D domain to the N terminus of SpCas9 (named efficiency-enhanced Cas9 [eeCas9]) significantly increased editing efficiency by 1.4-fold on average. The HMG-D domain also enhanced the activities of non-NGG PAM Cas9 variants, high-fidelity Cas9 variants, smaller Cas9 orthologs, Cas9-based epigenetic regulators, and base editors in cell lines. Furthermore, we discovered that eeCas9 exhibits comparable off-targeting effects with Cas9, and its specificity could be increased through ribonucleoprotein delivery or using hairpin single-guide RNAs and high-fidelity Cas9s. The entire eeCas9 could be packaged into an adeno-associated virus vector and exhibited a 1.7- to 2.6-fold increase in editing efficiency targeting the Pcsk9 gene in mice, leading to a greater reduction of serum cholesterol levels. Moreover, the efficiency of eeA3A-BE3 also surpasses that of A3A-BE3 in targeting the promoter region of γ-globin genes or BCL11A enhancer in human hematopoietic stem cells to reactivate γ-globin expression for the treatment of ß-hemoglobinopathy. Together, eeCas9 and its derivatives are promising editing tools that exhibit higher activity and therapeutic efficacy for both in vivo and ex vivo therapeutics.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Animals , Humans , Mice , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Gene Editing , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , gamma-Globins/genetics , Genetic Therapy
19.
bioRxiv ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38168316

ABSTRACT

Background: DNA breaks accumulate in Alzheimer's disease (AD) brains. While their role as true genomic lesions is recognized, DNA breaks also support cognitive function by facilitating the expression of activity-dependent immediate early genes (IEGs). This process involves TOP2B, a DNA topoisomerase that catalyzes the formation of DNA double-strand breaks (DSBs). Objective: To characterize how AD impacts adaptive DNA breaks at nervous system genes. Methods: We leveraged the ability of DNA single- and double-strand breaks to activate poly(ADP-ribose) polymerases (PARPs) that conjugate poly(ADP-ribose) (PAR) to adjacent proteins. To characterize the genomic sites harboring DNA breaks in AD brains, nuclei extracted from 3 AD and 3 non-demented (ND) autopsy brains (frontal cortex, all male donors, age 78 to 91 years of age) were analyzed through CUT&RUN in which we targeted PAR with subsequent DNA sequencing. Results: Although the AD brains contained 19.9 times more PAR peaks than the ND brains, PAR peaks at nervous system genes were profoundly lost in AD brains, and the expression of these genes was downregulated. This result is consistent with our previous CUT&RUN targeting γH2AX, which marks DNA double-strand breaks (DSBs). In addition, TOP2B expression was significantly decreased in the AD brains. Conclusion: Although AD brains contain a net increase in DNA breaks, adaptive DNA breaks at nervous system genes are lost in AD brains. This could potentially reflect diminished TOP2B expression and contribute to impaired neuron function and cognition in AD patients.

20.
Int J Mol Sci ; 23(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36361615

ABSTRACT

The enhancement of photodynamic therapy (PDT) effectiveness by combining it with other treatment modalities and improved drug delivery has become an interesting field in cancer research. We have prepared and characterized nanoliposomes containing the chemotherapeutic drug irinotecan (CPT11lip), the photodynamic agent protoporphyrin IX (PpIXlip), or their combination (CPT11-PpIXlip). The effects of individual and bimodal (chemo-phototherapeutic) treatments on HeLa cells have been studied by a combination of biological and photophysical studies. Bimodal treatments show synergistic cytotoxic effects on HeLa cells at relatively low doses of PpIX/PDT and CPT11. Mechanistic cell inactivation studies revealed mitotic catastrophe, apoptosis, and senescence contributions. The enhanced anticancer activity is due to a sustained generation of reactive oxygen species, which increases the number of double-strand DNA breaks. Bimodal chemo-phototherapeutic liposomes may have a very promising future in oncological therapy, potentially allowing a reduction in the CPT11 concentration required to achieve a therapeutic effect and overcoming resistance to individual cancer treatments.


Subject(s)
Photochemotherapy , Humans , HeLa Cells , Irinotecan , Cell Line, Tumor , Photosensitizing Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL