Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Pathogens ; 13(2)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38392866

ABSTRACT

Antifungal therapy, especially with the azoles, could promote the incidence of less susceptible isolates of Cryptococcus neoformans and C. gattii species complexes (SC), mostly in developing countries. Given that these species affect mostly the immunocompromised host, the infections are severe and difficult to treat. This review encompasses the following topics: 1. infecting species and their virulence, 2. treatment, 3. antifungal susceptibility methods and available categorical endpoints, 4. genetic mechanisms of resistance, 5. clinical resistance, 6. fluconazole minimal inhibitory concentrations (MICs), clinical outcome, 7. environmental influences, and 8. the relevance of host factors, including pharmacokinetic/pharmacodynamic (PK/PD) parameters, in predicting the clinical outcome to therapy. As of now, epidemiologic cutoff endpoints (ECVs/ECOFFs) are the most reliable antifungal resistance detectors for these species, as only one clinical breakpoint (amphotericin B and C. neoformans VNI) is available.

2.
J Fungi (Basel) ; 9(5)2023 May 05.
Article in English | MEDLINE | ID: mdl-37233253

ABSTRACT

When method-dependent categorical endpoints are available, namely either BPs or ECVs, MICs could aid in selecting the best treatment agent(s). BPs can categorize an isolate as either susceptible or resistant while the ECVs/ECOFFs can distinguish the wild type (WT, no known resistance mechanisms) from the Non-WT (NWT, harboring resistant mechanisms). Our literature review focused on the Cryptococcus species complex (SC) and the available methods and categorization endpoints. We also covered the incidence of these infections as well as the numerous Cryptococcus neoformans SC and C. gattii SC genotypes. The most important agents to treat cryptococcal infections are fluconazole (widely used), amphotericin B, and flucytosine. We provide data from the collaborative study that defined CLSI fluconazole ECVs for the most common cryptococcal species or genotypes and modes. EUCAST ECVs/ECOFFs are not yet available for fluconazole. We have summarized the incidence of cryptococccal infections (2000-2015) where fluconazole MICs were obtained by reference and commercial antifungal susceptibility tests. This occurrence is documented all over the world and those fluconazole MICs are mostly categorized by available CLSI ECVs/BPs as "resistant" instead of non-susceptible strains, including those by the commercial methods. As expected, the agreement between the CLSI and commercial methods is variable because SYO and Etest data could yield low/variable agreement (<90%) versus the CLSI method. Therefore, since BPs/ECVs are species and method dependent, why not gather sufficient MICs by commercial methods and define the required ECVs for these species?

3.
JACC Case Rep ; 4(15): 990-995, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35935156

ABSTRACT

A woman with recurrent presyncope caused by a functional atrioventricular (AV) block after meals, with limiting symptoms, underwent cardioneuroablation and AV node vagal denervation without pacemaker implantation. Normal AV conduction was recovered with complete abolishment of symptoms. (Level of Difficulty: Advanced.).

4.
J Fungi (Basel) ; 8(3)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35330310

ABSTRACT

Susceptibility testing can yield variable results because it is method (commercial or reference), agent, and species dependent. Therefore, in order for results to be clinically relevant, MICs (minimal inhibitory concentrations) or MECs (minimal effective concentrations) should help in selecting the best treatment agent in the clinical setting. This is accomplished by categorical endpoints, ideally, breakpoints (BPs) and/or ECVs/ECOFFs (epidemiological cutoff values). BPs and ECVs are available by the reference methods (CLSI [Clinical and Laboratory Standards Institute] and EUCAST [European Committee on Antifungal Susceptibility Testing]) for a variety of species/agent combinations. The lack of clinical data precludes establishment of BPs for susceptibility testing by the commercial methods and ECVs have only been calculated for the Etest and SYO assays. The goal of this review is to summarize the variety of commercial methods for antifungal susceptibility testing and the potential value of Etest and SYO ECVs for detecting mutants/non-wild type (NWT) Candida isolates. Therefore, the literature search focused on publications where the commercial method, meaning MICs and ECVs, were reported for specific NWT isolates; genetic mutations have also been listed. For the Etest, the best performers recognizing the NWT were anidulafungin ECVs: 92% for the common species; 97% for C. glabrata and fluconazole ECVs, mostly for C. parapsilosis (45 NWT isolates). By the SYO, posaconazole ECVs recognized 93% of the C. albicans and 96% of the C. parapsilosis NWT isolates and micafungin ECVs 94% (mostly C. albicans and C. glabrata). Smaller sets, some with clinical data, were also listed. These are promising results for the use of both commercial methods to identify antifungal resistance (NWT isolates). However, ECVs for other species and methods need to be defined, including the C. neoformans complex and emerging species.

5.
J Interpers Violence ; 37(1-2): 659-680, 2022 01.
Article in English | MEDLINE | ID: mdl-32306843

ABSTRACT

This study intended to examine rape myth acceptance (RMA) among police officers and its relationship with sociodemographic data, length of service, specific training in the field, and professional experience with victims of rape. To this end, we applied the Sexual Violence Beliefs Scale (ECVS) and controlled for sociodemographic data, as well as professional experience and specific training in the field, through a self-report questionnaire. The sample was composed of 400 police officers from a city in the north of Portugal, aged between 29 and 54 years, and most were men (94.3%). We found that tolerance to overall sexual violence exhibits positive correlations with age and length of service, as well as negative correlations with education levels. Differences were also found regarding gender, with men exhibiting greater tolerance/acceptance of overall sexual violence. It was also found that officers who exhibit higher tolerance/acceptance for sexual violence, overall, are those who do not consider it relevant to receive specific training in the field of sexual violence to perform their duties, who report not having any professional experience with cases of sexual violence and also do not consider it necessary to have specific abilities for these types of cases. Implications for decision-making in legal proceedings are discussed, stressing the need for specific specialization in intervention with victims of sexual assault, with a strong practical component.


Subject(s)
Crime Victims , Rape , Sex Offenses , Adult , Humans , Male , Middle Aged , Police , Portugal
6.
Antimicrob Agents Chemother ; 65(11): e0109321, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34370582

ABSTRACT

Susceptibility testing is an important tool in the clinical setting; its utility is based on the availability of categorical endpoints, breakpoints (BPs), or epidemiological cutoff values (ECVs/ECOFFs). CLSI and EUCAST have developed antifungal susceptibility testing, BPs, and ECVs for some fungal species. Although the concentration gradient strip bioMérieux Etest is useful for routine testing in the clinical laboratory, ECVs are not available for all agent/species; the lack of clinical data precludes development of BPs. We reevaluated and consolidated Etest data points from three previous studies and included new data. We defined ECOFFinder Etest ECVs for three sets of species-agent combinations: fluconazole, posaconazole, and voriconazole and 9 Candida spp.; amphotericin B and 3 nonprevalent Candida spp.; and caspofungin and 4 Aspergillus spp. The total of Etest MICs from 23 laboratories (Europe, the Americas, and South Africa) included (antifungal agent dependent): 17,242 Candida albicans, 244 C. dubliniensis, 5,129 C. glabrata species complex (SC), 275 C. guilliermondii (Meyerozyma guilliermondii), 1,133 C. krusei (Pichia kudriavzevii), 933 C. kefyr (Kluyveromyces marxianus), 519 C. lusitaniae (Clavispora lusitaniae), 2,947 C. parapsilosis SC, 2,214 C. tropicalis, 3,212 Aspergillus fumigatus, 232 A. flavus, 181 A. niger, and 267 A. terreus SC isolates. Triazole MICs for 66 confirmed non-wild-type (non-WT) Candida isolates were available (ERG11 point mutations). Distributions fulfilling CLSI ECV criteria were pooled, and ECOFFinder Etest ECVs were established for triazoles (9 Candida spp.), amphotericin B (3 less-prevalent Candida spp.), and caspofungin (4 Aspergillus spp.). Etest fluconazole ECVs could be good detectors of Candida non-WT isolates (59/61 non-WT, 4 of 6 species).


Subject(s)
Amphotericin B , Candida , Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Aspergillus , Caspofungin , Disk Diffusion Antimicrobial Tests , Drug Resistance, Fungal , Kluyveromyces , Microbial Sensitivity Tests , Pichia , Saccharomycetales , Triazoles/pharmacology
7.
Stem Cell Investig ; 8: 7, 2021.
Article in English | MEDLINE | ID: mdl-33969112

ABSTRACT

The recent advances in translational and nanomedicine have paved the way for developing the targeted drug delivery system at a greater pace among global researchers. On par with these technologies, exosomes act as a potential portal for cell-free drug delivery systems as these are bestowed with the native characteristics of the parent cell of origin. Exosomes, called extracellular vesicles (EcVs), are present in almost all cells, tissues, and body fluids. They help in intercellular signaling and maintains tissue homeostasis in the disease pathobiology. Researchers have characterized 9,769 proteins, 2,838 miRNAs, 3,408 mRNAs, and 1,116 lipids being present in exosomal cargo. The separation of exosomes from cells, tissues, and body fluids follow different patterned kinetics. Exosomes interact with the recipient cells through their surface receptor molecules and ligands and internalize within recipient cells through micropinocytosis and phagocytosis. Advancing technologies in regenerative medicine have facilitated the researchers to isolate exosomes from mesenchymal stem cells (MSCs) as these cells are blessed with supreme regenerative potentiality in targeting a disease. Exosomal cargo is a key player in establishing the diagnosis and executing therapeutic role whilst regulating a disease process. Various in vitro studies have exhibited the safety, efficacy, and therapeutic potentiality of exosomes in various cancers, neurodegenerative, cardiovascular, and orthopedic diseases. This article throws light on the composition, therapeutic role, and regulatory potentials of exosomes with the widening of the horizon in the field of regenerative medicine.

8.
J Control Release ; 319: 63-76, 2020 03 10.
Article in English | MEDLINE | ID: mdl-31866504

ABSTRACT

Extracellular vesicles (ECVs) are secreted cell-derived membrane particles involved in intercellular signaling and cell-cell communication. By transporting various bio-macromolecules, ECVs and in particular exosomes are relevant in various (patho-) physiological processes. ECVs are also released by cancer cells and can confer pro-tumorigenic effects. Their target cell tropism, effects on proliferation rates, natural stability in blood and immunotolerance makes ECVs particularly interesting as delivery vehicles. Polyethylenimines (PEIs) are linear or branched polymers which are capable of forming non-covalent complexes with small RNA molecules including siRNAs or antimiRs, for their delivery in vitro and in vivo. This study explores for the first time the combination of PEI-based nanoparticles with naturally occurring ECVs from different cell lines, for the delivery of small RNAs. ECV-modified PEI/siRNA complexes are analyzed by electron microscopy vs. ECV or complex alone. On the functional side, we demonstrate increased knockdown efficacy and storage stability of PEI/siRNA complexes upon their modification with ECVs. This is paralleled by enhanced tumor cell-inhibition by ECV-modified PEI/siRNA complexes targeting Survivin. Pre-treatment with various inhibitors of cellular internalization reveals alterations in cellular uptake mechanisms and biological activities of PEI/siRNA complexes upon their ECV modification. Extending our studies towards PEI-complexed antimiRs against miR-155 or miR-1246, dose-dependent cellular and molecular effects are enhanced in ECV-modified complexes, based on the de-repression of direct miRNA target genes. Differences between ECVs from different cell lines are observed regarding their capacity of enhancing PEI/siRNA efficacies, independent of the target cell line for transfection. Finally, an in vivo therapy study in mice bearing s.c. PC3 prostate carcinoma xenografts reveals marked inhibition of tumor growth upon treatment with ECVPC3-modified PEI/siSurvivin complexes, based on profound target gene knockdown. We conclude that ECV-modification enhances the activity of PEI-based complexes, by altering pivotal physicochemical and biological nanoparticle properties.


Subject(s)
Extracellular Vesicles , Polyethyleneimine , Animals , Cell Line, Tumor , Gene Knockdown Techniques , Male , Mice , RNA, Small Interfering , Transfection
9.
Article in English | MEDLINE | ID: mdl-30323038

ABSTRACT

Although the Sensititre Yeast-One (SYO) and Etest methods are widely utilized, interpretive criteria are not available for triazole susceptibility testing of Candida or Aspergillus species. We collected fluconazole, itraconazole, posaconazole, and voriconazole SYO and Etest MICs from 39 laboratories representing all continents for (method/agent-dependent) 11,171 Candida albicans, 215 C. dubliniensis, 4,418 C. glabrata species complex, 157 C.guilliermondii (Meyerozyma guilliermondii), 676 C. krusei (Pichia kudriavzevii), 298 C.lusitaniae (Clavispora lusitaniae), 911 C.parapsilosissensu stricto, 3,691 C.parapsilosis species complex, 36 C.metapsilosis, 110 C.orthopsilosis, 1,854 C.tropicalis, 244 Saccharomyces cerevisiae, 1,409 Aspergillus fumigatus, 389 A.flavus, 130 A.nidulans, 233 A.niger, and 302 A.terreus complex isolates. SYO/Etest MICs for 282 confirmed non-wild-type (non-WT) isolates were included: ERG11 (C. albicans), ERG11 and MRR1 (C. parapsilosis), cyp51A (A. fumigatus), and CDR2 and CDR1 overexpression (C. albicans and C. glabrata, respectively). Interlaboratory modal agreement was superior by SYO for yeast species and by the Etest for Aspergillus spp. Distributions fulfilling CLSI criteria for epidemiological cutoff value (ECV) definition were pooled, and we proposed SYO ECVs for S. cerevisiae and 9 yeast and 3 Aspergillus species and Etest ECVs for 5 yeast and 4 Aspergillus species. The posaconazole SYO ECV of 0.06 µg/ml for C. albicans and the Etest itraconazole ECV of 2 µg/ml for A. fumigatus were the best predictors of non-WT isolates. These findings support the need for method-dependent ECVs, as, overall, the SYO appears to perform better for susceptibility testing of yeast species and the Etest appears to perform better for susceptibility testing of Aspergillus spp. Further evaluations should be conducted with more Candida mutants.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus/drug effects , Candida/drug effects , Triazoles/pharmacology , Aspergillosis/drug therapy , Aspergillosis/epidemiology , Aspergillosis/microbiology , Aspergillus/classification , Aspergillus/isolation & purification , Candida/classification , Candida/isolation & purification , Candidiasis/drug therapy , Candidiasis/epidemiology , Candidiasis/microbiology , Disk Diffusion Antimicrobial Tests , Drug Resistance, Fungal , Fluconazole/pharmacology , Humans , Immunocompromised Host , Itraconazole/pharmacology , Voriconazole/pharmacology
10.
Article in English | MEDLINE | ID: mdl-29437624

ABSTRACT

Estimating epidemiological cutoff endpoints (ECVs/ECOFFS) may be hindered by the overlap of MICs for mutant and nonmutant strains (strains harboring or not harboring mutations, respectively). Posaconazole MIC distributions for the Aspergillus fumigatus species complex were collected from 26 laboratories (in Australia, Canada, Europe, India, South and North America, and Taiwan) and published studies. Distributions that fulfilled CLSI criteria were pooled and ECVs were estimated. The sensitivity of three ECV analytical techniques (the ECOFFinder, normalized resistance interpretation [NRI], derivatization methods) to the inclusion of MICs for mutants was examined for three susceptibility testing methods (the CLSI, EUCAST, and Etest methods). The totals of posaconazole MICs for nonmutant isolates (isolates with no known cyp51A mutations) and mutant A. fumigatus isolates were as follows: by the CLSI method, 2,223 and 274, respectively; by the EUCAST method, 556 and 52, respectively; and by Etest, 1,365 and 29, respectively. MICs for 381 isolates with unknown mutational status were also evaluated with the Sensititre YeastOne system (SYO). We observed an overlap in posaconazole MICs among nonmutants and cyp51A mutants. At the commonly chosen percentage of the modeled wild-type population (97.5%), almost all ECVs remained the same when the MICs for nonmutant and mutant distributions were merged: ECOFFinder ECVs, 0.5 µg/ml for the CLSI method and 0.25 µg/ml for the EUCAST method and Etest; NRI ECVs, 0.5 µg/ml for all three methods. However, the ECOFFinder ECV for 95% of the nonmutant population by the CLSI method was 0.25 µg/ml. The tentative ECOFFinder ECV with SYO was 0.06 µg/ml (data from 3/8 laboratories). Derivatization ECVs with or without mutant inclusion were either 0.25 µg/ml (CLSI, EUCAST, Etest) or 0.06 µg/ml (SYO). It appears that ECV analytical techniques may not be vulnerable to overlap between presumptive wild-type isolates and cyp51A mutants when up to 11.6% of the estimated wild-type population includes mutants.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/genetics , Mutation/genetics , Triazoles/pharmacology , Drug Resistance, Fungal/genetics , Microbial Sensitivity Tests , Voriconazole/pharmacology
11.
Article in English | MEDLINE | ID: mdl-28739796

ABSTRACT

Clinical and Laboratory Standards Institute (CLSI) conditions for testing the susceptibilities of pathogenic Sporothrix species to antifungal agents are based on a collaborative study that evaluated five clinically relevant isolates of Sporothrixschenckii sensu lato and some antifungal agents. With the advent of molecular identification, there are two basic needs: to confirm the suitability of these testing conditions for all agents and Sporothrix species and to establish species-specific epidemiologic cutoff values (ECVs) or breakpoints (BPs) for the species. We collected available CLSI MICs/minimal effective concentrations (MECs) of amphotericin B, five triazoles, terbinafine, flucytosine, and caspofungin for 301 Sporothrix schenckii sensu stricto, 486 S. brasiliensis, 75 S. globosa, and 13 S. mexicana molecularly identified isolates. Data were obtained in 17 independent laboratories (Australia, Europe, India, South Africa, and South and North America) using conidial inoculum suspensions and 48 to 72 h of incubation at 35°C. Sufficient and suitable data (modal MICs within 2-fold concentrations) allowed the proposal of the following ECVs for S. schenckii and S. brasiliensis, respectively: amphotericin B, 4 and 4 µg/ml; itraconazole, 2 and 2 µg/ml; posaconazole, 2 and 2 µg/ml; and voriconazole, 64 and 32 µg/ml. Ketoconazole and terbinafine ECVs for S. brasiliensis were 2 and 0.12 µg/ml, respectively. Insufficient or unsuitable data precluded the calculation of ketoconazole and terbinafine (or any other antifungal agent) ECVs for S. schenckii, as well as ECVs for S. globosa and S. mexicana These ECVs could aid the clinician in identifying potentially resistant isolates (non-wild type) less likely to respond to therapy.


Subject(s)
Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Echinocandins/pharmacology , Flucytosine/pharmacology , Lipopeptides/pharmacology , Naphthalenes/pharmacology , Sporothrix/drug effects , Sporotrichosis/drug therapy , Triazoles/pharmacology , Caspofungin , Humans , Microbial Sensitivity Tests , Sporothrix/classification , Sporothrix/isolation & purification , Terbinafine
12.
Sci Eng Ethics ; 23(3): 769-791, 2017 06.
Article in English | MEDLINE | ID: mdl-27663462

ABSTRACT

Ethical culture construction is beneficial to maximize policy following behavior (PFB) and avoid accidents of coal miners in an economic downturn. This paper examines the congruence between coal mine ethical culture values (ECVs) and miners' moral values (MVs) and the relationship with PFB. To shed light on this relationship, supervisor moral values (SMVs) act as a key moderator. We build on the initial structure of values to measure ECVs, MVs, and SMVs. At the same time, available congruence was defined to describe the relationship between the two values. Drawing upon a survey of 267 miners in Chinese large state-owned coal mining enterprises, results revealed that ECVs-MVs congruence had a linear relationship with intrinsic PFB (IPFB) and a non-linear relationship with extrinsic PFB. These findings demonstrate that SMVs had a moderating effect on the relationship between ECVs-MVs congruence and extrinsic PFB. Thus, we continued to calculate the available congruence scope in tested enterprises. Furthermore, this study gives relative management proposals and suggestions to improve miners' moral standards and to reduce coal mine accidents.


Subject(s)
Coal Mining/ethics , Miners/psychology , Morals , Organization and Administration/standards , Accident Prevention , China , Miners/statistics & numerical data , Workforce
13.
Article in English | MEDLINE | ID: mdl-27799206

ABSTRACT

Method-dependent Etest epidemiological cutoff values (ECVs) are not available for susceptibility testing of either Candida or Aspergillus species with amphotericin B or echinocandins. In addition, reference caspofungin MICs for Candida spp. are unreliable. Candida and Aspergillus species wild-type (WT) Etest MIC distributions (microorganisms in a species-drug combination with no detectable phenotypic resistance) were established for 4,341 Candida albicans, 113 C. dubliniensis, 1,683 C. glabrata species complex (SC), 709 C. krusei, 767 C. parapsilosis SC, 796 C. tropicalis, 1,637 Aspergillus fumigatus SC, 238 A. flavus SC, 321 A. niger SC, and 247 A. terreus SC isolates. Etest MICs from 15 laboratories (in Argentina, Europe, Mexico, South Africa, and the United States) were pooled to establish Etest ECVs. Anidulafungin, caspofungin, micafungin, and amphotericin B ECVs (in micrograms per milliliter) encompassing ≥97.5% of the statistically modeled population were 0.016, 0.5, 0.03, and 1 for C. albicans; 0.03, 1, 0.03, and 2 for C. glabrata SC; 0.06, 1, 0.25, and 4 for C. krusei; 8, 4, 2, and 2 for C. parapsilosis SC; and 0.03, 1, 0.12, and 2 for C. tropicalis The amphotericin B ECV was 0.25 µg/ml for C. dubliniensis and 2, 8, 2, and 16 µg/ml for the complexes of A. fumigatus, A. flavus, A. niger, and A. terreus, respectively. While anidulafungin Etest ECVs classified 92% of the Candida fks mutants evaluated as non-WT, the performance was lower for caspofungin (75%) and micafungin (84%) cutoffs. Finally, although anidulafungin (as an echinocandin surrogate susceptibility marker) and amphotericin B ECVs should identify Candida and Aspergillus isolates with reduced susceptibility to these agents using the Etest, these ECVs will not categorize a fungal isolate as susceptible or resistant, as breakpoints do.


Subject(s)
Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Aspergillus/drug effects , Candida/drug effects , Drug Resistance, Fungal , Echinocandins/pharmacology , Aspergillus/growth & development , Aspergillus/isolation & purification , Candida/growth & development , Candida/isolation & purification , Disk Diffusion Antimicrobial Tests , Europe , Latin America , South Africa , United States
14.
J Fungi (Basel) ; 3(2)2017 May 31.
Article in English | MEDLINE | ID: mdl-29371545

ABSTRACT

For filamentous fungi (moulds), species-specific interpretive breakpoints and epidemiological cut-off values (ECVs) have only been proposed for a limited number of fungal species-antifungal agent combinations, with the result that clinical breakpoints are lacking for most emerging mould pathogens. In the current study, we have compiled minimum inhibitory concentration (MIC) data for 4869 clinical mould isolates and present full MIC distributions for amphotericin B, itraconazole, voriconazole, posaconazole, and caspofungin with these isolates which comprise 20 species/genera. In addition, we present the results of an assessment of the fungicidal activity of these same five antifungal agents against a panel of 123 mould isolates comprising 16 of the same species.

15.
Rev Iberoam Micol ; 33(2): 63-75, 2016.
Article in English | MEDLINE | ID: mdl-27296911

ABSTRACT

The role of antimicrobial susceptibility testing is to aid in selecting the best agent for the treatment of bacterial and fungal diseases. This has been best achieved by the setting of breakpoints by Clinical Laboratory Standards Institute (CLSI) for prevalent Candida spp. versus anidulafungin, caspofungin, micafungin, fluconazole, and voriconazole. The European Committee on Antimicrobial Susceptibility Testing (EUCAST) also has set breakpoints for prevalent and common Candida and Aspergillus species versus amphotericin B, itraconazole, and posaconazole. Recently, another interpretive category, the epidemiological cut off value, could aid in the early identification of strains with acquired resistance mechanisms. CLSI has postulated that epidemiological cut off values may, with due caution, aid physicians in managing mycosis by species where breakpoints are not available. This review provides (1) the criteria and statistical approach to establishing and estimating epidemiological cut off values (ECVs), (2) the role of the epidemiological cut off value in establishing breakpoints, (3) the potential role of epidemiological cut off values in clinical practice, (4) and the wide range of CLSI-based epidemiological cut off values reported in the literature as well as EUCAST and Sensititre Yeast One-ECVs. Additionally, we provide MIC/MEC (minimal inhibitory concentrations/minimum effective concentrations) ranges/modes of each pooled distribution used for epidemiological cut off value calculation. We focus on the epidemiological cut off value, the new interpretive endpoint that will identify the non-wild type strains (defined as potentially harboring resistance mechanisms). However, we emphasize that epidemiological cut off values will not categorize a fungal isolate as susceptible or resistant as breakpoints do, because the former do not account for the pharmacology of the antifungal agent or the findings from clinical outcome studies.


Subject(s)
Antifungal Agents/pharmacology , Drug Resistance, Fungal , Fungi/drug effects , Microbial Sensitivity Tests/standards , Dose-Response Relationship, Drug , Endpoint Determination , Europe , Fungi/isolation & purification , Humans , International Agencies , Microbial Sensitivity Tests/methods , Mycoses/microbiology , Species Specificity , Yeasts/drug effects , Yeasts/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL