Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 203
Filter
1.
Res Sq ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39257973

ABSTRACT

Neoadjuvant therapy (NAT) has been studied in clinically localized prostate cancer (PCa) to improve the outcomes from radical prostatectomy (RP) by 'debulking' of high-risk PCa; however, using androgen deprivation at this point risks castration resistant PCa (CRPC) clonal proliferation with potentially profound side effects such as fatigue, loss of libido, hot flashes, loss of muscle mass, and weight gain. Our goal is to identify alternative NAT that reduce hormone sensitive PCa (HSPC) without affecting androgen receptor (AR) transcriptional activity. PCa is associated with increased expression and activation of the epidermal growth factor receptor (EGFR) family, including HER2 and ErbB3. Dimerization between these receptors is required for activation of downstream targets involved in tumor progression. The FDA-approved HER2 inhibitor lapatinib has been tested in PCa but was ineffective due to continued activation of ErbB3. We now demonstrate that this is due to ErbB3 being localized to the nucleus in HSPC and thus protected from lapatinib which affect membrane localized HER2/ErbB3 dimers. Here, we show that the well-established, well-tolerated diuretic amiloride hydrochloride dose dependently prevented ErbB3 nuclear localization via formation of plasma membrane localized HER2/ErbB3 dimers. This in turn allowed lapatinib inactivation of these dimers via inhibition of its target HER2, which dephosphorylated downstream survival and proliferation regulators AKT and ERK1/2. Amiloride combined with lapatinib significantly increased apoptosis but did not affect AR transcriptional activity. Thus, our data indicate that a combination of amiloride and lapatinib could target HSPC tumors without problems associated with androgen deprivation therapy in localized PCa.

2.
Drug Resist Updat ; 76: 101118, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39094301

ABSTRACT

AIMS: Resistance to targeted therapy is one of the critical obstacles in cancer management. Resistance to trastuzumab frequently develops in the treatment for HER2+ cancers. The role of protein tyrosine phosphatases (PTPs) in trastuzumab resistance is not well understood. In this study, we aim to identify pivotal PTPs affecting trastuzumab resistance and devise a novel counteracting strategy. METHODS: Four public datasets were used to screen PTP candidates in relation to trastuzumab responsiveness in HER2+ breast cancer. Tyrosine kinase (TK) arrays were used to identify kinases that linked to protein tyrosine phosphate receptor type O (PTPRO)-enhanced trastuzumab sensitivity. The efficacy of small activating RNA (saRNA) in trastuzumab-conjugated silica nanoparticles was tested for PTPRO upregulation and resistance mitigation in cell models, a transgenic mouse model, and human cancer cell line-derived xenograft models. RESULTS: PTPRO was identified as the key PTP which influences trastuzumab responsiveness and patient survival. PTPRO de-phosphorated several TKs, including the previously overlooked substrate ERBB3, thereby inhibiting multiple oncogenic pathways associated with drug resistance. Notably, PTPRO, previously deemed "undruggable," was effectively upregulated by saRNA-loaded nanoparticles. The upregulated PTPRO simultaneously inhibited ERBB3, ERBB2, and downstream SRC signaling pathways, thereby counteracting trastuzumab resistance. CONCLUSIONS: Antibody-conjugated saRNA represents an innovative approach for targeting "undruggable" PTPs.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Nanoparticles , Receptor, ErbB-2 , Trastuzumab , Xenograft Model Antitumor Assays , Trastuzumab/pharmacology , Humans , Drug Resistance, Neoplasm/drug effects , Animals , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Cell Line, Tumor , Nanoparticles/chemistry , Mice, Transgenic , Antineoplastic Agents, Immunological/pharmacology , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/antagonists & inhibitors , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , Signal Transduction/drug effects
3.
Cells ; 13(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39120280

ABSTRACT

Signaling proteins in eukaryotes usually comprise a catalytic domain coupled to one or several interaction domains, such as SH2 and SH3 domains. An additional class of proteins critically involved in cellular communication are adapter or scaffold proteins, which fulfill their purely non-enzymatic functions by organizing protein-protein interactions. Intriguingly, certain signaling enzymes, e.g., kinases and phosphatases, have been demonstrated to promote particular cellular functions by means of their interaction domains only. In this review, we will refer to such a function as "the adapter function of an enzyme". Though many stories can be told, we will concentrate on several proteins executing critical adapter functions in cells of the immune system, such as Bruton´s tyrosine kinase (BTK), phosphatidylinositol 3-kinase (PI3K), and SH2-containing inositol phosphatase 1 (SHIP1), as well as in cancer cells, such as proteins of the rat sarcoma/extracellular signal-regulated kinase (RAS/ERK) mitogen-activated protein kinase (MAPK) pathway. We will also discuss how these adaptor functions of enzymes determine or even undermine the efficacy of targeted therapy compounds, such as ATP-competitive kinase inhibitors. Thereby, we are highlighting the need to develop pharmacological approaches, such as proteolysis-targeting chimeras (PROTACs), that eliminate the entire protein, and thus both enzymatic and adapter functions of the signaling protein. We also review how genetic knock-out and knock-in approaches can be leveraged to identify adaptor functions of signaling proteins.


Subject(s)
Signal Transduction , Humans , Animals
4.
Cardiovasc Res ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39180332

ABSTRACT

AIMS: Diabetes mellitus (DM) increases heart failure incidence and worsens prognosis, but its molecular basis is poorly defined in humans. We aimed to define the diabetic myocardial transcriptome and validate hits in their circulating protein form to define disease mechanisms and biomarkers. METHODS AND RESULTS: RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project was used to define differentially expressed genes (DEGs) in right atrial (RA) and left ventricular (LV) myocardium from people with versus without DM (type 1 or 2). DEGs were validated as plasma proteins in the UK Biobank cohort, searching for directionally concordant differential expression. Validated plasma proteins were characterized in UK Biobank participants, irrespective of diabetes status, using cardiac magnetic resonance imaging, incident heart failure and cardiovascular mortality.We found 32 and 32 DEGs associated with DM in the RA and LV, respectively, with no overlap between these. Plasma proteomic data was available for 12, with ERBB3, NRXN3 and HSPA2 (all LV hits) exhibiting directional concordance. Irrespective of DM status, lower circulating ERBB3 and higher HSPA2 were associated with impaired left ventricular contractility and higher LV mass. Participants in the lowest quartile of circulating ERBB3 or highest quartile of circulating HSPA2 had increased incident heart failure and cardiovascular death vs. all other quartiles. CONCLUSIONS: DM is characterized by lower Erbb3 and higher Hspa2 expression in the myocardium, with directionally concordant differences in their plasma protein concentration. These are associated with left ventricular dysfunction, incident heart failure and cardiovascular mortality.

5.
Cancer Lett ; 599: 217146, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39098760

ABSTRACT

Human epidermal growth factor receptor-3 (ERBB3) is a member of the ERBB receptor tyrosine kinases (RTKs) and is expressed in many malignancies. Along with other ERBB receptors, ERBB3 is associated with regulating normal cell proliferation, apoptosis, differentiation, and survival, and has received increased research attention for its involvement in cancer therapies. ERBB3 expression or co-expression levels have been investigated as predictive factors for cancer prognosis and drug sensitivity. Additionally, the association between the elevated expression of ERBB3 and treatment failure in cancer therapy further established ERBB3-targeting therapy as a crucial therapeutic approach. This review delves into the molecular mechanisms of ERBB3-driven resistance to targeted therapeutics against ERBB2 and EGFR and other signal transduction inhibitors, endocrine therapy, chemotherapy, and radiotherapy. Using preclinical and clinical evidence, we synthesise and explicate how various aspects of aberrant ERBB3 activities-such as compensatory activation, signal crosstalk interactions, dysregulation in the endocytic pathway, mutations, ligand-independent activation, intrinsic kinase activity, and homodimerisation-can lead to resistance development and/or treatment failures. Several ERBB3-directed monoclonal antibodies, bispecific antibodies, and the emerging antibody-drug conjugate demonstrate encouraging clinical outcomes for improving therapeutic efficacy and overcoming resistance, especially when combined with other anti-cancer approaches. More research efforts are needed to identify appropriate biomarkers tailored for ERBB3-targeted therapies.


Subject(s)
Drug Resistance, Neoplasm , Neoplasms , Receptor, ErbB-3 , Signal Transduction , Humans , Receptor, ErbB-3/metabolism , Receptor, ErbB-3/antagonists & inhibitors , Receptor, ErbB-3/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Signal Transduction/drug effects , Molecular Targeted Therapy/methods , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Animals , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology
6.
Cell Mol Gastroenterol Hepatol ; 18(4): 101380, 2024.
Article in English | MEDLINE | ID: mdl-39038606

ABSTRACT

BACKGROUND & AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most prevalent chronic liver disorder, with no approved treatment. Our previous work demonstrated the efficacy of a pan-ErbB inhibitor, Canertinib, in reducing steatosis and fibrosis in a murine fast-food diet (FFD) model of MASLD. The current study explores the effects of hepatocyte-specific ErbB1 (ie, epidermal growth factor receptor [EGFR]) deletion in the FFD model. METHODS: EGFRflox/flox mice, treated with AAV8-TBG-CRE to delete EGFR specifically in hepatocytes (EGFR-KO), were fed either a chow-diet or FFD for 2 or 5 months. RESULTS: Hepatocyte-specific EGFR deletion reduced serum triglyceride levels but did not prevent steatosis. Surprisingly, hepatic fibrosis was increased in EGFR-KO mice in the long-term study, which correlated with activation of transforming growth factor-ß/fibrosis signaling pathways. Further, nuclear levels of some of the major MASLD regulating transcription factors (SREBP1, PPARγ, PPARα, and HNF4α) were altered in FFD-fed EGFR-KO mice. Transcriptomic analysis revealed significant alteration of lipid metabolism pathways in EGFR-KO mice with changes in several relevant genes, including downregulation of fatty-acid synthase and induction of lipolysis gene, Pnpla2, without impacting overall steatosis. Interestingly, EGFR downstream signaling mediators, including AKT, remain activated in EGFR-KO mice, which correlated with increased activity pattern of other receptor tyrosine kinases, including ErbB3/MET, in transcriptomic analysis. Lastly, Canertinib treatment in EGFR-KO mice, which inhibits all ErbB receptors, successfully reduced steatosis, suggesting the compensatory roles of other ErbB receptors in supporting MASLD without EGFR. CONCLUSIONS: Hepatocyte-specific EGFR-KO did not impact steatosis, but enhanced fibrosis in the FFD model of MASLD. Gene networks associated with lipid metabolism were greatly altered in EGFR-KO, but phenotypic effects might be compensated by alternate signaling pathways.


Subject(s)
Disease Models, Animal , ErbB Receptors , Hepatocytes , Liver Cirrhosis , Animals , ErbB Receptors/metabolism , ErbB Receptors/genetics , Mice , Hepatocytes/metabolism , Hepatocytes/pathology , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/etiology , Mice, Knockout , Fatty Liver/pathology , Fatty Liver/metabolism , Fatty Liver/genetics , Male , Signal Transduction , Gene Deletion
7.
Cancer Cell Int ; 24(1): 261, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049021

ABSTRACT

BACKGROUND: Kidney Renal Clear Cell Carcinoma (KIRC) is a common malignant tumor of the urinary system, and its incidence is increasing. ERBB3 binding protein (EBP1) is upregulated in various cancers. However, the connection between EBP1 and KIRC has not been reported. METHODS: The expression of EBP1 in normal kidney tissue and KIRC tissue was analyzed through database and tissue microarray. EBP1 was knocked down in KIRC cell lines, and its impact on KIRC proliferation was assessed through CCK-8, soft agar assay, and flow cytometry. Scratch and transwell assays were used to evaluate the influence of EBP1 on KIRC invasion and migration. Nude mice tumor experiment were conducted to examine the effect of EBP1 on tumor tissue. Database analysis explored potential pathways involving EBP1, and validation was performed through Western blot experiments and p38 inhibitor. RESULTS: EBP1 is upregulated in KIRC and significantly correlates with clinical staging, pathological grading, and lymph node metastasis in patients. The mechanism research showed that knocking down EBP1 inhibited KIRC proliferation, invasion, and migration and inhibited p38 phosphorylation and the expression of hypoxia-inducible factor-1α (HIF-1α) in KIRC. p-38 inhibitor (SB203580) inhibits p38 phosphorylation and HIF-1α expression and suppresses cell viability in a concentration-dependent manner, but has no effect on EBP1 expression. HEK 293T cells overexpressing EBP1 showed increased expression of phosphorylated p38 and HIF-1α and enhanced cell viability, however, SB203580 inhibited this effect of EBP1. CONCLUSION: EBP1 may promote the occurrence and development of KIRC by regulating the expression of p38/HIF-1α signaling pathway.

9.
Acta Pharmacol Sin ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075227

ABSTRACT

A detailed chemical investigation of the Hainan soft coral Lobophytum crassum led to the identification of a class of polyoxygenated cembrane-type macrocyclic diterpenes (1-28), including three new flexible cembranoids, lobophycrasins E-G (2-4), and twenty-five known analogues. Their structures were elucidated by combining extensive spectroscopic data analysis, quantum mechanical-nuclear magnetic resonance (QM-NMR) methods, the modified Mosher's method, X-ray diffraction analysis, and comparison with data reported in the literature. Bioassays revealed that sixteen cembranoids inhibited the proliferation of H1975, MDA-MB231, A549, and H1299 cells. Among them, Compounds 10, 17, and 20 exhibited significant antiproliferative activities with IC50 values of 1.92-8.82 µM, which are very similar to that of the positive control doxorubicin. Molecular mechanistic studies showed that the antitumour activity of Compound 10 was closely related to regulation of the ROR1 and ErbB3 signalling pathways. This study may provide insight into the discovery and utilization of marine macrocyclic cembranoids as lead compounds for anticancer drugs.

10.
Biochem Pharmacol ; 226: 116375, 2024 08.
Article in English | MEDLINE | ID: mdl-38906227

ABSTRACT

Fat mass and obesity-associated protein (FTO) is an N6-methyladenosine (m6A) demethylase and plays critical oncogenic roles in multiple cancers. Here we show that FTO is an effective target in hepatocellular carcinoma (HCC). FTO is highly expressed in patients with HCC. Genetic depletion of Fto dramatically attenuated HCC progression in mice. Pharmacological inhibition of FTO by FB23/FB23-2 markedly suppressed the proliferation and migration of HCC cell lines in vitro and inhibited HCC tumorigenicity in xeno-transplanted mice. Mechanistically, FB23-2 suppressed the expression of Erb-b2 receptor tyrosine kinase 3 (ERBB3) and human tubulin beta class Iva (TUBB4A) by increasing the m6A level in these mRNA transcripts. The decrease in ERBB3 expression resulted in the inhibition of Akt-mTOR signaling, which subsequently impaired the proliferation and survival of HCC cells. Moreover, FB23-2 disturbed the stability of the tubulin cytoskeleton, whereas overexpression of TUBB4A rescued the migration of HCC cells. Collectively, our study demonstrates that FTO plays a critical role in HCC by maintaining the proliferation and migration of cells and highlights the potential of FTO inhibitors for targeting HCC.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Carcinoma, Hepatocellular , Liver Neoplasms , Receptor, ErbB-3 , Tubulin , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/antagonists & inhibitors , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Humans , Animals , Mice , Tubulin/metabolism , Receptor, ErbB-3/metabolism , Receptor, ErbB-3/genetics , Receptor, ErbB-3/antagonists & inhibitors , Cell Line, Tumor , Mice, Nude , Male , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic , Cell Movement/drug effects
11.
Front Oncol ; 14: 1191217, 2024.
Article in English | MEDLINE | ID: mdl-38854737

ABSTRACT

Introduction: Approximately 50% of melanomas harbor an activating BRAFV600E mutation. Standard of care involves a combination of inhibitors targeting mutant BRAF and MEK1/2, the substrate for BRAF in the MAPK pathway. PTEN loss-of-function mutations occur in ~40% of BRAFV600E melanomas, resulting in increased PI3K/AKT activity that enhances resistance to BRAF/MEK combination inhibitor therapy. Methods: To compare the response of PTEN null to PTEN wild-type cells in an isogenic background, CRISPR/Cas9 was used to knock out PTEN in a melanoma cell line that harbors a BRAFV600E mutation. RNA sequencing, functional kinome analysis, and drug synergy screening were employed in the context of BRAF/MEK inhibition. Results: RNA sequencing and functional kinome analysis revealed that the loss of PTEN led to an induction of FOXD3 and an increase in expression of the FOXD3 target gene, ERBB3/HER3. Inhibition of BRAF and MEK1/2 in PTEN null, BRAFV600E cells dramatically induced the expression of ERBB3/HER3 relative to wild-type cells. A synergy screen of epigenetic modifiers and kinase inhibitors in combination with BRAFi/MEKi revealed that the pan ERBB/HER inhibitor, neratinib, could reverse the resistance observed in PTEN null, BRAFV600E cells. Conclusions: The findings indicate that PTEN null BRAFV600E melanoma exhibits increased reliance on ERBB/HER signaling when treated with clinically approved BRAFi/MEKi combinations. Future studies are warranted to test neratinib reversal of BRAFi/MEKi resistance in patient melanomas expressing ERBB3/HER3 in combination with its dimerization partner ERBB2/HER2.

12.
World J Surg Oncol ; 22(1): 131, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760830

ABSTRACT

BACKGROUND: Liposarcomas are among the most common mesenchymal malignancies. However, the therapeutic options are still very limited and so far, targeted therapies had not yet been established. Immunotherapy, which has been a breakthrough in other oncological entities, seems to have no efficacy in liposarcoma. Complicating matters further, classification remains difficult due to the diversity of morphologies and nonspecific or absent markers in immunohistochemistry, leaving molecular pathology using FISH or sequencing as best options. Many liposarcomas harbor MDM2 gene amplifications. In close relation to the gene locus of MDM2, HER3 (ERBB3) gene is present and co-amplification could occur. Since the group of HER/EGFR receptor tyrosine kinases and its inhibitors/antibodies play a role in a broad spectrum of oncological diseases and treatments, and some HER3 inhibitors/antibodies are already under clinical investigation, we hypothesized that in case of HER3 co-amplifications a tumor might bear a further potential therapeutic target. METHODS: We performed FISH analysis (MDM2, DDIT3, HER3) in 56 archived cases and subsequently performed reclassification to confirm the diagnosis of liposarcoma. RESULTS: Next to 16 out of 56 cases needed to be re-classified, in 20 out of 54 cases, a cluster-amplification of HER3 could be detected, significantly correlating with MDM2 amplification. Our study shows that the entity of liposarcomas show specific molecular characteristics leading to reclassify archived cases by modern, established methodologies. Additionally, in 57.1% of these cases, HER3 was cluster-amplified profusely, presenting a putative therapeutic target for targeted therapy. CONCLUSION: Our study serves as the initial basis for further investigation of the HER3 gene as a putative therapeutic target in liposarcoma.


Subject(s)
Gene Amplification , Liposarcoma , Proto-Oncogene Proteins c-mdm2 , Receptor, ErbB-3 , Humans , Liposarcoma/genetics , Liposarcoma/pathology , Liposarcoma/metabolism , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , In Situ Hybridization, Fluorescence , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Male , Prognosis , Middle Aged , Aged , Molecular Targeted Therapy/methods , Adult
13.
Apoptosis ; 29(5-6): 709-725, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38459420

ABSTRACT

Hepatocellular carcinoma (HCC) is highly metastatic and invasive. CircRNA participates in gene regulation of multiple tumor metastases, but little is known whether it is a bystander or an actual player in HCC metastasis. We aim to explore the molecular mechanisms of novel circRNAs in HCC metastasis. RT-qPCR was used to detect the expression of 13 circRNAs derived by the ERBB3 gene. The function of circ_0098823 and DNM1L in HCC cells were estimated by CCK-8, transwell assays, flow cytometry, electron microscope, and in vivo experiments. RNA binding protein of circ_0098823 was confirmed by RNA pull-down, mass spectrometry, and RNA immunoprecipitation. The expression of DNM1L after IGF2BP3 knockdown was detected by RT-qPCR and western blot. Circ_0098823 was significantly up-regulated both in HCC tissues and HGF induced cell lines. Circ_0098823 overexpression significantly enhanced proliferation, migration, and invasion but decreased apoptosis of HCC cells, particularly promoted mitochondrial fission. Compared with the control group, the tumors in the circ_0098823 knockdown mice were significantly smaller and lighter. Circ_0098823 silencing suppressed DNM1L expression, a key molecule for fission, which enhanced proliferation, migration and invasion, and inhibited apoptosis of HCC cell. IGF2BP3 was a binding protein of circ_0098823. The expression and mRNA stability of DNM1L were down-regulated by IGF2BP3 knockdown. IGF2BP3 knockdown significantly alleviated the excessive migration, invasion and apoptosis of HCC cells caused by circ_0098823 overexpression. This study uncovered a novel circ_0098823 with tumor-promoting effect, and the mechanism by which circ_0098823 participates in HCC progression through IGF2BP3-guided DNM1L. Our study broadens molecular understanding of HCC progression.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular , Cell Proliferation , Dynamins , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Mitochondrial Dynamics , RNA, Circular , RNA-Binding Proteins , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Mitochondrial Dynamics/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Dynamins/genetics , Dynamins/metabolism , Animals , Mice , Cell Line, Tumor , Apoptosis/genetics , Cell Proliferation/genetics , Cell Movement/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Male , Neoplasm Metastasis , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Mice, Nude , Mice, Inbred BALB C
14.
Mod Pathol ; 37(5): 100463, 2024 May.
Article in English | MEDLINE | ID: mdl-38428737

ABSTRACT

Invasive lobular carcinomas (ILCs) have a low frequency of ERBB2 amplification, therefore restricting the use of conventional anti-HER2 therapies for this histologic special type. Conversely, ILCs with low HER2 overexpression may represent a broader target for the use of emerging antibody drug conjugate therapies targeting HER2, since these treatments have proven effective in HER2-low breast cancers. Very scarce data about HER2-low ILCs have been so far published, although these tumors could have different prevalence and histomolecular specificities compared with invasive breast carcinoma of no special type (IBC-NST). Our aims in that context were to decipher the clinicopathological and molecular features of a large series of HER2-low ILCs. Comparative evaluation of HER2-low prevalence was done based on a retrospective series of 7970 patients from Institut Curie, with either primary invasive lobular (N = 1103) or no special type (N = 6867) invasive carcinoma. Clinicopathological and molecular analyses of HER2-zero, HER2-low, and HER2-positive ILCs were performed on a subgroup of 251 patients who underwent surgery for a primary ILC between 2005 and 2008. The mutational profile of these 251 cases was determined from RNAseq data. Compared with HER2-negative IBC-NSTs, the HER2-negative ILCs were found to display a higher frequency of HER2-zero cases (59.4% vs 53.7%) and a lower frequency of HER2-low (40.6% vs 46.3%) (P < .001). Clinicopathological features associated with HER2-low status (vs HER2-zero) in ILC were older age, postmenopausal status, nonclassic ILC histological types, higher grade, proliferation, and estrogen receptor expression levels. Survival curve analysis showed a significantly lower risk of local recurrence for HER2-low (vs HER2-zero) ILCs, but no association was found between HER2 status and either breast cancer-specific survival or distant metastasis-free interval. ERBB3 was the unique mutated gene exclusively associated with HER2-low ILCs yet being mutated at a low frequency (7.1%) (false discovery rate < 0.05). In conclusion, HER2-low ILCs exhibit their own particularities, both on clinical-pathological and molecular levels. Our findings call for larger multicenter validation studies.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Carcinoma, Lobular , Receptor, ErbB-2 , Humans , Female , Carcinoma, Lobular/genetics , Carcinoma, Lobular/pathology , Carcinoma, Lobular/metabolism , Carcinoma, Lobular/therapy , Carcinoma, Lobular/drug therapy , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Middle Aged , Aged , Retrospective Studies , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Adult , Mutation , Aged, 80 and over
15.
Transl Oncol ; 44: 101933, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38507923

ABSTRACT

Hepatocellular carcinoma (HCC) is among the most prevalent and lethal cancers worldwide. The NDC80 kinetochore complex component NUF2 has been previously identified as up-regulating in HCC and associated with patient prognosis. However, the pathophysiological effects and molecular mechanisms of NUF2 in tumorigenesis remain unclear. In this study, we confirmed a significant increase in NUF2 expression in HCC tissues and established a correlation between high NUF2 expression and adverse outcomes in HCC patients. Through in vitro and in vivo experiments, we demonstrated that genetic inhibition of NUF2 suppressed the proliferation of HCC cells and disrupted the cell cycle. Further investigation into the molecular mechanisms revealed that NUF2 interacted with ERBB3, inhibiting its ubiquitination degradation, thus activating the PI3K/AKT signaling pathway and influencing cell cycle regulation. Overall, this study revealed the crucial role of NUF2 in promoting the malignant progression of HCC, suggesting its potential as both a prognostic biomarker and a therapeutic target for HCC.

16.
Circulation ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38214194

ABSTRACT

BACKGROUND: Pulmonary hypertension, characterized by vascular remodeling, currently lacks curative therapeutic options. The dysfunction of pulmonary artery endothelial cells plays a pivotal role in the initiation and progression of pulmonary hypertension (PH). ErbB3 (human epidermal growth factor receptor 3), also recognized as HER3, is a member of the ErbB family of receptor tyrosine kinases. METHODS: Microarray, immunofluorescence, and Western blotting analyses were conducted to investigate the pathological role of ErbB3. Blood samples were collected for biomarker examination from healthy donors or patients with hypoxic PH. The pathological functions of ErbB3 were further validated in rodents subjected to chronic hypoxia- and Sugen-induced PH, with or without adeno-associated virus-mediated ErbB3 overexpression, systemic deletion, or endothelial cell-specific ErbB3 knockdown. Primary human pulmonary artery endothelial cells and pulmonary artery smooth muscle cells were used to elucidate the underlying mechanisms. RESULTS: ErbB3 exhibited significant upregulation in the serum, lungs, distal pulmonary arteries, and pulmonary artery endothelial cells isolated from patients with PH compared with those from healthy donors. ErbB3 overexpression stimulated hypoxia-induced endothelial cell proliferation, exacerbated pulmonary artery remodeling, elevated systolic pressure in the right ventricle, and promoted right ventricular hypertrophy in murine models of PH. Conversely, systemic deletion or endothelial cell-specific knockout of ErbB3 yielded opposite effects. Coimmunoprecipitation and proteomic analysis identified YB-1 (Y-box binding protein 1) as a downstream target of ErbB3. ErbB3 induced nuclear translocation of YB-1 and subsequently promoted hypoxia-inducible factor 1/2α transcription. A positive loop involving ErbB3-periostin-hypoxia-inducible factor 1/2α was identified to mediate the progressive development of this disease. MM-121, a human anti-ErbB3 monoclonal antibody, exhibited both preventive and therapeutic effects against hypoxia-induced PH. CONCLUSIONS: Our study reveals, for the first time, that ErbB3 serves as a novel biomarker and a promising target for the treatment of PH.

17.
Medicina (Kaunas) ; 60(1)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38276060

ABSTRACT

ERBB3, a key member of the receptor tyrosine kinase family, is implicated in the progression and development of various human cancers, affecting cellular proliferation and survival. This study investigated the expression of ERBB3 isoforms in renal clear cell carcinoma (RCC), utilizing data from 538 patients from The Cancer Genome Atlas (TCGA) Firehose Legacy dataset. Employing the SUPPA2 tool, the activity of 10 ERBB3 isoforms was examined, revealing distinct expression patterns in RCC. Isoforms uc001sjg.3 and uc001sjh.3 were found to have reduced activity in tumor tissues, while uc010sqb.2 and uc001sjl.3 demonstrated increased activity. These variations in isoform expression correlate with patient survival and tumor aggressiveness, indicating their complex role in RCC. The study, further, utilizes CIBERSORTx to analyze the association between ERBB3 isoforms and immune cell profiles in the tumor microenvironment. Concurrently, Gene Set Enrichment Analysis (GSEA) was applied, establishing a strong link between elevated levels of ERBB3 isoforms and critical oncogenic pathways, including DNA repair and androgen response. RT-PCR analysis targeting the exon 21-23 and exon 23 regions of ERBB3 confirmed its heightened expression in tumor tissues, underscoring the significance of alternative splicing and exon utilization in cancer development. These findings elucidate the diverse impacts of ERBB3 isoforms on RCC, suggesting their potential as diagnostic markers and therapeutic targets. This study emphasizes the need for further exploration into the specific roles of these isoforms, which could inform more personalized and effective treatment modalities for renal clear cell carcinoma.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Gene Expression Profiling , Protein Isoforms/genetics , Protein Isoforms/metabolism , Genomics , Gene Expression Regulation, Neoplastic/genetics , Tumor Microenvironment , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism
18.
Clin Genet ; 105(3): 283-293, 2024 03.
Article in English | MEDLINE | ID: mdl-38009810

ABSTRACT

The Erb-B2 receptor tyrosine kinase 3 (ERBB3) gene was first identified as a cause of lethal congenital contracture syndrome (OMIM 607598), while a recent study reported six additional patients carrying ERBB3 variants which exhibited distinct clinical features with evident intestinal dysmotility (OMIM 243180). The potential connection between these phenotypes remains unknown, and the ERBB3-related phenotype spectrum needs to be better characterized. Here, we described a patient presenting with a multisystemic syndrome including skip segment Hirschsprung disease, bilateral clubfoot deformity, and cardiac defect. Trio-whole exome sequencing revealed a novel compound heterozygous variant (c.1914-7C>G; c.2942_2945del) in the patient's ERBB3 gene. RT-PCR and in vitro minigene analysis demonstrated that variant c.1914-7C>G caused aberrant mRNA splicing. Both variants resulted in premature termination codon and complete loss of ERBB3 function. erbb3b knockdown in zebrafish simultaneously caused a reduction in enteric neurons in the distal intestine, craniofacial cartilage defects, and micrognathia, which phenotypically mimics ERBB3-related intestinal dysmotility and some features of lethal congenital contracture syndrome in human patients. These findings provide further patient and animal evidence supporting that ERBB3 deficiency causes a complex syndrome involving multiple systems with phenotypic variability among distinct individuals.


Subject(s)
Contracture , Hirschsprung Disease , Animals , Humans , Hirschsprung Disease/genetics , Phenotype , Receptor, ErbB-3/genetics , Syndrome , Zebrafish/genetics
19.
Cancers (Basel) ; 15(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38001709

ABSTRACT

PURPOSE: To search for new predictive breast cancer biomarkers. We analyzed the serum concentrations of biomarkers involved in carcinogenesis, which can also be targeted by therapy. METHODS: In a single-center prospective study, the serum levels of Aurora A, thymidine kinase 1, and human epidermal growth factor receptor type 3 (HER3) were determined in 119 women with BC before neoadjuvant treatment using ELISA kits. RESULTS: The following clinical data were analyzed: age; TNM; the expression of ER, PGR, HER2, and Ki67; histological grade (G); and the response to neoadjuvant treatment (NAT) in the residual tumor burden classification (RCB). A complete pathological response (pCR) was achieved after NAT in 41 patients (34%). The highest proportion of the patients with a confirmed pCR was found for triple negative breast cancer (TNBC) (62.5%); non-luminal HER2-positive (52.6%) cancer subtypes (p = 0.0003); and in the G3 group (50%; p = 0.0078). The patients with higher levels of Aurora A were more likely to achieve pCR (p = 0.039). In the multivariate analysis, the serum Aurora A levels ≥ 4.75 ng/mL correlated with a higher rate of pCR (OR: 3.5; 95% CI: 1.2-10.1; p = 0.023). CONCLUSIONS: We showed that in a biologically heterogeneous group of BC patients, the pretreatment serum Aurora A levels were of significant value in predicting the response to NAT.

20.
Genes Dev ; 37(17-18): 818-828, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37775182

ABSTRACT

Activating KRAS mutations (KRAS*) in pancreatic ductal adenocarcinoma (PDAC) drive anabolic metabolism and support tumor maintenance. KRAS* inhibitors show initial antitumor activity followed by recurrence due to cancer cell-intrinsic and immune-mediated paracrine mechanisms. Here, we explored the potential role of cancer-associated fibroblasts (CAFs) in enabling KRAS* bypass and identified CAF-derived NRG1 activation of cancer cell ERBB2 and ERBB3 receptor tyrosine kinases as a mechanism by which KRAS*-independent growth is supported. Genetic extinction or pharmacological inhibition of KRAS* resulted in up-regulation of ERBB2 and ERBB3 expression in human and murine models, which prompted cancer cell utilization of CAF-derived NRG1 as a survival factor. Genetic depletion or pharmacological inhibition of ERBB2/3 or NRG1 abolished KRAS* bypass and synergized with KRASG12D inhibitors in combination treatments in mouse and human PDAC models. Thus, we found that CAFs can contribute to KRAS* inhibitor therapy resistance via paracrine mechanisms, providing an actionable therapeutic strategy to improve the effectiveness of KRAS* inhibitors in PDAC patients.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Animals , Mice , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Cell Proliferation , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Neuregulin-1/genetics , Neuregulin-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL