Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Hum Evol ; 194: 103579, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39173445

ABSTRACT

A hominin mandible, KNM-ER 63000, and associated vertebrate remains were recovered in 2011 from Area 40 in East Turkana, Kenya. Tephrostratigraphic and magnetostratigraphic analyses indicate that these fossils date to ∼4.3 Ma. KNM-ER 63000 consists of articulating but worn and weathered mandibular corpora, with a broken right M2 crown and alveoli preserved at other tooth positions. Despite extensive damage, KNM-ER 63000 preserves diagnostic anatomy permitting attribution to Australopithecus anamensis. It can be distinguished from Australopithecus afarensis by its strongly inclined symphyseal axis with a basally convex, 'cut-away' external surface, a lateral corpus that sweeps inferomedially beneath the canine-premolar row, and alignment of the canine alveolus with the postcanine axis. KNM-ER 63000 is distinguished from Ardipithecus ramidus by its thick mandibular corpus and large M2 crown. The functional trait structure and enamel's stable carbon isotopic composition of the Area 40 large-mammal community suggests an environment comparable to Kanapoi and other ∼4.5-4 Ma eastern African sites that would have offered Au. anamensis access to both C3 and C4 food resources. With an age of ∼4.3 Ma, KNM-ER 63000 is the oldest known specimen of Au. anamensis, predating the Kanapoi and Asa Issie samples by at least ∼100 kyr. This specimen extends the known temporal range of Au. anamensis and places it in temporal overlap with fossils of Ar. ramidus from Gona, Ethiopia. The morphology of KNM-ER 63000 indicates that the reconfigured masticatory system differentiating basal hominins from the earliest australopiths existed in the narrow temporal window, if any, separating the two. The very close temporal juxtaposition of these significant morphological and adaptive differences implies that Ar. ramidus was a relative rather than a direct phyletic ancestor of earliest Australopithecus.


Subject(s)
Fossils , Hominidae , Mandible , Animals , Fossils/anatomy & histology , Kenya , Hominidae/anatomy & histology , Mandible/anatomy & histology , Environment
2.
Sci Rep ; 14(1): 16894, 2024 07 23.
Article in English | MEDLINE | ID: mdl-39043764

ABSTRACT

The site of LuneryRosieres la-Terre-des-Sablons (Lunery, Cher, France) comprises early evidence of human occupation in mid-latitudes in Western Europe. It demonstrates hominin presence in the Loire River Basin during the Early Pleistocene at the transition between an interglacial stage and the beginning of the following glacial stage. Three archaeological levels sandwiched and associated with two diamicton levels deposited on the downcutting river floor indicate repeated temporary occupations. Lithic material yields evidence of simple and more complex core technologies on local Jurassic siliceous rocks and Oligocene millstone. Hominins availed of natural stone morphologies to produce flakes with limited preparation. Some cores show centripetal management and a partially prepared striking platform. The mean ESR age of 1175 ka ± 98 ka obtained on fluvial sediments overlying the archaeological levels could correspond to the transition between marine isotopic stages (MIS) 37 and 36, during the normal Cobb Mountain subchron, and in particular at the beginning of MIS 36. The Lunery site shows that hominins were capable of adapting to early glacial environmental conditions and adopting appropriate strategies for settling in mid-latitude zones. These areas cannot be considered as inhospitable at that time as Lunery lies at some distance from the forming ice cap.


Subject(s)
Archaeology , Geologic Sediments , Humans , Geologic Sediments/analysis , France , Technology/history , Animals , Fossils , Hominidae , Occupations/history , Europe
4.
J Hum Evol ; 151: 102928, 2021 02.
Article in English | MEDLINE | ID: mdl-33453510

ABSTRACT

Australopithecus anamensis, among the earliest fully bipedal hominin species, lived in eastern Africa around 4 Ma. Much of what is currently known about the paleoecology of A. anamensis comes from the type locality, Kanapoi, Kenya. Here, we extend knowledge of the range of environments occupied by A. anamensis by presenting the first multiproxy paleoecological analysis focusing on Bovidae excavated from another important locality where A. anamensis was recovered, locality 261-1 (ca. 3.97 Ma) at Allia Bay, East Turkana, Kenya. Paleoenvironments are reconstructed using astragalar ecomorphology, mesowear, hypsodonty index, and oxygen and carbon isotopes from dental enamel. We compare our results to those obtained from Kanapoi. Our results show that the bovid community composition is similar between the two fossil assemblages. Allia Bay and Kanapoi bovid astragalar ecomorphology spans the spectrum of modern morphologies indicative of grassland, woodland, and even forest-adapted forms. Dietary reconstructions based on stable isotopes, mesowear, and hypsodonty reveal that these bovids' diet encompassed the full C3 to C4 dietary spectrum and overlap in the two data sets. Our results allow us to confidently extend our reconstructions of the paleoenvironments of A. anamensis at Kanapoi to Allia Bay, where this pivotal hominin species is associated with heterogeneous settings including habitats with varying degrees of tree cover, including grasslands, bushlands, and woodlands.


Subject(s)
Biodiversity , Biological Evolution , Environment , Hominidae , Ruminants , Animals , Kenya
5.
Proc Natl Acad Sci U S A ; 115(19): 4891-4896, 2018 May 08.
Article in English | MEDLINE | ID: mdl-29686074

ABSTRACT

The role of climate change in the origin and diversification of early hominins is hotly debated. Most accounts of early hominin evolution link observed fluctuations in species diversity to directional shifts in climate or periods of intense climatic instability. None of these hypotheses, however, have tested whether observed diversity patterns are distorted by variation in the quality of the hominin fossil record. Here, we present a detailed examination of early hominin diversity dynamics, including both taxic and phylogenetically corrected diversity estimates. Unlike past studies, we compare these estimates to sampling metrics for rock availability (hominin-, primate-, and mammal-bearing formations) and collection effort, to assess the geological and anthropogenic controls on the sampling of the early hominin fossil record. Taxic diversity, primate-bearing formations, and collection effort show strong positive correlations, demonstrating that observed patterns of early hominin taxic diversity can be explained by temporal heterogeneity in fossil sampling rather than genuine evolutionary processes. Peak taxic diversity at 1.9 million years ago (Ma) is a sampling artifact, reflecting merely maximal rock availability and collection effort. In contrast, phylogenetic diversity estimates imply peak diversity at 2.4 Ma and show little relation to sampling metrics. We find that apparent relationships between early hominin diversity and indicators of climatic instability are, in fact, driven largely by variation in suitable rock exposure and collection effort. Our results suggest that significant improvements in the quality of the fossil record are required before the role of climate in hominin evolution can be reliably determined.


Subject(s)
Biological Evolution , Climate Change , Fossils , Hominidae/classification , Hominidae/physiology , Animals
6.
J Hum Evol ; 86: 112-35, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26277305

ABSTRACT

Two fossil specimens from the DIK-55 locality in the Hadar Formation at Dikika, Ethiopia, are contemporaneous with the earliest documented stone tools, and they collectively bear twelve marks interpreted to be characteristic of stone tool butchery damage. An alternative interpretation of the marks has been that they were caused by trampling animals and do not provide evidence of stone tool use or large ungulate exploitation by Australopithecus-grade hominins. Thus, resolving which agents created marks on fossils in deposits from Dikika is an essential step in understanding the ecological and taphonomic contexts of the hominin-bearing deposits in this region and establishing their relevance for investigations of the earliest stone tool use. This paper presents results of microscopic scrutiny of all non-hominin fossils collected from the Hadar Formation at Dikika, including additional fossils from DIK-55, and describes in detail seven assemblages from sieved surface sediment samples. The study is the first taphonomic description of Pliocene fossil assemblages from open-air deposits in Africa that were collected without using only methods that emphasize the selective retention of taxonomically-informative specimens. The sieved assemblages show distinctive differences in faunal representation and taphonomic modifications that suggest they sample a range of depositional environments in the Pliocene Hadar Lake Basin, and have implications for how landscape-based taphonomy can be used to infer past microhabitats. The surface modification data show that no marks on any other fossils resemble in size or shape those on the two specimens from DIK-55 that were interpreted to bear stone tool inflicted damage. A large sample of marks from the sieved collections has characteristics that match modern trampling damage, but these marks are significantly smaller than those on the DIK-55 specimens and have different suites of characteristics. Most are not visible without magnification. The data show that the DIK-55 marks are outliers amongst bone surface damage in the Dikika area, and that trampling is not the most parsimonious interpretation of their origin.


Subject(s)
Bone and Bones/pathology , Fossils , Hominidae/physiology , Tool Use Behavior , Animals , Ethiopia , Humans
7.
J Hum Evol ; 77: 50-63, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25038033

ABSTRACT

This paper presents new evidence of fish eating in rehabilitant orangutans living on two Bornean islands and explores its contributions to understanding nonhuman primates' aquatic fauna eating and the origins of ancestral hominin fish eating. We assessed the prevalence of orangutans' fish eating, their techniques for obtaining fish, and possible contributors (ecology, individual differences, humans). We identified 61 events in which orangutans tried to obtain fish, including 19 in which they ate fish. All the orangutans were juvenile-adolescent; all the fish were disabled catfish; and most were obtained and eaten in drier seasons in or near shallow, slow-moving water. Orangutans used several techniques to obtain fish (inadvertent, opportunistic and deliberate hand-catch, scrounge, tool-assisted catch) and probably learned them in that order. Probable contributing factors were orangutan traits (age, pre-existing water or tool skills), island features (social density, water accessibility), and local human fishing. Our review of primates' aquatic fauna eating showed orangutans to be one of 20 species that eat aquatic fauna, one of nine confirmed to eat fish, and one of three that use tools to obtain fish. Primate fish eating is also site-specific within species, partly as a function of habitat (e.g., marine-freshwater, seasonality) and human influence (possibly fostered eating fish or other aquatic fauna at most sites, clearly induced it at some). At tropical freshwater sites, fish eating occurred most often in drier seasons around shallow water. Orangutan and primate findings are generally consistent with Stewart's (2010) reconstruction of the origins of ancestral hominin fish eating, but suggest that it, and tool-assisted fish catching, were possible much earlier.


Subject(s)
Biological Evolution , Feeding Behavior/physiology , Pongo/physiology , Seafood , Animals , Anthropology, Physical , Female , Fishes , Humans , Male , Predatory Behavior
SELECTION OF CITATIONS
SEARCH DETAIL