Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 322
Filter
1.
Article in English | MEDLINE | ID: mdl-39305851

ABSTRACT

Symbiotic relationships are omnipresent and particularly diverse in the marine world. In the Western Indian Ocean, the sea urchin Echinometra mathaei associates with two obligate ectosymbiotic shrimp species, Tuleariocaris holthuisi and Arete indicus. These shrimps are known for their host-dependent nature. T. holthuisi, for example, exhibits severe host separation syndrome, showing signs of stress and rapid mortality when isolated. Specific host pigments called spinochromes seem essential for T. holthuisi survival. Our study employs a transcriptomic approach to assess the stress induced by host separation on these shrimps. Using paired-end Illumina HiSeq technology, we analyzed transcriptomes of both species under three conditions: (i) symbionts on their host (CC), (ii) isolated symbionts in seawater (IC), and (iii) isolated symbionts in spinochrome-enriched seawater (IC + S). Sequencing revealed a total of 217,832 assembled unigenes, with an N50 value of 2061 bp. Isolated T. holthuisi showed 16.5 % DEGs (IC/CC), reduced to 8.5 % with spinochromes (IC + S/CC), both compared to the control condition (CC). Further analyses of stress-related genes show that T. holthuisi expressed stress-related genes when isolated in comparison to the control (IC/CC). Notably, heat shock proteins (HSPs) were significantly up-regulated in isolated T. holthuisi, especially without spinochromes. In contrast, A. indicus displayed differential expression of diverse genes, suggesting an adaptive micro-regulation mechanism to cope with isolation stress. This study pioneers the use of NGS in exploring the transcriptomic responses of symbiotic shrimp species, shedding some light on the molecular impact of the host-separation syndrome and chemical dependencies.

2.
Curr Biol ; 34(18): 4325-4331.e3, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39214089

ABSTRACT

One of the most remarkable adaptations to survive attacks from predators is to detach an appendage-a process known as autotomy. This occurs in a variety of animals, including lizards (tail), crabs (legs), and starfish (arms). There has been extensive investigation of the evolution, ecology, and biomechanical impact of autotomy,1,2,3 but little is known about neural mechanisms controlling autotomy in animals. However, evidence for the existence of a peptide that acts as an autotomy-promoting factor in starfish has been reported.4 While investigating in vivo effects of a sulfakinin/cholecystokinin-type neuropeptide (ArSK/CCK1) in the starfish Asterias rubens,5,6 we observed that this peptide triggered arm autotomy in some animals. Furthermore, when injection of ArSK/CCK1 was combined with mechanical clamping of an arm, autotomy of the clamped arm occurred in 85% of animals tested, with 46% also autotomizing one or more other arms. In contrast, no autotomy was observed in clamped animals that were injected with water (control). To examine the physiological relevance of these findings, we analyzed expression of ArSK/CCK1 in the autotomy plane, a specialized region at the base of the arms in A. rubens.7,8 In accordance with its in vivo effects, nerve fibers expressing ArSK/CCK1 were revealed in the tourniquet muscle, a band of muscle that mediates constriction of the arm during and after autotomy. We conclude that ArSK/CCK1 acts as an autotomy-promoting factor in starfish and as such it is the first neuropeptide to be identified as a regulator of autotomy in animals.


Subject(s)
Neuropeptides , Starfish , Animals , Neuropeptides/metabolism , Neuropeptides/genetics , Starfish/physiology , Extremities/physiology
3.
Open Biol ; 14(8): 240115, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39165121

ABSTRACT

Crinoids belong to the Echinodermata, marine invertebrates with a highly derived adult pentaradial body plan. As the sister group to all other extant echinoderms, crinoids occupy a key phylogenetic position to explore the evolutionary history of the whole phylum. However, their development remains understudied compared with that of other echinoderms. Therefore, the aim here was to establish the Mediterranean feather star (Antedon mediterranea) as an experimental system for developmental biology. We first set up a method for culturing embryos in vitro and defined a standardized staging system for this species. We then optimized protocols to characterize the morphological and molecular development of the main structures of the feather star body plan. Focusing on the nervous system, we showed that the larval apical organ includes serotonergic, GABAergic and glutamatergic neurons, which develop within a conserved anterior molecular signature. We described the composition of the early post-metamorphic nervous system and revealed that it has an anterior signature. These results further our knowledge on crinoid development and provide new techniques to investigate feather star embryogenesis. This will pave the way for the inclusion of crinoids in comparative studies addressing the origin of the echinoderm body plan and the evolutionary diversification of deuterostomes.


Subject(s)
Echinodermata , Embryonic Development , Nervous System , Animals , Echinodermata/genetics , Echinodermata/embryology , Echinodermata/growth & development , Nervous System/embryology , Nervous System/metabolism , Gene Expression Regulation, Developmental , Embryo, Nonmammalian/metabolism , Phylogeny , Biological Evolution , Larva/growth & development , Body Patterning
4.
Animals (Basel) ; 14(16)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39199909

ABSTRACT

Abatus is a genus of irregular brooding sea urchins to the Southern Ocean. Among the 11 described species, three shared morphological traits and present an infaunal lifestyle in the infralittoral from the Subantarctic province; A. cavernosus in Patagonia, A. cordatus in Kerguelen, and A. agassizii in Tierra del Fuego and South Shetlands. The systematic of Abatus, based on morphological characters and incomplete phylogenies, is complex and largely unresolved. This study evaluates the shape variation among these species using geometric morphometrics analysis (GM). For this, 72 individuals from four locations; South Shetlands, Kerguelen, Patagonia, and Falklands/Malvinas were photographed, and 37 landmarks were digitized. To evaluate the shape differences among species, a principal component analysis and a Procrustes ANOVA were performed. Our results showed a marked difference between the Falklands/Malvinas and the other localities, characterized by a narrower and more elongated shape and a significant influence of location in shape but not sex. Additionally, the effect of allometry was evaluated using a permutation test and a regression between shape and size, showing significant shape changes during growth in all groups. The possibility that the Falklands/Malvinas group shows phenotypic plasticity or represents a distinct evolutionary unit is discussed. Finally, GM proved to be a powerful tool to differentiate these species, highlighting its utility in systematic studies.

5.
Development ; 151(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39023164

ABSTRACT

Stable transgenesis is a transformative tool in model organism biology. Although the sea urchin is one of the oldest animal models in cell and developmental biology, studies in this animal have largely relied on transient manipulation of wild animals, without a strategy for stable transgenesis. Here, we build on recent progress to develop a more genetically tractable sea urchin species, Lytechinus pictus, and establish a robust transgene integration method. Three commonly used transposons (Minos, Tol2 and piggyBac) were tested for non-autonomous transposition, using plasmids containing a polyubiquitin promoter upstream of a H2B-mCerulean nuclear marker. Minos was the only transposable element that resulted in significant expression beyond metamorphosis. F0 animals were raised to sexual maturity, and spawned to determine germline integration and transgene inheritance frequency, and to characterize expression patterns of the transgene in F1 progeny. The results demonstrate transgene transmission through the germline, the first example of a germline transgenic sea urchin and, indeed, of any echinoderm. This milestone paves the way for the generation of diverse transgenic resources that will dramatically enhance the utility, reproducibility and efficiency of sea urchin research.


Subject(s)
Animals, Genetically Modified , DNA Transposable Elements , Gene Transfer Techniques , Germ Cells , Lytechinus , Transgenes , Animals , DNA Transposable Elements/genetics , Germ Cells/metabolism , Lytechinus/genetics , Female , Male , Sea Urchins/genetics , Mitochondria Associated Membranes
6.
BMC Genomics ; 25(1): 655, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956468

ABSTRACT

The Sox gene family, a collection of transcription factors widely distributed throughout the animal kingdom, plays a crucial role in numerous developmental processes. Echinoderms occupy a pivotal position in many research fields, such as neuroscience, sex determination and differentiation, and embryonic development. However, to date, no comprehensive study has been conducted to characterize and analyze Sox genes in echinoderms. In the present study, the evolution and expression of Sox family genes across 11 echinoderms were analyzed using bioinformatics methods. The results revealed a total of 70 Sox genes, with counts ranging from 5 to 8 across different echinoderms. Phylogenetic analysis revealed that the identified Sox genes could be categorized into seven distinct classes: the SoxB1 class, SoxB2 class, SoxC class, SoxD class, SoxE class, SoxF class and SoxH class. Notably, the SoxB1, SoxB2, and SoxF genes were ubiquitously present in all the echinoderms studied, which suggests that these genes may be conserved in echinoderms. The spatiotemporal expression patterns observed for Sox genes in the three echinoderms indicated that various Sox members perform distinct functional roles. Notably, SoxB1 is likely involved in echinoderm ovary development, while SoxH may play a crucial role in testis development in starfish and sea cucumber. In general, the present investigation provides a molecular foundation for exploring the Sox gene in echinoderms, providing a valuable resource for future phylogenetic and genomic studies.


Subject(s)
Echinodermata , Multigene Family , Phylogeny , SOX Transcription Factors , Animals , SOX Transcription Factors/genetics , SOX Transcription Factors/metabolism , Echinodermata/genetics , Gene Expression Profiling , Evolution, Molecular , Gene Expression Regulation, Developmental , Computational Biology/methods
7.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119770, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38897390

ABSTRACT

Microtubule stabilization is critical for axonal growth and regeneration, and many microtubule-associated proteins are involved in this process. In this study, we found that the knockdown of echinoderm microtubule-associated protein-like 1 (EML1) hindered axonal growth in cultured cortical and dorsal root ganglion neurons. We further revealed that EML1 facilitated the acetylation of microtubules and that the impairment of axonal growth due to EML1 inhibition could be restored by treatment with deacetylase inhibitors, suggesting that EML1 affected tubulin acetylation. Moreover, we verified an interaction between EML1 and the alpha-tubulin acetyltransferase 1, which is responsible for the acetylation of alpha-tubulin. We thus proposed that EML1 might regulate microtubule acetylation and stabilization via alpha-tubulin acetyltransferase 1 and then promote axon growth. Finally, we verified that the knockdown of EML1 in vivo also inhibited sciatic nerve regeneration. Our findings revealed a novel effect of EML1 on microtubule acetylation during axonal regeneration.


Subject(s)
Acetyltransferases , Amino Acid Transport System A , Axons , Microtubule-Associated Proteins , Animals , Humans , Mice , Rats , Acetylation , Acetyltransferases/metabolism , Acetyltransferases/genetics , Axons/metabolism , Cells, Cultured , Ganglia, Spinal/metabolism , Ganglia, Spinal/cytology , Microtubule Proteins , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Microtubules/metabolism , Nerve Regeneration/genetics , Sciatic Nerve/metabolism , Tubulin/metabolism , Tubulin/genetics , Amino Acid Transport System A/metabolism
8.
Biology (Basel) ; 13(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38927258

ABSTRACT

The cell-free aqueous extract from the coelomic fluid of Holothuria tubulosa was prepared and examined for its glucose-lowering effect on HepG2 cells in vitro. In particular, employing a combination of cytochemical, flow cytometric, PCR, and protein blot techniques, we evaluated its role on glucose internalization and storage and on the upregulation and surface translocation of the two glucose transporters GLUT-2 and -4. The changes in expression, synthesis, and/or activation of the GLUT2-related transcription factor hepatocyte nuclear factor-1 alpha (HNF1α) and the GLUT-4-translocation regulatory factors insulin receptor substrate-1 (IRS-1) and AKT were also studied. Our results showed the improved glucose response by HepG2 cells, leading to an evident increase in glucose consumption/uptake and glycogen storage upon exposure. Moreover, the extract induced molecular reprogramming involving the upregulation of (i) IRS1 gene expression, (ii) the transcription and translation levels of HNF1α, AKT, and GLUT-4, (iii) the phosphorylation level of AKT, (iv) the synthesis of GLUT-2 protein, and (v) the translocation of GLUT-2 and -4 transporters onto the plasma membrane. Cumulatively, our results suggest that the coelomic fluid extract from H. tubulosa can be taken into consideration for the development of novel treatment agents against diabetes mellitus.

9.
Aquat Toxicol ; 272: 106975, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824744

ABSTRACT

In this study, we investigated the effects of PVC microplastics (PVC-MPs) using two different animal models: the brittle star Ophiactis virens, and the African clawed frog Xenopus laevis. This is the first study using an environmental relevant sample of PVC-MPs obtained through mechanical fragmentation of a common PVC plumbing pipe. Exposure experiments on brittle star were performed on the adult stage for a duration of 14 days, while those on African clawed frog were performed on the embryogenic developmental stage according to the standardized FETAX protocol (Frog Embryo Teratogenesis Assay-Xenopus). For both models, different endpoints were analysed: mortality, developmental parameters, behavioural assays and histological analyses on target organs by optical and electronic microscopy. Results showed that the concentration of 0.1 µg mL-1 PVC do not cause any adverse effects in both models (common NOEC concentration), while exposure to 1 µg mL-1 PVC adversely affected at least one species (common LOEC concentration). In particular arm regeneration efficiency was the most affected parameters in O. virens leading to a significantly lower differentiation pattern at 1 µg mL-1 PVC. On the contrary, in X. laevis larvae histopathological analyses and behavioural tests were the most susceptible endpoints, exhibiting several abnormal figures and different swimming speed at 10 µg mL-1 PVC. Histopathological analyses revealed a higher abundance of degenerating cells, pyknotic nuclei and cellular debris in the gut of exposed larvae in respect to control. The comparative analyses performed in this work allowed to characterize the specificity of action of the PVC-MPs on the two species, underlining the importance of exploring a large spectrum of endpoints to offer adequate protection in the emerging fields of microplastic research.


Subject(s)
Microplastics , Polyvinyl Chloride , Water Pollutants, Chemical , Xenopus laevis , Animals , Polyvinyl Chloride/toxicity , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Embryo, Nonmammalian/drug effects , Larva/drug effects
10.
Proc Biol Sci ; 291(2021): 20240415, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38628122

ABSTRACT

Artificial light at night (ALAN) is a growing threat to coastal habitats, and is likely to exacerbate the impacts of other stressors. Kelp forests are dominant habitats on temperate reefs but are declining due to ocean warming and overgrazing. We tested the independent and interactive effects of ALAN (dark versus ALAN) and warming (ambient versus warm) on grazing rates and gonad index of the sea urchin Centrostephanus rodgersii. Within these treatments, urchins were fed either 'fresh' kelp or 'treated' kelp. Treated kelp (Ecklonia radiata) was exposed to the same light and temperature combinations as urchins. We assessed photosynthetic yield, carbon and nitrogen content and C : N ratio of treated kelp to help identify potential drivers behind any effects on urchins. Grazing increased with warming and ALAN for urchins fed fresh kelp, and increased with warming for urchins fed treated kelp. Gonad index was higher in ALAN/ambient and dark/warm treatments compared to dark/ambient treatments for urchins fed fresh kelp. Kelp carbon content was higher in ALAN/ambient treatments than ALAN/warm treatments at one time point. This indicates ocean warming and ALAN may increase urchin grazing pressure on rocky reefs, an important finding for management strategies.


Subject(s)
Food Chain , Kelp , Animals , Light Pollution , Ecosystem , Sea Urchins , Carbon
11.
Curr Biol ; 34(12): 2551-2557.e4, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38631344

ABSTRACT

It is unclear how animals with radial symmetry control locomotion without a brain. Using a combination of experiments, mathematical modeling, and robotics, we tested the extent to which this control emerges in sea stars (Protoreaster nodosus) from the local control of their hundreds of feet and their mechanical interactions with the body. We discovered that these animals compensate for an experimental increase in their submerged weight by recruiting more feet that synchronize in the power stroke of the locomotor cycle during their bouncing gait. Mathematical modeling of the mechanics of a sea star replicated this response to loading without a central controller. A robotic sea star was found to similarly recruit more actuators under higher loads through purely decentralized control. These results suggest that an array of biological or engineered actuators are capable of cooperative transport where the actuators are dynamically recruited by the mechanics of the body. In particular, the body's vertical oscillations serve to recruit feet in greater numbers to overcome the weight to propel the body forward. This form of distributed control contrasts the conventional view of animal locomotion as governed by the central nervous system and offers inspiration for the design of engineered devices with arrays of actuators.


Subject(s)
Locomotion , Robotics , Starfish , Animals , Locomotion/physiology , Biomechanical Phenomena , Starfish/physiology , Models, Biological , Gait/physiology
12.
Development ; 151(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38619327

ABSTRACT

Tissue morphogenesis is intimately linked to the changes in shape and organisation of individual cells. In curved epithelia, cells can intercalate along their own apicobasal axes, adopting a shape named 'scutoid' that allows energy minimization in the tissue. Although several geometric and biophysical factors have been associated with this 3D reorganisation, the dynamic changes underlying scutoid formation in 3D epithelial packing remain poorly understood. Here, we use live imaging of the sea star embryo coupled with deep learning-based segmentation to dissect the relative contributions of cell density, tissue compaction and cell proliferation on epithelial architecture. We find that tissue compaction, which naturally occurs in the embryo, is necessary for the appearance of scutoids. Physical compression experiments identify cell density as the factor promoting scutoid formation at a global level. Finally, the comparison of the developing embryo with computational models indicates that the increase in the proportion of scutoids is directly associated with cell divisions. Our results suggest that apico-basal intercalations appearing immediately after mitosis may help accommodate the new cells within the tissue. We propose that proliferation in a compact epithelium induces 3D cell rearrangements during development.


Subject(s)
Cell Proliferation , Embryo, Nonmammalian , Morphogenesis , Animals , Epithelium , Embryo, Nonmammalian/cytology , Cell Count , Starfish/embryology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Cell Division
13.
Dev Dyn ; 253(8): 781-790, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38340021

ABSTRACT

BACKGROUND: Sea urchins have contributed greatly to knowledge of fertilization, embryogenesis, and cell biology. However, until now, they have not been genetic model organisms because of their long generation times and lack of tools for husbandry and gene manipulation. We recently established the sea urchin Lytechinus pictus, as a multigenerational model Echinoderm, because of its relatively short generation time of 4-6 months and ease of laboratory culture. To take full advantage of this new multigenerational species, methods are needed to biobank and share genetically modified L. pictus sperm. RESULTS: Here, we describe a method, based on sperm ion physiology that maintains L. pictus and Strongylocentrotus purpuratus sperm fertilizable for at least 5-10 weeks when stored at 0°C. We also describe a new method to cryopreserve sperm of both species. Sperm of both species can be frozen and thawed at least twice and still give rise to larvae that undergo metamorphosis. CONCLUSIONS: The simple methods we describe work well for both species, achieving >90% embryo development and producing larvae that undergo metamorphosis to juvenile adults. We hope that these methods will be useful to others working on marine invertebrate sperm.


Subject(s)
Cryopreservation , Lytechinus , Spermatozoa , Strongylocentrotus purpuratus , Animals , Male , Cryopreservation/methods , Lytechinus/physiology , Strongylocentrotus purpuratus/embryology , Strongylocentrotus purpuratus/physiology , Spermatozoa/physiology , Spermatozoa/cytology , Semen Preservation/methods
14.
bioRxiv ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38370815

ABSTRACT

Tissue morphogenesis is intimately linked to the changes in shape and organisation of individual cells. In curved epithelia, cells can intercalate along their own apicobasal axes adopting a shape named "scutoid" that allows energy minimization in the tissue. Although several geometric and biophysical factors have been associated with this 3D reorganisation, the dynamic changes underlying scutoid formation in 3D epithelial packing remain poorly understood. Here we use live-imaging of the sea star embryo coupled with deep learning-based segmentation, to dissect the relative contributions of cell density, tissue compaction, and cell proliferation on epithelial architecture. We find that tissue compaction, which naturally occurs in the embryo, is necessary for the appearance of scutoids. Physical compression experiments identify cell density as the factor promoting scutoid formation at a global level. Finally, the comparison of the developing embryo with computational models indicates that the increase in the proportion of scutoids is directly associated with cell divisions. Our results suggest that apico-basal intercalations appearing just after mitosis may help accommodate the new cells within the tissue. We propose that proliferation in a compact epithelium induces 3D cell rearrangements during development.

15.
Evodevo ; 15(1): 3, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368336

ABSTRACT

A challenge for evolutionary developmental (evo-devo) biology is to expand the breadth of research organisms used to investigate how animal diversity has evolved through changes in embryonic development. New experimental systems should couple a relevant phylogenetic position with available molecular tools and genomic resources. As a phylum of the sister group to chordates, echinoderms extensively contributed to our knowledge of embryonic patterning, organ development and cell-type evolution. Echinoderms display a variety of larval forms with diverse shapes, making them a suitable group to compare the evolution of embryonic developmental strategies. However, because of the laboratory accessibility and the already available techniques, most studies focus on sea urchins and sea stars mainly. As a comparative approach, the field would benefit from including information on other members of this group, like the sea cucumbers (holothuroids), for which little is known on the molecular basis of their development. Here, we review the spawning and culture methods, the available morphological and molecular information, and the current state of genomic and transcriptomic resources on sea cucumbers. With the goal of making this system accessible to the broader community, we discuss how sea cucumber embryos and larvae can be a powerful system to address the open questions in evo-devo, including understanding the origins of bilaterian structures.

16.
Genetics ; 227(1)2024 05 07.
Article in English | MEDLINE | ID: mdl-38262680

ABSTRACT

Echinobase (www.echinobase.org) is a model organism knowledgebase serving as a resource for the community that studies echinoderms, a phylum of marine invertebrates that includes sea urchins and sea stars. Echinoderms have been important experimental models for over 100 years and continue to make important contributions to environmental, evolutionary, and developmental studies, including research on developmental gene regulatory networks. As a centralized resource, Echinobase hosts genomes and collects functional genomic data, reagents, literature, and other information for the community. This third-generation site is based on the Xenbase knowledgebase design and utilizes gene-centric pages to minimize the time and effort required to access genomic information. Summary gene pages display gene symbols and names, functional data, links to the JBrowse genome browser, and orthology to other organisms and reagents, and tabs from the Summary gene page contain more detailed information concerning mRNAs, proteins, diseases, and protein-protein interactions. The gene pages also display 1:1 orthologs between the fully supported species Strongylocentrotus purpuratus (purple sea urchin), Lytechinus variegatus (green sea urchin), Patiria miniata (bat star), and Acanthaster planci (crown-of-thorns sea star). JBrowse tracks are available for visualization of functional genomic data from both fully supported species and the partially supported species Anneissia japonica (feather star), Asterias rubens (sugar star), and L. pictus (painted sea urchin). Echinobase serves a vital role by providing researchers with annotated genomes including orthology, functional genomic data aligned to the genomes, and curated reagents and data. The Echinoderm Anatomical Ontology provides a framework for standardizing developmental data across the phylum, and knowledgebase content is formatted to be findable, accessible, interoperable, and reusable by the research community.


Subject(s)
Databases, Genetic , Echinodermata , Animals , Echinodermata/genetics , Genome , Genomics/methods , Sea Urchins/genetics , Knowledge Bases
17.
Environ Res ; 248: 118248, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38278510

ABSTRACT

CO2-induced ocean acidification and warming pose ecological threats to marine life, especially calcifying species such as echinoderms, who rely on biomineralization for skeleton formation. However, previous studies on echinoderm calcification amid climate change had a strong bias towards heavily calcified echinoderms, with little research on lightly calcified ones, such as sea cucumbers. Here, we analyzed the embryo-larval development and their biomineralization-related gene expression of a lightly calcified echinoderm, the sea cucumber (Apostichopus japonicus), under experimental seawater acidification (OA) and/or warming (OW). Results showed that OA (- 0.37 units) delayed development and decreased body size (8.58-56.25 % and 0.36-19.66 % decreases in stage duration and body length, respectively), whereas OW (+3.1 °C) accelerated development and increased body size (33.99-55.28 % increase in stage duration and 2.44-14.41 % enlargement in body length). OW buffered the negative effects of OA on the development timing and body size of A. japonicus. Additionally, no target genes were expressed in the blastula stage, and only two biomineralization genes (colp3α, cyp2) and five TFs (erg, tgif, foxN2/3, gata1/2/3, and tbr) were expressed throughout the embryo-larval development. Our findings suggest that the low calcification in A. japonicus larvae may be caused by biomineralization genes contraction, and low expression of those genes. Furthermore, this study indicated that seawater acidification and warming affect expression of biomineralization-related genes, and had an effect on body size and development rate during the embryo-larval stage in sea cucumbers. Our study is a first step toward a better understanding of the complexity of high pCO2 on calcification and helpful for revealing the adaptive strategy of less-calcified echinoderms amid climate change.


Subject(s)
Ocean Acidification , Seawater , Animals , Biomineralization , Hydrogen-Ion Concentration , Larva , Gene Expression
18.
J Comp Neurol ; 532(1): e25585, 2024 01.
Article in English | MEDLINE | ID: mdl-38289190

ABSTRACT

Reproductive processes are regulated by a variety of neuropeptides in vertebrates and invertebrates. In starfish (phylum Echinodermata), relaxin-like gonad-stimulating peptide triggers oocyte maturation and spawning. However, little is known about other neuropeptides as potential regulators of reproduction in starfish. To address this issue, here, we used histology and immunohistochemistry to analyze the reproductive system of the starfish Asterias rubens at four stages of the seasonal reproductive cycle in male and female animals, investigating the expression of eight neuropeptides: the corticotropin-releasing hormone-type neuropeptide ArCRH, the calcitonin-type neuropeptide ArCT, the pedal peptide-type neuropeptides ArPPLN1b and ArPPLN2h, the vasopressin/ocytocin-type neuropeptide asterotocin, the gonadotropin-releasing hormone-type neuropeptide ArGnRH, and the somatostatin/allatostatin-C-type neuropeptides ArSS1 and ArSS2. The expression of five neuropeptides, ArCRH, ArCT, ArPPLN1b, ArPPLN2h, and asterotocin, was detected in the gonoducts and/or gonads. For example, extensive ArPPLN2h expression was revealed in the coelomic epithelial layer of the gonads throughout the seasonal reproductive cycle in both males and females. However, seasonal and/or sexual differences in the patterns of neuropeptide expression were also observed. Informed by these findings, the in vitro pharmacological effects of neuropeptides on gonad preparations from male and female starfish were investigated. This revealed that ArSS1 causes gonadal contraction and that ArPPLN2h causes gonadal relaxation, with both neuropeptides being more effective on ovaries than testes. Collectively, these findings indicate that multiple neuropeptide signaling systems are involved in the regulation of reproductive function in starfish, with some neuropeptides exerting excitatory or inhibitory effects on gonad contractility that may be physiologically relevant when gametes are expelled during spawning.


Subject(s)
Asterias , Neuropeptides , Female , Male , Animals , Starfish , Genitalia , Echinodermata
19.
Mol Cell Endocrinol ; 580: 112105, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37952726

ABSTRACT

Echinoderms are a phylum of invertebrate deuterostomes, which contain echinoids, asteroids, holothuroids, crinoids, and ophiuroids. Echinoderms have special evolutionary position and unique characteristics, including pentamerous radial body structure, elaborate calcareous endoskeletons, and versatile water vascular system. Echinoderms exhibit extraordinarily diverse reproductive modes: asexual reproduction, sexual reproduction, sexual reversal, etc. Endocrine regulation plays important well-known roles in sex differentiation, gonadal development and maturation, gametogenesis, and reproductive behavior in vertebrates. However, the entire picture of reproductive endocrinology in echinoderms as an evolutionary model of the closest marine invertebrate relatives to chordates has not been revealed. Here, we reviewed previous and recent research progress on reproductive endocrinology in echinoderms, mainly including two sections: Sex steroids in echinoderms and neuropeptide regulation in echinoderm reproduction. This review introduces a variety of endocrine regulatory mechanisms in reproductive biology of echinoderms. It discusses the vertebrate-like sex steroids, putative steroidogenic pathway and metabolism, and reproduction-related neuropeptides. The review will provide a deeper understanding about endocrine regulatory mechanisms of gonadal development in lower deuterostomes and the application of endocrine control in economic echinoderm species in aquaculture.


Subject(s)
Chordata , Neuropeptides , Animals , Echinodermata , Biological Evolution , Steroids , Biology
20.
J Exp Biol ; 227(2)2024 01 15.
Article in English | MEDLINE | ID: mdl-38099430

ABSTRACT

Reduced seawater salinity as a result of freshwater input can exert a major influence on the ecophysiology of benthic marine invertebrates, such as echinoderms. While numerous experimental studies have explored the physiological and behavioural effects of short-term, acute exposure to low salinity in echinoids, surprisingly few have investigated the consequences of chronic exposure, or compared the two. In this study, the European sea urchin, Echinus esculentus, was exposed to low salinity over the short term (11‰, 16‰, 21‰, 26‰ and 31‰ for 24 h) and longer term (21, 26 and 31‰ for 25 days). Over the short term, oxygen consumption, activity coefficient and coelomic fluid osmolality were directly correlated with reduced salinity, with 100% survival at ≥21‰ and 0% at ≤16‰. Over the longer term at 21‰ (25 days), oxygen consumption was significantly higher, feeding was significantly reduced and activity coefficient values were significantly lower than at control salinity (31‰). At 26‰, all metrics were comparable to the control by the end of the experiment, suggesting acclimation. Furthermore, beneficial functional resistance (righting ability and metabolic capacity) to acute low salinity was observed at 26‰. Osmolality values were slightly hyperosmotic to the external seawater at all acclimation salinities, while coelomocyte composition and concentration were unaffected by chronic low salinity. Overall, E. esculentus demonstrate phenotypic plasticity that enables acclimation to reduced salinity around 26‰; however, 21‰ represents a lower acclimation threshold, potentially limiting its distribution in coastal areas prone to high freshwater input.


Subject(s)
Salinity , Seawater , Animals , Osmolar Concentration , Acclimatization , Sea Urchins
SELECTION OF CITATIONS
SEARCH DETAIL