Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Proc Biol Sci ; 291(2025): 20240483, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38889778

ABSTRACT

Interspecies hybrid sterility has been extensively studied, especially in the genus Drosophila. Hybrid sterility is more often found in the heterogametic (XY or ZW) sex, a trend called Haldane's rule. Although this phenomenon is pervasive, identification of a common genetic mechanism remains elusive, with modest support found for a range of potential theories. Here, we identify a single precise morphological phenotype, which we call 'needle-eye sperm', that is associated with hybrid sterility in three separate species pairs that span the Drosophila genus. The nature of the phenotype indicates a common point of meiotic failure in sterile hybrid males. We used 10 generations of backcross selection paired with whole-genome pooled sequencing to genetically map the regions underlying the needle-eye (NE) sperm phenotype. Surprisingly, the sterility phenotype was present in ~50% of males even after 10 generations of backcrossing, and only a single region of the X chromosome was associated with sterility in one direction of backcross. Owing to the common phenotype among sterile male hybrids, and the strong effect of individual loci, further exploration of these findings may identify a universal mechanism for the evolution of hybrid sterility.


Subject(s)
Drosophila , Infertility, Male , Phenotype , Spermatozoa , Animals , Male , Drosophila/genetics , Drosophila/physiology , Spermatozoa/physiology , Infertility, Male/genetics , Hybridization, Genetic
2.
Biol Open ; 11(10)2022 10 15.
Article in English | MEDLINE | ID: mdl-36285699

ABSTRACT

Many insects inhabiting temperate climates are faced with changing environmental conditions throughout the year. Depending on the species, these environmental fluctuations can be experienced within a single generation or across multiple generations. Strategies for dealing with these seasonal changes vary across populations. Drosophila mojavensis is a cactophilic Drosophila species endemic to the Sonoran Desert. The Sonoran Desert regularly reaches temperatures of 50°C in the summer months. As individuals of this population are rare to collect in the summer months, we simulated the cycling temperatures experienced by D. mojavensis in the Sonoran Desert from April to July (four generations) in a temperature- and light-controlled chamber, to understand the physiological and life history changes that allow this population to withstand these conditions. In contrast to our hypothesis of a summer aestivation, we found that D. mojavensis continue to reproduce during the summer months, albeit with lower viability, but the adult survivorship of the population is highly reduced during this period. As expected, stress resistance increased during the summer months in both the adult and the larval stages. This study examines several strategies for withstanding the Sonoran Desert summer conditions which may be informative in the study of other desert endemic species.


Subject(s)
Adaptation, Physiological , Drosophila , Animals , Drosophila/physiology , Seasons , Acclimatization
3.
BMC Genomics ; 20(1): 732, 2019 Oct 12.
Article in English | MEDLINE | ID: mdl-31606030

ABSTRACT

BACKGROUND: Relationships between an organism and its environment can be fundamental in the understanding how populations change over time and species arise. Local ecological conditions can shape variation at multiple levels, among these are the evolutionary history and trajectories of coding genes. This study examines the rate of molecular evolution at protein-coding genes throughout the genome in response to host adaptation in the cactophilic Drosophila mojavensis. These insects are intimately associated with cactus necroses, developing as larvae and feeding as adults in these necrotic tissues. Drosophila mojavensis is composed of four isolated populations across the deserts of western North America and each population has adapted to utilize different cacti that are chemically, nutritionally, and structurally distinct. RESULTS: High coverage Illumina sequencing was performed on three previously unsequenced populations of D. mojavensis. Genomes were assembled using the previously sequenced genome of D. mojavensis from Santa Catalina Island (USA) as a template. Protein coding genes were aligned across all four populations and rates of protein evolution were determined for all loci using a several approaches. CONCLUSIONS: Loci that exhibited elevated rates of molecular evolution tend to be shorter, have fewer exons, low expression, be transcriptionally responsive to cactus host use and have fixed expression differences across the four cactus host populations. Fast evolving genes were involved with metabolism, detoxification, chemosensory reception, reproduction and behavior. Results of this study give insight into the process and the genomic consequences of local ecological adaptation.


Subject(s)
Cactaceae/parasitology , Drosophila Proteins/genetics , Drosophila/physiology , Whole Genome Sequencing/methods , Adaptation, Physiological , Animals , Drosophila/genetics , Ecosystem , Evolution, Molecular , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing/veterinary , United States
4.
Ecol Evol ; 8(14): 6921-6931, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30073056

ABSTRACT

For plant utilizing insects, the shift to a novel host is generally accompanied by a complex set of phenotypic adaptations. Many such adaptations arise in response to differences in plant chemistry, competitive environment, or abiotic conditions. One less well-understood factor in the evolution of phytophagous insects is the selective environment provided by plant shape and volume. Does the physical structure of a new plant host favor certain phenotypes? Here, we use cactophilic Drosophila, which have colonized the necrotic tissues of cacti with dramatically different shapes and volumes, to examine this question. Specifically, we analyzed two behavioral traits in larvae, pupation height, and activity that we predicted might be related to the ability to utilize variably shaped hosts. We found that populations of D. mojavensis living on lengthy columnar or barrel cactus hosts have greater activity and pupate higher in a laboratory environment than populations living on small and flat prickly pear cactus cladodes. Crosses between the most phenotypically extreme populations suggest that the genetic architectures of these behaviors are distinct. A comparison of activity in additional cactophilic species that are specialized on small and large cactus hosts shows a consistent trend. Thus, we suggest that greater motility and an associated tendency to pupate higher in the laboratory are potential larval adaptations for life on a large plant where space is more abundant and resources may be more sparsely distributed.

5.
Evolution ; 69(5): 1178-90, 2015 05.
Article in English | MEDLINE | ID: mdl-25824653

ABSTRACT

Models of speciation-with-gene-flow have shown that the reduction in recombination between alternative chromosome arrangements can facilitate the fixation of locally adaptive genes in the face of gene flow and contribute to speciation. However, it has proven frustratingly difficult to show empirically that inversions have reduced gene flow and arose during or shortly after the onset of species divergence rather than represent ancestral polymorphisms. Here, we present an analysis of whole genome data from a pair of cactophilic fruit flies, Drosophila mojavensis and D. arizonae, which are reproductively isolated in the wild and differ by several large inversions on three chromosomes. We found an increase in divergence at rearranged compared to colinear chromosomes. Using the density of divergent sites in short sequence blocks we fit a series of explicit models of species divergence in which gene flow is restricted to an initial period after divergence and may differ between colinear and rearranged parts of the genome. These analyses show that D. mojavensis and D. arizonae have experienced postdivergence gene flow that ceased around 270 KY ago and was significantly reduced in chromosomes with fixed inversions. Moreover, we show that these inversions most likely originated around the time of species divergence which is compatible with theoretical models that posit a role of inversions in speciation with gene flow.


Subject(s)
Chromosome Inversion , Drosophila/genetics , Genetic Speciation , Genome, Insect , Animals , Chromosomes, Insect/genetics , Evolution, Molecular , Gene Flow , Polymorphism, Genetic
6.
J Evol Biol ; 28(2): 403-14, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25522894

ABSTRACT

Traits involved in post-copulatory interactions between the sexes may evolve rapidly as a result of sexual selection and/or sexual conflict, leading to post-mating-prezygotic (PMPZ) reproductive isolating barriers between diverging lineages. Although the importance of PMPZ isolation is recognized, the molecular basis of such incompatibilities is not well understood. Here, we investigate molecular evolution of a subset of Drosophila mojavensis and Drosophila arizonae reproductive tract genes. These include genes that are transcriptionally regulated by conspecific mating in females, many of which are misregulated in heterospecific crosses, and a set of male genes whose transcripts are transferred to females during mating. As a group, misregulated female genes are not more divergent and do not appear to evolve under different selection pressures than other female reproductive genes. Male transferred genes evolve at a higher rate than testis-expressed genes, and at a similar rate compared to accessory gland protein genes, which are known to evolve rapidly. Four of the individual male transferred genes show patterns of divergent positive selection between D. mojavensis and D. arizonae. Three of the four genes belong to the sperm-coating protein-like family, including an ortholog of antares, which influences female fertility and receptivity in Drosophila melanogaster. Synthesis of these molecular evolutionary analyses with transcriptomics and predicted functional information makes these genes candidates for involvement in PMPZ reproductive incompatibilities between D. mojavensis and D. arizonae.


Subject(s)
Drosophila/genetics , Evolution, Molecular , Animals , Drosophila/physiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Gene Expression Regulation/physiology , Male , Phylogeny , Reproduction/physiology , Selection, Genetic
7.
Mob DNA ; 5: 21, 2014.
Article in English | MEDLINE | ID: mdl-25093043

ABSTRACT

BACKGROUND: Bari-like transposons belong to the Tc1-mariner superfamily, and they have been identified in several genomes of the Drosophila genus. This transposon's family has been used as paradigm to investigate the complex dynamics underlying the persistence and structural evolution of transposable elements (TEs) within a genome. Three structural Bari variants have been identified so far and can be distinguished based on the organization of their terminal inverted repeats. Bari3 is the last discovered member of this family identified in Drosophila mojavensis, a recently emerged species of the Repleta group of the genus Drosophila. RESULTS: We studied the insertion pattern of Bari3 in different D. mojavensis populations and found evidence of recent transposition activity. Analysis of the transposase domains unveiled the presence of a functional nuclear localization signal, as well as a functional binding domain. Using luciferase-based assays, we investigated the promoter activity of Bari3 as well as the interaction of its transposase with its left terminus. The results suggest that Bari3 is transposition-competent. Finally we demonstrated transposase transcript processing when the transposase gene is overexpressed in vivo and in vitro. CONCLUSIONS: Bari3 displays very similar structural and functional features with its close relative, Bari1. Our results strongly suggest that Bari3 is an independent element that has generated genomic diversity in D. mojavensis. It can autonomously transcribe its transposase gene, which in turn can localize in the nucleus and bind the terminal inverted repeats of the transposon. Nevertheless, the identification of an unpredicted spliced form of the Bari3 transposase transcript allows us to hypothesize a control mechanism of its mobility based on mRNA processing. These results will aid the studies on the Bari family of transposons, which is intriguing for its widespread diffusion in Drosophilids coupled with a structural diversity generated during the evolution of Bari-like elements in their host genomes.

8.
Gene ; 535(2): 210-7, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24321690

ABSTRACT

In the early Drosophila melanogaster embryo, Dpp, a secreted molecule that belongs to the TGF-ß superfamily of growth factors, activates a set of downstream genes to subdivide the dorsal region into amnioserosa and dorsal epidermis. Here, we examined the expression pattern and transcriptional regulation of Dtg, a new target gene of Dpp signaling pathway that is required for proper amnioserosa differentiation. We showed that the expression of Dtg was controlled by Dpp and characterized a 524-bp enhancer that mediated expression in the dorsal midline, as well as, in the differentiated amnioserosa in transgenic reporter embryos. This enhancer contained a highly conserved region of 48-bp in which bioinformatic predictions and in vitro assays identified three Mad binding motifs. Mutational analysis revealed that these three motifs were necessary for proper expression of a reporter gene in transgenic embryos, suggesting that short and highly conserved genomic sequences may be indicative of functional regulatory regions in D. melanogaster genes. Dtg orthologs were not detected in basal lineages of Dipterans, which unlike D. melanogaster develop two extra-embryonic membranes, amnion and serosa, nevertheless Dtg orthologs were identified in the transcriptome of Musca domestica, in which dorsal ectoderm patterning leads to the formation of a single extra-embryonic membrane. These results suggest that Dtg was recruited as a new component of the network that controls dorsal ectoderm patterning in the lineage leading to higher Cyclorrhaphan flies, such as D. melanogaster and M. domestica.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Membrane Proteins/genetics , Signal Transduction , Animals , Base Sequence , Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Embryo, Nonmammalian , Enhancer Elements, Genetic , Protein Binding , Sequence Alignment , Species Specificity
9.
Braz. arch. biol. technol ; Braz. arch. biol. technol;52(5): 1083-1089, Sept.-Oct. 2009. ilus, tab
Article in English | LILACS | ID: lil-536382

ABSTRACT

A method that allows the measure of molecular weight of two well-known and closely related esterases from Drosophila mojavensis and its sibling species, D. arizonae, is here described, using native polyacrylamide gel electrophoresis at several concentrations, applying Fergunson´s principles. These enzymes, namely EST-4 and EST-5, presented molecular weight values between 81 and 91 kDa. In spite of their distinct expression pattern through the insect's life cycle, they showed properties of isoenzymes codified by distinct structural genes, supporting the hypothesis of a rather recent gene duplication event that generated both in D. mojavensis and D. arizonae, as well as in other species of repleta group. The method is simple and adequate to be applied to preliminary molecular weight determination of other enzymes without any previous purification procedure.


Neste trabalho, um método que permite a estimativa do peso molecular de duas esterases conhecidas e intimamente relacionadas, encontradas em Drosophila mojavensis e sua espécie aparentada D. arizonae, é descrito. Este método é realizado utilizando a técnica de eletroforese em diferentes concentrações de gel e aplicando os princípios de Fergunson. As enzimas, denominadas EST-4 e EST-5, apresentaram pesos moleculares entre 81 e 91 kDa. Apesar de seus padrões diferenciados de expressão durante o ciclo de vida do inseto, elas demonstraram propriedades de enzimas codificadas por genes estruturais distintos, corroborando a hipótese de um evento de duplicação gênica recente que gerou ambas em D. mojavensis e D. arizonae, bem como em outras espécies do grupo repleta. O método proposto é simples e adequado para ser utilizado em estimativas preliminares de determinação de pesos moleculares de outras enzimas sem haver a necessidade de um procedimento prévio de purificação.

10.
Evolution ; 47(3): 750-767, 1993 Jun.
Article in English | MEDLINE | ID: mdl-28567893

ABSTRACT

The extent of host-specific genetic variation for two life-history traits, egg to adult developmental time and viability, and one morphological trait closely tied to fitness, adult thorax size, was exposed by employing a nested half-sib/full-sib breeding design with Baja and mainland populations of Drosophila mojavensis recently extracted from nature. This study was motivated by the presence of substantial variation in life histories among populations of D. mojavensis that use the fermenting tissues of particular species of columnar cacti for feeding and breeding in the Sonoran Desert. Full-sib progeny from all sire-dam crosses were split into cultures of agria cactus, Stenocereus gummosus, and organ pipe cactus, S. thurberi, to examine patterns of genotype-by-environment interaction for these fitness components. Baja flies expressed shorter egg-to-adult developmental times, higher viabilities, and smaller body sizes than mainland flies consistent with previous studies. Significant sire and dam components of variance were exposed for developmental time and thorax size. Genotype-by-environment interactions were significant at the level of dams for developmental time and nearly significant for viability (P = 0.09). Narrow- and broad-sense heritabilities were influenced by host cactus, sex, and population. No strong pattern of genetic correlation emerged among fitness components suggesting that host-range expansion has not been accompanied by formation of coadapted life histories, yet the ability to estimate genetic correlations and their standard errors was compromised by the unbalanced nature of the data set. Genetic correlations in performance across cacti were slightly positive, evidence for ecological generalism among populations explaining the observed pattern of multiple host cactus use within the species range of D. mojavensis.

11.
12.
Evolution ; 45(6): 1525-1529, 1991 Sep.
Article in English | MEDLINE | ID: mdl-28563820
SELECTION OF CITATIONS
SEARCH DETAIL