Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters











Publication year range
1.
Toxicol Res (Camb) ; 13(4): tfae111, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39036524

ABSTRACT

Background: The resistant and aggressive nature of triple-negative breast cancer (TNBC) renders it mostly incurable even following extensive multimodal treatment. Therefore, more studies are required to understand the underlying molecular mechanisms of its pathogenesis. SIRT1 is a class III histone deacetylase NAD + -dependent enzyme that is interlinked in tumor progression, apoptosis, metastasis, and other mechanisms of tumorigenesis, while DNA polymerase delta 1 (POLD1) functions as a gene coding for p125, which plays an important role in genome stability and DNA replication. Objective: We aimed to investigate the downstream signaling pathway of EX-527, a potent and selective SIRT1 inhibitor, in MDA-MB-231 breast cancer cell lines, and the crosstalk between SIRT1 and POLD1, which is essential for the activities of polymerase δ. Methods: The antiproliferative and apoptotic effects of EX-527 on MDA-MB-231 cells were assessed by MTT and annexin V/PI double staining assays. Migration and invasion activity of MDA-MB-231 cells were assessed by wound-healing scratch and transwell assays. Protein expressions were examined using Western Blot analysis. Results: MDA-MB-231 cells treatment with IC50 values of 45.3 µM EX-527 significantly suppressed cell proliferation and induced apoptosis by down-regulating SIRT1. Also, it significantly repressed migration and invasion of MDA-MB-231 cells as evaluated by wound healing and transwell invasion assays. Western blot results showed that decreased expression of SIRT1 is positively correlated with expression of p53 along with down-regulating POLD1. Conclusion: SIRT1 could have an oncogenic role in breast cancer development and progression via activating POLD1. These conclusions present new insights into the underlying mechanisms of TNBC.

2.
Inflammopharmacology ; 31(5): 2701-2717, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37598127

ABSTRACT

The prominence of autophagy in the modulation of neurodegenerative disorders has sparked interest to investigate its stimulation in Alzheimer's disease (AD). Nobiletin possesses several bioactivities such as anti-inflammation, antioxidation, and neuroprotection. Consequently, the study's aim was to inspect the possible neurotherapeutic impact of Nobiletin in damping AD through autophagy regulation. Mice were randomly assigned into: Group I which received DMSO, Groups II, III, and IV obtained STZ (3 mg/kg) intracerebroventricularly once with Nobiletin (50 mg/kg/day; i.p.) in Group III and Nobiletin with EX-527 (2 mg/kg, i.p.) in Group IV. Interestingly, Nobiletin ameliorated STZ-induced AD through enhancing the motor performance and repressing memory defects. Moreover, Nobiletin de-escalated hippocampal acetylcholinesterase (AChE) activity and enhanced acetylcholine level while halting BACE1 and amyloid-ß levels. Meanwhile, Nobiletin stimulated the autophagy process through activating the SIRT1/FoxO3a, LC3B-II, and ATG7 pathway. Additionally, Nobiletin inhibited Akt pathway and controlled the level of NF-κB and TNF-α. Nobiletin amended the oxidative stress through enhancing GSH and cutting down MDA levels. However, EX527, SIRT1 inhibitor, counteracted the neurotherapeutic effects of Nobiletin. Therefore, the present study provides a strong verification for the therapeutic influence of Nobiletin in AD. This outcome may be assigned to autophagy stimulation through SIRT1/FoxO3a, inhibiting AChE activity, reducing neuroinflammation and oxidative stress.


Subject(s)
Alzheimer Disease , Citrus , Mice , Animals , Flavonoids/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/therapeutic use , Citrus/metabolism , Sirtuin 1/metabolism , Acetylcholinesterase , Aspartic Acid Endopeptidases/therapeutic use , Autophagy , Disease Models, Animal
3.
Cancers (Basel) ; 15(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37190306

ABSTRACT

Skeletal muscle wasting is the most remarkable phenotypic feature of cancer cachexia that increases the risk of morbidity and mortality. However, there are currently no effective drugs against cancer cachexia. Ursolic acid (UA) is a lipophilic pentacyclic triterpene that has been reported to alleviate muscle atrophy and reduce muscle decomposition in some disease models. This study aimed to explore the role and mechanisms of UA treatment in cancer cachexia. We found that UA attenuated Lewis lung carcinoma (LLC)-conditioned medium-induced C2C12 myotube atrophy and muscle wasting of LLC tumor-bearing mice. Moreover, UA dose-dependently activated SIRT1 and downregulated MuRF1 and Atrogin-1. Molecular docking results revealed a good binding effect on UA and SIRT1 protein. UA rescued vital features wasting without impacting tumor growth, suppressed the elevated spleen weight, and downregulated serum concentrations of inflammatory cytokines in vivo. The above phenomena can be attenuated by Ex-527, an inhibitor of SIRT1. Furthermore, UA remained protective against cancer cachexia in the advanced stage of tumor growth. The results revealed that UA exerts an anti-cachexia effect via activating SIRT1, thereby downregulating the phosphorylation levels of NF-κB and STAT3. UA might be a potential drug against cancer cachexia.

4.
Chinese Pharmacological Bulletin ; (12): 1263-1270, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013924

ABSTRACT

Aim To investigate the effect of microinjection of EX527, a selective SIRT1 antagonist, into the ventrolateral orbital cortex (VLO) on morphine-induced conditioned place preference (CPP), and to explore the role of CREB/BDNF in it. Methods The cannulas were implanted bilaterally in the VLO of rats by brain stereotaxis surgery, and the model of morphine-induced CPP was established. The behavioral experiment consisted of four stages:habituation (d 1), pre-test (d 2-4), conditioning training (d 5-14) and test (d 15). At the stage of conditioning training, EX527 (1 μL, 5 g·L

7.
Theriogenology ; 189: 209-221, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35780560

ABSTRACT

Cadmium (Cd) is a major environmental contaminant that has been linked to oocyte quality reduction and early embryo mortality in various in vivo studies. In this study, we investigated the mechanism of Cd-induced mitochondrial toxicity in bovine in vitro matured oocytes, primary cultured bovine cumulus cells, and in vitro developed bovine embryos. Cd significantly reduced PPARGC1A (PGC-1α) and nuclear respiratory factors, which leads to mitochondrial damage and hence reduction in oocyte maturation and embryo development. NAD-dependent deacetylase sirtuin-1 (SIRT1) is the upstream marker of PGC-1α and nuclear respiratory factors, and its activation significantly mitigated Cd-induced mitochondrial damage. For SIRT1 activation, we used Hesperetin (Hsp), a citrus flavonoid and a potent activator of SIRT1. The molecular docking approach was used to investigate the binding of hesperetin to bovine SIRT1, which revealed that hesperetin creates polar and non-polar interactions with residues that are reported essential for the activation of SIRT1. Furthermore, the SIRT1 enzymatic activity was measured in primary cultured bovine granulosa cells after hesperetin treatment. To further confirm the SIRT1-dependent effects of hesperetin we used a specific inhibitor of SIRT1 (EX527), which significantly (p < 0.05) reduced the effects of hesperetin on embryo mitochondria. Next, we treated hesperetin and Cd to early bovine embryos and discovered a significant (p 0.05) increase in PGC-1, NRF1, and NFE2L2 protein expression as well as embryo development recovery. Thus, we came to the conclusion that hesperetin can activate PGC-1 and nuclear respiratory factors via SIRT1, which can greatly reduce Cd-induced mitochondrial toxicity and promote mitochondrial biogenesis in early bovine embryos.


Subject(s)
Cadmium , Sirtuin 1 , Animals , Cadmium/toxicity , Cattle , Embryonic Development , Female , Hesperidin , Molecular Docking Simulation , Nuclear Respiratory Factors , Sirtuin 1/genetics , Sirtuin 1/metabolism
8.
Reprod Toxicol ; 109: 121-134, 2022 04.
Article in English | MEDLINE | ID: mdl-35307491

ABSTRACT

Environmental contamination with hexavalent chromium, Cr(VI), has been increasing in the United States as well as in developing countries. Exposure to Cr(VI) predisposes the human population to various diseases, including cancer, infertility, and developmental problems in children. Previous findings from our laboratory reported that prenatal exposure to Cr(VI) caused premature ovarian failure through p53-mediated mechanisms. Sirtuin 1 (SIRT1) is an NAD+ -dependent histone deacetylase class III. SIRT1 deacetylates several histones and non-histone proteins such as p53 and NFkB. The current study determines a role for the SIRT1-p53 network in apoptosis induced by Cr(VI) in the ovary and establishes physical interaction between SIRT1 and p53. Adult pregnant dams were given regular drinking water or Cr(VI) (10 ppm potassium dichromate in drinking water, ad libitum), and treated with SIRT1 inhibitor, EX-527 (50 mg/kg body weight, i.p.,), during 9.5 - 14.5 days post-coitum. On postnatal day-1, ovaries from F1 offspring were collected for various analyses. Results indicated that Cr(VI) increased germ cell and somatic cell apoptosis, upregulated acetyl-p53, activated the apoptotic pathway, and inhibited cell survival pathways. Cr(VI) decreased acetyl-p53-SIRT1 co-localization in the ovary. In an immortalized rat granulosa cell line SIGC, Cr(VI) inhibited the physical interaction between SIRT1 and acetyl-p53 by altering the p53:SIRT1 ratio. EX-527 exacerbated Cr(VI)-induced mechanisms. The current study shows a novel mechanism for Cr(VI)-induced apoptosis in the ovary, mediated through the p53-SIRT1 network, suggesting that targeting the p53 pathway may be an ideal approach to rescue ovaries from Cr(VI)-induced apoptosis.


Subject(s)
Ovary , Sirtuin 1 , Animals , Apoptosis , Chromium/toxicity , Female , Ovary/metabolism , Pregnancy , Rats , Sirtuin 1/metabolism , Tumor Suppressor Protein p53/metabolism
9.
J Assist Reprod Genet ; 39(4): 933-943, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35247119

ABSTRACT

PURPOSE: Although oncological advances have improved survival rates of female cancer patients, they often suffer a reduced fertility due to treatment side effects. In the present study, we evaluated the potential fertoprotective effects of the specific inhibitor of SIRT1, EX-527, on the gonadotoxic action exerted by cyclophosphamide (CPM) on loss of primordial follicles (PFs). METHODS: The effects of the CPM metabolite phosphoramide mustard (PM) on follicle activation, growth and viability and the protective action of EX-527 against PM effects were evaluated on bovine ovarian cortical strips in vitro cultured for 1 or 6 days. To understand whether PFs exposed to PM plus EX-527 were able to activate and grow to the secondary stage after suspension of the treatment, strips cultured for 3 days in PM plus EX-527 for 3 days were transferred to plain medium until day 6. Follicle growth and health were evaluated through histology and viability assay at a confocal microscope. In order to investigate the molecular pathways underlying the ovarian response to PM in the presence of EX-527, we analysed the protein level of SIRT1, HuR, PARP1 and SOD2 after 1 day of in vitro culture. RESULTS: We found that (1) PM, the main CPM active metabolite, promotes PF activation; (2) the ovarian stress response induced by PM includes a SIRT1-dependent pathway; and (3) EX-527 reduces PF activation and growth induced by PM. CONCLUSION: SIRT1 can represent a candidate molecule to be targeted to protect ovarian follicles from alkylating agents and EX-527 could represent a potential fertoprotective agent for cancer patients.


Subject(s)
Ovarian Follicle , Sirtuin 1 , Animals , Cattle , Culture Media/pharmacology , Cyclophosphamide/pharmacology , Female , Ovary/metabolism , Sirtuin 1/antagonists & inhibitors , Sirtuin 1/metabolism
10.
Acta Pharmacol Sin ; 43(7): 1780-1792, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34789920

ABSTRACT

Interleukin-1ß (IL-1ß), a key pro-inflammatory cytokine, is majorly produced by macrophages through NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, which has been identified as the culprit to deteriorate the inflammatory crosstalk between macrophages and adipocytes. Ainsliadimer C (AC) is a disesquiterpenoid isolated from Ainsliaea macrocephala. In the current study, we investigated the effects of AC on adipose tissue inflammation in co-culture of macrophages and adipocytes in vitro as well as in LPS-treated mice in vivo. We showed that AC (20-80 µM) dose-dependently inhibited the secretion of IL-1ß from LPS plus ATP-stimulated THP-1 macrophages by inhibiting the activation of NLRP3 inflammasome. Furthermore, we found that AC treatment activated NAD+-dependent deacetylase Sirtuin 1 (SIRT1), resulting in reduced acetylation level of NLRP3. Molecular modeling analysis revealed that binding of AC to sirtuin-activating compound-binding domain increased the affinity of the substrate to the catalytic domain of SIRT1. Moreover, AC (80 µM) significantly attenuated macrophage-conditioned medium-induced inflammatory responses in 3T3-L1 adipocytes. In LPS-induced acute inflammatory mice, administration of AC (20, 60 mg·kg-1·d-1, ip) for 5 days significantly suppressed the pro-inflammatory cytokine levels in serum and epididymal white adipose tissue (eWAT), attenuated macrophage infiltration into eWAT, and mitigated adipose tissue inflammation. The beneficial effects of AC were blocked by co-administration of a selective SIRT1 inhibitor EX-527 (10 mg·kg-1·d-1). Taken together, AC suppresses NLRP3-mediated IL-1ß secretion through activating SIRT1, leading to attenuated inflammation in macrophages and adipose tissue, which might be a candidate to treat obesity-associated metabolic diseases.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Adipose Tissue/metabolism , Animals , Cytokines/metabolism , Inflammasomes/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred NOD , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sirtuin 1/metabolism
11.
Neuroscience ; 476: 116-124, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34600072

ABSTRACT

SIRT-1 is a potent energy regulator that has been implicated in the aging of different tissues, and cholesterol synthesis demands high amounts of cellular adenosine triphosphate. An efficient synaptic transmission depends on processes that are highly influenced by cholesterol levels, like endocytosis, exocytosis and membrane lateral diffusion of neurotransmitter receptors. We set out to investigate whether SIRT-1 activity affects brain cholesterol metabolism. We found that pharmacological inhibition of SIRT-1 with EX-527 reduces the mRNA amounts of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGCR), Cytochrome P450 46A1 (CYP46A1) and Apolipoprotein E (APO-E) in rat primary cortical cultures. The decreased expression of these genes was paralleled by a significant reduction of the cholesterol levels in this type of neuronal culture. Interestingly, a cholesterol decrease of similar extent was observed in mouse astroglial cultures after EX-527 treatment. In agreement, mice administered with EX-527 for 5 days showed a down-regulation of cholesterol synthesis in the cortex, with significant reductions in the mRNA amounts of the transcription factor Sterol Regulatory Element Binding Protein 2 (SREBP-2) and the enzyme HMGCR, two key regulators of the cholesterol synthesis. These transcriptional changes were paralleled by reduced cholesterol levels at cortical synapses. SIRT-1 inhibition also reduced the amount of cholesterol in the hippocampus but without affecting the HMGCR expression levels. Altogether, these results uncover a role for SIRT-1 in the regulation of cholesterol metabolism, and demonstrate that SIRT-1 is required to sustain adequate levels of cholesterol synthesis in the adult brain.


Subject(s)
Sirtuins , Sterol Regulatory Element Binding Protein 2 , Animals , Brain/metabolism , Cholesterol , Lipogenesis , Mice , Rats , Sterol Regulatory Element Binding Protein 2/metabolism
12.
J Biochem Mol Toxicol ; 35(7): e22797, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33957017

ABSTRACT

Diabetic nephropathy (DN) is becoming a research hotspot in recent years because the prevalence is high and the prognosis is poor. Lipid accumulation in podocytes induced by hyperglycemia has been shown to be a driving mechanism underlying the development of DN. However, the mechanism of lipotoxicity remains unclear. Increasing evidence shows that acetyl-CoA carboxylase 2 (ACC2) plays a crucial role in the metabolism of fatty acid, but its effect in podocyte injury of DN is still unclear. In this study, we investigated whether ACC2 could be a therapeutic target of lipid deposition induced by hyperglycemia in the human podocytes. Our results showed that high glucose (HG) triggered significant lipid deposition with a reduced ß-oxidation rate. It also contributed to the downregulation of phosphorylated ACC2 (p-ACC2), which is an inactive form of ACC2. Knockdown of ACC2 by sh-RNA reduced lipid deposition induced by HG. Additionally, ACC2-shRNA restored the expression of glucose transporter 4 (GLUT4) on the cell surface, which was downregulated in HG and normalized in the insulin signaling pathway. We verified that ACC2-shRNA alleviated cell injury, apoptosis, and restored the cytoskeleton disturbed by HG. Mechanistically, SIRT1/PGC-1α is close related to the insulin metabolism pathway. ACC2-shRNA could restore the expression of SIRT1/PGC-1α, which was downregulated in HG. Rescue experiment revealed that inhibition of SIRT1 by EX-527 counteracted the effect of ACC2-shRNA. Taken together, our data suggest that podocyte injury mediated by HG-induced insulin resistance and lipotoxicity could be alleviated by ACC2 inhibition via SIRT1/PGC-1α.


Subject(s)
Acetyl-CoA Carboxylase/metabolism , Glucose/pharmacology , Insulin Resistance , Lipid Metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Podocytes/metabolism , Sirtuin 1/metabolism , Acetyl-CoA Carboxylase/antagonists & inhibitors , Acetyl-CoA Carboxylase/genetics , Humans , Oxidation-Reduction , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Sirtuin 1/genetics
13.
Br J Pharmacol ; 178(18): 3648-3666, 2021 09.
Article in English | MEDLINE | ID: mdl-33904167

ABSTRACT

BACKGROUND AND PURPOSE: Dioscin has multiple biological activities and is beneficial for cardiovascular and cerebral vascular diseases. Here, we investigated the protective effects of dioscin against subarachnoid haemorrhage and the molecular mechanisms involved. EXPERIMENTAL APPROACH: Dioscin was administered after subarachnoid haemorrhage induced in rats. MCC950, a potent selective nod-like receptor pyrin domain-containing 3 (NLRP3) inhibitor, was used to suppress NLRP3 and EX527 (selisistat) was used to inhibit sirtuin 1 (SIRT1). KEY RESULTS: In vivo, dioscin inhibited acute inflammatory response, oxidative damage, neurological impairment and neural cell degeneration after subarachnoid haemorrhage along with dramatically suppressing NLRP3 inflammasome activation. While pretreatment with MCC950 reduced the inflammatory response and improved neurological outcomes it did not lessen ROS production. However, giving dioscin after MCC950 reduced acute brain damage and ROS production. Dioscin increased SIRT1 expression after subarachnoid haemorrhage, whereas EX527 abolished the up-regulation of SIRT1 induced by dioscin and offset the inhibitory effects of dioscin on NLRP3 inflammasome activation. EX527 pretreatment also reversed the neuroprotective effects of dioscin against subarachnoid haemorrhage. Similarly, in vitro, dioscin dose-dependently suppressed inflammatory response, oxidative damage and neuronal degeneration and improved cell viability in neurons and microglia co-culture system. These effects were associated with inhibition of the NLRP3 inflammasome and stimulation of SIRT1 signalling, which could be inhibited by EX527 pretreatment. CONCLUSION AND IMPLICATIONS: Dioscin provides protection against subarachnoid haemorrhage via the suppression of NLRP3 inflammasome activation through SIRT1-dependent pathway. Dioscin may be a new candidate to ameliorate early brain injury after subarachnoid haemorrhage.


Subject(s)
Inflammasomes , Subarachnoid Hemorrhage , Animals , Diosgenin/analogs & derivatives , NLR Family, Pyrin Domain-Containing 3 Protein , Rats , Rats, Sprague-Dawley , Sirtuin 1 , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/drug therapy
14.
Int J Mol Sci ; 22(4)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669567

ABSTRACT

Sirtuins (SIRTs) are NAD+-dependent deacetylases that regulate proliferation and cell death. In the human ovary, granulosa cells express sirtuin 1 (SIRT1), which has also been detected in human tumors derived from granulosa cells, i.e., granulosa cell tumors (GCTs), and in KGN cells. KGN cells are an established cellular model for the majority of GCTs and were used to explore the role of SIRT1. The SIRT1 activator SRT2104 increased cell proliferation. By contrast, the inhibitor EX527 reduced cell numbers, without inducing apoptosis. These results were supported by the outcome of siRNA-mediated silencing studies. A tissue microarray containing 92 GCTs revealed nuclear and/or cytoplasmic SIRT1 staining in the majority of the samples, and also, SIRT2-7 were detected in most samples. The expression of SIRT1-7 was not correlated with the survival of the patients; however, SIRT3 and SIRT7 expression was significantly correlated with the proliferation marker Ki-67, implying roles in tumor cell proliferation. SIRT3 was identified by a proteomic analysis as the most abundant SIRT in KGN. The results of the siRNA-silencing experiments indicate involvement of SIRT3 in proliferation. Thus, several SIRTs are expressed by GCTs, and SIRT1 and SIRT3 are involved in the growth regulation of KGN. If transferable to GCTs, these SIRTs may represent novel drug targets.


Subject(s)
Sirtuin 1/metabolism , Sirtuin 3/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Carbazoles/pharmacology , Cell Line, Tumor , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic , Gene Silencing , Granulosa Cell Tumor/genetics , Heterocyclic Compounds, 2-Ring/pharmacology , Humans , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Sirtuin 1/genetics , Young Adult
15.
Neurosci Lett ; 744: 135599, 2021 01 23.
Article in English | MEDLINE | ID: mdl-33412237

ABSTRACT

Morphine addiction is categorized as a chronic recurrent brain disease which always results in mental disturbance, concomitant diseases and early death. Recent evidence suggested that Sirtuin 1 (SIRT1) played a crucial role in learning, memory and reward, nevertheless, its role in morphine addiction is still unclear. We explored whether SIRT1 in the ventrolateral orbital cortex (VLO) is associated with morphine addiction and its potential mechanism. We applied the morphine-induced behavioral sensitization paradigm to investigate whether microinjection of EX527, a SIRT1 inhibitor, into the VLO could affect the rat behaviors. Furthermore, we focused on the expression of extracellular signal-regulated protein kinases (ERK) and brain-derived neurotrophic factor (BDNF), potential downstream targets of SIRT1. Microinjecting EX527 into the VLO significantly suppressed morphine-induced behavioral sensitization. We found that the expression of SIRT1, phosphorylated ERK (p-ERK) and BDNF in the VLO were markedly up-regulated by morphine administrations in expression phase. These positive changes were significantly inhibited by microinjecting EX527 into the VLO. These results suggest that SIRT1 in the VLO may mediate morphine-induced behavioral sensitization and the overexpression of SIRT1, p-ERK and BDNF could be the potential mechanism. Taken together, the results of our research provide evidence to support that SIRT1 play an important role in morphine vulnerability and microinjecting EX527 into the VLO could significantly suppress morphine addiction in rats.


Subject(s)
Carbazoles/administration & dosage , Morphine Dependence/drug therapy , Morphine Dependence/metabolism , Prefrontal Cortex/metabolism , Sirtuin 1/antagonists & inhibitors , Sirtuin 1/metabolism , Animals , Male , Microinjections/methods , Morphine/administration & dosage , Prefrontal Cortex/drug effects , Rats , Rats, Sprague-Dawley
16.
Acta Pharmacol Sin ; 42(2): 242-251, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32555442

ABSTRACT

Silent information regulator 1 (Sirt1) is a deacetylase, which plays an important role in the occurrence and development of diabetic nephropathy (DN). Our previous study shows that Yin yang 1 (YY1), a widely expressed zinc finger DNA/RNA-binding transcription factor, is a novel regulator of renal fibrosis in diabetic nephropathy. Since the activity of YY1 is regulated via acetylation and deacetylation modification, this study aimed to explore whether Sirt1-induced deacetylation of YY1 mediated high glucose (HG)-induced renal tubular epithelial-mesenchymal transition (EMT) and renal fibrosis in vivo and in vitro. We first confirmed that Sirt1 expression level was significantly decreased in the kidney of db/db mice and in HG-treated HK-2 cells. Diabetes-induced Sirt1 reduction enhanced the level of YY1 acetylation and renal tubular EMT. Then, we manipulated Sirt1 expression in vivo and in vitro by injecting resveratrol (50 mg·kg-1·d-1. ip) to db/db mice for 2 weeks or application of SRT1720 (2.5 µM) in HG-treated HK-2 cells, we found that activation of Sirt1 reversed the renal tubular EMT and YY1 acetylation induced by HG condition. On the contrary, Sirt1 was knocked down in db/m mice or EX527 (1 µM) was added in HK-2 cells, we found that inhibition of Sirt1 exacerbated renal fibrosis in diabetic mice and enhanced level of YY1 acetylation in HK-2 cells. Furthermore, knockdown of YY1 inhibited the ameliorating effect of resveratrol on renal tubular EMT and renal fibrosis in db/db mice. In conclusion, this study demonstrates that Sirt1 plays an important role in renal tubular EMT of DN through mediating deacetylation of YY1.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/physiopathology , Sirtuin 1/genetics , YY1 Transcription Factor/metabolism , Animals , Cell Line , Diabetes Mellitus, Experimental/genetics , Diabetic Nephropathies/genetics , Epithelial-Mesenchymal Transition/genetics , Fibrosis , Gene Knockdown Techniques , Glucose/metabolism , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Male , Mice , Resveratrol/pharmacology , YY1 Transcription Factor/genetics
17.
Life Sci ; 266: 118822, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33275987

ABSTRACT

AIMS: Cyclophosphamide (CYP) is a potent anticancer agent with well-known cardiotoxicity that limits its clinical applications. Cilostazol is a vosodilating drug, showing a cardioprotective effect in some cardiac disorders; however its effect in CYP-induced cardiotoxicity is still uncertain. We investigated the effect of cilostazol against CYP-induced cardiotoxicity and the contribution of SIRT1 signaling. MATERIALS AND METHODS: 7 week-old male Wistar albino rats were treated with cilostazol (30 mg/kg/day, orally) in the absence or presence of SIRT1 inhibitor, EX-527 (5 mg/kg/day, IP) for 10 days and injected with CYP (200 mg/kg, IP) on the 7th day of the study. Age-matched rats were used as control group. On the 11th day, hearts were harvested for biochemical, immunoblotting and histological analyses. Markers of cardiac injury were assessed in plasma samples. KEY FINDINGS: CYP injection contributed to cardiac injury manifested as significant increases in plasma activities of heart enzymes and cardiac troponin I levels. Cilostazol attenuated cardiac injury and minimized the histological lesions in hearts of CYP-treated rats. Cilostazol induced 3 fold up-regulation of SIRT1 and promoted the antioxidant defense response through FoxO1-related mechanism in hearts of CYP-treated rats. Cilostazol suppressed the CYP-induced up-regulation of PARP1 and p53, and blocked the NF-kB p65-mediated inflammatory response in hearts of CYP-treated rats. All the beneficial effects of cilostazol were almost abolished by EX-527. SIGNIFICANCE: These data provided insights into the mechanism underlying the cardioprotective effect of cilostazol in CYP-treated rats through upregulation of SIRT1 signaling, suggesting that cilostazol might be a candidate modality for CYP-induced cardiotoxicity.


Subject(s)
Bronchodilator Agents/pharmacology , Cardiotoxicity/prevention & control , Cilostazol/pharmacology , Cyclophosphamide/toxicity , Inflammation/prevention & control , Mutagens/toxicity , Sirtuin 1/metabolism , Animals , Antioxidants , Apoptosis , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Cardiotoxicity/pathology , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Male , Rats , Rats, Wistar , Signal Transduction , Sirtuin 1/genetics
18.
Eur J Pharmacol ; 892: 173736, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33220273

ABSTRACT

Multidrug resistance (MDR) counteracts the efficiency of sorafenib, an important first-line therapy for hepatocellular carcinoma (HCC). Sirtuins (SIRTs) 1 and 2 are associated with tumor progression and MDR. We treated 2D and 3D cultures (which mimic the features of in vivo tumors) from HCC cells with sorafenib alone or in the presence of SIRTs 1 and 2 inhibitors (cambinol or EX-527; combined treatments). Cultures subjected to combined treatments showed a greater fall in cellular viability, proliferation (PCNA, cyclin D1 and Ki-67 expression and cell cycle analysis), migration and invasion when compared with cultures treated only with sorafenib. Similarly, combined treatments produced more apoptosis (annexin V/PI, caspase-3/7 activity) than sorafenib alone. Since cell cycle dysregulation and apoptotic blockage are reported mechanisms of MDR, the modulation found in PCNA, cyclin D1, Ki-67 and caspase-3/7 proteins by cambinol and EX-527 are probably playing a role in enhancing the sensitivity of HCC cell lines to sorafenib. EX-527 reduced MRP3 and BCRP expression in sorafenib-treated HCC cells. Since ABC transporters contribute to MDR, MRP3 and BCRP could be also influencing in the response of HCC cells to sorafenib. Overall, 2D and 3D cultures behave similarly except that 3D cultures were less sensitive to treatments, reinforcing the clinical relevance of the current study. Findings presented in this manuscript support a potential application for SIRTs 1 and 2 inhibitors since we demonstrated that these compounds enhance the inhibitory effect of sorafenib upon treatment of hepatocellular carcinoma cells lines.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carbazoles/pharmacology , Carcinoma, Hepatocellular/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Liver Neoplasms/drug therapy , Naphthalenes/pharmacology , Pyrimidinones/pharmacology , Sirtuin 1/antagonists & inhibitors , Sirtuin 2/antagonists & inhibitors , Sorafenib/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/pathology , Cell Cycle Proteins/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Hep G2 Cells , Humans , Liver Neoplasms/enzymology , Liver Neoplasms/pathology , Multidrug Resistance-Associated Proteins/metabolism , Neoplasm Invasiveness , Neoplasm Proteins/metabolism , Signal Transduction , Sirtuin 1/metabolism , Sirtuin 2/metabolism , Spheroids, Cellular
19.
Exp Biol Med (Maywood) ; 246(5): 596-606, 2021 03.
Article in English | MEDLINE | ID: mdl-33215523

ABSTRACT

Bronchopulmonary dysplasia is a severe and long-term pulmonary disease in premature infants. Hyperoxia-induced acute lung injury plays a critical role in bronchopulmonary dysplasia. Resveratrol is a polyphenolic phytoalexin and a natural agonist of Sirtuin 1. Many studies have shown that resveratrol has a protective effect on hyperoxia-induced lung damage, but its specific protective mechanism is still not clear. Further exploration of the possible protective mechanism of resveratrol was the main goal of this study. In this study, human alveolar epithelial cells were used to establish a hyperoxia-induced acute lung injury cell model, and resveratrol (Res or R), the Sirtuin 1 activator SRT1720 (S) and the Sirtuin 1 inhibitor EX-527 (E) were administered to alveolar epithelial cells, which were then exposed to hyperoxia to investigate the role of Res in mitochondrial function and apoptosis. We divided human alveolar epithelial cells into the following groups: (1) the control group, (2) hyperoxia group, (3) hyperoxia+Res20 group, (4) hyperoxia+Res20+E5 group, (5) hyperoxia+Res20+E10 group, (6) hyperoxia+S2 group, (7) hyperoxia+S2+E5 group, and (8) hyperoxia+S2+E10 group. Hyperoxia-induced cell apoptosis and mitochondrial dysfunction were alleviated by Res and SRT1720. Res and SRT1720 upregulated Sirtuin 1, PGC-1α, NRF1, and TFAM but decreased the expression of acetyl-p53 in human alveolar epithelial cells that were exposed to hyperoxia. These findings revealed that Res may alleviated hyperoxia-induced mitochondrial dysfunction and apoptosis in alveolar epithelial cells through the SIRT1/PGC-1a signaling pathway. Thus, Sirtuin 1 upregulation plays an important role in lung protection.


Subject(s)
Alveolar Epithelial Cells/pathology , Apoptosis , Hyperoxia/pathology , Mitochondria/pathology , Resveratrol/pharmacology , Acetylation/drug effects , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Apoptosis/drug effects , Carbazoles/pharmacology , Cell Death/drug effects , Cell Line , Cell Survival/drug effects , DNA-Binding Proteins/metabolism , Down-Regulation/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Models, Biological , Nuclear Respiratory Factor 1/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Reactive Oxygen Species/metabolism , Sirtuin 1/metabolism , Transcription Factors/metabolism , Tumor Suppressor Protein p53/metabolism , Up-Regulation/drug effects
20.
Reprod Biol ; 20(3): 273-281, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32741720

ABSTRACT

Sirtuin-1 (SIRT1), a NAD+-dependent deacetylase, is present in the ovarian granulosa cells (GCs) of various species. This study examined the regulation of SIRT1 expression in human granulosa-lutein cells (hGLCs). Two different, structurally unrelated SIRT1 activators, SRT2104 and resveratrol, dose- and time-dependently enhanced SIRT1 (∼2- and 1.5-fold increase at 50 µmol/L for mRNA and protein levels, respectively), whereas EX-527, an inhibitor of SIRT1 deacetylase activity, significantly suppressed SIRT1 protein induced by these activators. Transfecting cells with SIRT1 siRNA molecules efficiently silenced SIRT1 (∼70 % decrease in 48 h post-transfection). Furthermore, the stimulatory effects of SRT2104 on SIRT1 expression observed in non-transfected or in scrambled siRNA-transfected cells were diminished with SIRT1 silencing. The findings described above imply that SIRT1 autoregulates its own expression. Interestingly, SRT2104 elevated cAMP accumulation (1.4-fold) in the culture media of hGLCs which was further augmented in the presence of hCG (2.2-fold); these effects were evident after 12 h of incubation. This additive effect of hCG and SRT2104 on cAMP accumulation may explain the incremental outcome observed on SIRT1 expression (∼3-fold increase from basal level and ∼1.6-fold stimulation for each compound alone) with these two compounds. SIRT1 knockdown diminished SIRT1 induced by forskolin, providing additional evidence that cAMP promotes SIRT1. These findings imply that by activating adenylyl cyclase (hCG or forskolin) and inhibiting phosphodiesterases (SIRT1 activators), these two signals converge to produce an incremental, positive feedback loop on SIRT1 expression. Such a mechanism highlights the importance of maintaining high SIRT1 levels in human luteinized GCs.


Subject(s)
Cyclic AMP/metabolism , Granulosa Cells/metabolism , Luteal Cells/metabolism , Sirtuin 1/metabolism , Adult , Carbazoles/pharmacology , Cell Line , Colforsin/pharmacology , Dose-Response Relationship, Drug , Enzyme Activators/pharmacology , Female , Granulosa Cells/drug effects , Heterocyclic Compounds, 2-Ring/pharmacology , Humans , Luteal Cells/drug effects , RNA, Small Interfering , Resveratrol/pharmacology , Signal Transduction/drug effects , Sirtuin 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL