Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Biotechnol Bioeng ; 111(9): 1820-30, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24852702

ABSTRACT

The oxyfunctionalization of unactivated C−H bonds can selectively and efficiently be catalyzed by oxygenase-containing whole-cell biocatalysts. Recombinant Escherichia coli W3110 containing the alkane monooxygenase AlkBGT and the outer membrane protein AlkL from Pseudomonas putida GPo1 have been shown to efficiently catalyze the terminal oxyfunctionalization of renewable fatty acid methyl esters yielding bifunctional products of interest for polymer synthesis. In this study, AlkBGTL-containing E. coli W3110 is shown to catalyze the multistep conversion of dodecanoic acid methyl ester (DAME) via terminal alcohol and aldehyde to the acid, exhibiting Michaelis-Menten-type kinetics for each reaction step. In two-liquid phase biotransformations, the product formation pattern was found to be controlled by DAME availability. Supplying DAME as bulk organic phase led to accumulation of the terminal alcohol as the predominant product. Limiting DAME availability via application of bis(2-ethylhexyl)phthalate (BEHP) as organic carrier solvent enabled almost exclusive acid accumulation. Furthermore, utilization of BEHP enhanced catalyst stability by reducing toxic effects of substrate and products. A further shift towards the overoxidized products was achieved by co-expression of the gene encoding the alcohol dehydrogenase AlkJ, which was shown to catalyze efficient and irreversible alcohol to aldehyde oxidation in vivo. With DAME as organic phase, the aldehyde accumulated as main product using resting cells containing AlkBGT, AlkL, as well as AlkJ. This study highlights the versatility of whole-cell biocatalysis for synthesis of industrially relevant bifunctional building blocks and demonstrates how integrated reaction and catalyst engineering can be implemented to control product formation patterns in biocatalytic multistep reactions.


Subject(s)
Alcohols/metabolism , Aldehydes/metabolism , Cytochrome P-450 CYP4A/metabolism , Escherichia coli/metabolism , Lauric Acids/metabolism , Metabolic Engineering , Alcohols/toxicity , Aldehydes/toxicity , Biotechnology/methods , Cytochrome P-450 CYP4A/genetics , Escherichia coli/enzymology , Escherichia coli/genetics , Lauric Acids/toxicity , Oxidation-Reduction , Pseudomonas putida/enzymology , Pseudomonas putida/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL