Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
1.
Angew Chem Int Ed Engl ; : e202414481, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227999

ABSTRACT

Electro-oxidation (EO) technology demonstrates significant potential in wastewater treatment. However, the high energy consumption has become a pivotal constraint hindering its large-scale implementation. Herein, we design an EO and 4-electron oxygen reduction reaction coupled system (EO-4eORR) to replace the traditional EO and hydrogen evolution reaction (HER) coupled system (EO-HER). The theoretical cathodic potential of the electrolytic reactor is tuned from 0 V (vs. RHE) in HER to 1.23 V (vs. RHE) in 4eORR, which greatly decreases the required operation voltage of the reactor. Moreover, we demonstrate that convection can improve the mass transfer of oxygen and organic pollutants in the reaction system, leading to low cathodic polarization and high pollutant removal rate. Compared with traditional EO-HER system, the energy consumption of the EO-4eORR system under air aeration for 95% total organic carbon (TOC) removal is greatly decreased to 2.61 kWh/kgTOC (only consider the electrolyzer energy consumption), which is superior to previously reported EO-based water treatment systems. The reported results in this study offer a new technical mode for development of highly efficient and sustainable EO-based treatment systems to remove organic pollutants in waste water.

2.
ChemSusChem ; : e202401446, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39161988

ABSTRACT

The sluggish anodic oxygen evolution reaction (OER) seriously restricts the overall efficiency of water splitting. Here, we present an environmentally friendly and efficient aniline oxidation (BOR) to replace the sluggish OER, accomplishing the co-production of H2 and high value-added benzonitrile (BN) at low voltages. Cobalt oxalates grown on cobalt foam (CoC2O4·2H2O/CF) are adopted as the pre-catalysts, which further evolve into working electrocatalysts active for BOR and HER after appropriate electrochemical activation. Thereinto, cyclic voltammetry activation at positive potentials is performed to reconstruct cobalt oxalate via extensive oxidation, resulting in enriched Co(III) species and nanoporous structures beneficial for BOR, while chronoamperometry at negative potentials is introduced for the cathodic activation toward efficient HER with obvious improvement. The two activated electrodes can be combined into a two-electrode system, which achieves a high current density of 75 mA cm-2 at the voltage of 1.95 V, with the high Faraday efficiencies of both BOR (90.0%) and HER (90.0%) and the satisfactory yield of BN (76.8%).

3.
Small ; : e2405160, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109948

ABSTRACT

The formation of NiOOH on the catalyst surface is widely considered to be the active species in electrochemical urea oxidation reactions (UOR). Though in situ-formed NiOOH species are reported to be more active than the synthesized ones, the mechanistic study of the actual active species remains a daunting task due to the possibility of different phases and instability of surface-formed NiOOH. Herein, mechanistic UOR aspects of electrochemically activated metallic Ni60Nb40 Nanoglass showing stability toward the γ-NiOOH phase are reported, probed via in situ Raman spectroscopy, supported by electron microscopy analysis and X-ray photoelectron spectroscopy in contrast with the ß-NiOOH formation favored on Ni foil. Detailed mechanistic study further reveals that γ-NiOOH predominantly follows a direct UOR mechanism while ß-NiOOH favors indirect UOR from time-dependent Raman study, and electrochemical impedance spectroscopy (EIS) analysis. The Nanoglass has shown outstanding UOR performance with a low Tafel slope of 16 mV dec-1 and stability for prolonged electrolysis (≈38 mA cm-2 for 70 h) that can be attributed to the nanostructured glassy interfaces facilitating more γ-NiOOH species formation and stabilization on the surface. The present study opens up a new direction for the development of inexpensive Ni-based UOR catalysts and sheds light on the UOR mechanism.

4.
Environ Sci Pollut Res Int ; 31(39): 51267-51299, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39107643

ABSTRACT

Bentazone is a broad-leaved weed-specific herbicide in the pesticide industry. This study focused on removing bentazone from water using three different methods: a two and three-dimensional electro-oxidation process (2D/EOP and 3D/EOP) with a fluid-type reactor arrangement using tetraethylenepentamine-loaded particle electrodes and an adsorption method. Additionally, we analysed the effects of two types of supporting electrolytes  (Na2SO4 and NaCl) on the degradation process. The energy consumption amounts were calculated to evaluate the obtained results. The degradation reaction occurs 3.5 times faster in 3D/EOP than in 2D/EOP at 6 V in Na2SO4. Similarly, the degradation reaction of bentazone in NaCl occurs 2.5 times faster in 3D/EOP than in 2D/EOP at a value of 7.2 mA/cm2. Removal of bentazone is significantly better in 3D/EOPs than in 2D/EOPs. The use of particle electrodes can significantly enhance the degradation efficiency. The study further assessed the prediction abilities of the machine learning model (ANN). The ANN presented reasonable accuracy in bentazone degradation with high R2 values of 0.97953, 0.98561, 0.98563, and 0.99649 for 2D with Na2SO4, 2D with NaCl, 3D with Na2SO4, and 3D with NaCl, respectively.


Subject(s)
Benzothiadiazines , Oxidation-Reduction , Benzothiadiazines/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , Herbicides/chemistry
5.
ACS Nano ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39051970

ABSTRACT

Electrorefinery of polybutylene terephthalate (PBT) waste plastic, specifically conversion of a PBT-derived 1,4-butanediol (BDO) monomer into value-added succinate coupled with H2 production, emerges as an auspicious strategy to mitigate severe plastic pollution. Herein, we report the synthesis of Mn-doped NiNDA nanosheets (NDA: 2,6-naphthalenedicarboxylic acid), a metal-organic framework (MOF) through a ligand exchange method, and its utilization for electrocatalytic BDO oxidation to succinate. Interestingly, the transformation of doped layered-hydroxide (d-LH) precursors to MOF promotes BDO oxidation while hindering the competitive oxygen evolution reaction. Experimental and theoretical results indicate that the MOF has a higher affinity (i.e., alcoholophilic) for BDO than the d-LH, while Mn doping into NiNDA results in electron accumulation at Ni sites with an upward shift in the d-band center and convenient spin-dependent charge transfer, which are all beneficial for BDO oxidation. The as-constructed two-electrode membrane-electrode assembly (MEA) flow cell, by coupling BDO oxidation and hydrogen evolution reaction, attains an industrial current density of 1.5 A cm-2@1.82 V at 50 °C, corresponding to a specific energy consumption of 3.68 kWh/Nm3 H2. This represents an energy saving of >25% for hydrogen production on an industrial scale compared to conventional water electrolysis (∼5 kWh/Nm3 H2) in addition to the production of valuable chemicals.

6.
Environ Sci Pollut Res Int ; 31(31): 44385-44400, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954330

ABSTRACT

Animal farming wastewater is one of the most important sources of ammonia nitrogen (NH4+-N) emissions. Electro-oxidation can be a viable solution for removing NH4+-N in wastewater. Compared with other treatment methods, electro-oxidation has the advantages of i) high removal efficiency, ii) smaller size of treatment facilities, and iii) complete removal of contaminant. In this study, a previously prepared DSA (W, Ti-doped IrO2) was used for electro-oxidation of synthetic mariculture and livestock wastewater. The DSA was tested for chlorine evolution reaction (CER) activity, and the reaction kinetics was investigated. CER current efficiency reaches 60-80% in mariculture wastewater and less than 20% in livestock wastewater. In the absence of NH4+-N, the generation of active chlorine follows zero-order kinetics and its consumption follows first-order kinetics, with cathodic reduction being its main consumption pathway, rather than escape or conversion to ClO3-. Cyclic voltammetry experiments show that NH4+-N in the form of NH3 can be oxidized directly on the anode surface. In addition, the generated active chlorine combines with NH4+-N at a fast rate near the anode, rather than in the bulk solution. In electrolysis experiments, the NH4+-N removal rate in synthetic mariculture wastewater (30-40 mg/L NH4+-N) and livestock wastewater (~ 450 mg/L NH4+-N) is 112.9 g NH4+-N/(m2·d) and 186.5 g NH4+-N/(m2·d), respectively, which is much more efficient than biological treatment. The specific energy consumption (SEC) in synthetic mariculture wastewater is 31.5 kWh/kg NH4+-N, comparable to other modified electro-catalysts reported in the literature. However, in synthetic livestock wastewater, the SEC is as high as 260 kWh/kg NH4+-N, mainly due to the suppression of active chlorine generation by HCO3- and the generation of NO3- as a by-product. Therefore, we conclude that electro-oxidation is suitable for mariculture wastewater treatment, but is not recommended for livestock wastewater. Electrolysis prior to urea hydrolysis may enhance the treatment efficiency in livestock wastewater.


Subject(s)
Ammonia , Livestock , Oxidation-Reduction , Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Animals , Ammonia/chemistry , Waste Disposal, Fluid/methods , Nitrogen/chemistry , Water Pollutants, Chemical/chemistry , Titanium/chemistry
7.
Chemosphere ; 363: 142931, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053780

ABSTRACT

Laundry wastewater is a significant source of nonylphenol ethoxylate (NPEO) at wastewater treatment plants, where its breakdown forms persistent nonylphenol (NP). NP poses risks as an endocrine disruptor in wildlife and humans. This study investigates the degradation of NPEO and COD in industrial laundry wastewater (LWW) using a two-stage process combining ultrafiltration (UF) and electro-oxidation (EO). UF was used to remove suspended solids, while soluble COD (COD0 = 239 ± 6 mg.L-1) and NPEO (NPEO0 = 341 ± 8 µg.L-1) were oxidized by the EO process. Different operating parameters were studied such as current density, electrolysis time, type of cathode and supporting electrolyte concentration. Using an experimental design methodology, the optimal conditions for COD and NPEO3-17 degradation were recorded. This included achieving 97% degradation of NPEO3-17 and 61% degradation of COD, with a total operating cost of 3.65 USD·m-3. These optimal conditions were recorded at a current density of 15 mA cm-2 for a 120-min reaction period in the presence of 4 g·Na2SO4 L-1 using a graphite cathode. The EO process allowed for reaching the guidelines required for water reuse (NPEO <200 µg.L-1, COD <100 mg.L-1) in the initial laundry washing cycles. Furthermore, our results demonstrate that both NP and NPEO compounds, including higher and shorter ethoxylate chains (NPEO3-17), were effectively degraded during the EO process, with removal efficiencies between 94% and 98%. This confirms the EO process's capability to effectively degrade NP, the by-product of NPEO breakdown.


Subject(s)
Ethylene Glycols , Oxidation-Reduction , Ultrafiltration , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods , Ultrafiltration/methods , Ethylene Glycols/chemistry , Biological Oxygen Demand Analysis , Phenols/chemistry , Endocrine Disruptors/chemistry , Laundering
8.
Sci Bull (Beijing) ; 69(18): 2870-2880, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38942696

ABSTRACT

Electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), a sustainable strategy to produce bio-based plastic monomer, is always conducted in a high-concentration alkaline solution (1.0 mol L-1 KOH) for high activity. However, such high concentration of alkali poses challenges including HMF degradation and high operation costs associated with product separation. Herein, we report a single-atom-ruthenium supported on Co3O4 (Ru1-Co3O4) as a catalyst that works efficiently in a low-concentration alkaline electrolyte (0.1 mol L-1 KOH), exhibiting a low potential of 1.191 V versus a reversible hydrogen electrode to achieve 10 mA cm-2 in 0.1 mol L-1 KOH, which outperforms previous catalysts. Electrochemical studies demonstrate that single-atom-Ru significantly enhances hydroxyl (OH-) adsorption with insufficient OH- supply, thus improving HMF oxidation. To showcase the potential of Ru1-Co3O4 catalyst, we demonstrate its high efficiency in a flow reactor under industrially relevant conditions. Eventually, techno-economic analysis shows that substitution of the conventional 1.0 mol L-1 KOH with 0.1 mol L-1 KOH electrolyte may significantly reduce the minimum selling price of FDCA by 21.0%. This work demonstrates an efficient catalyst design for electrooxidation of biomass working without using strong alkaline electrolyte that may contribute to more economic biomass electro-valorization.

9.
Front Chem ; 12: 1393860, 2024.
Article in English | MEDLINE | ID: mdl-38752198

ABSTRACT

Long-term electrolyses of glucose in a potassium carbonate (K2CO3) aqueous electrolyte have been performed on graphite felt electrodes with TEMPO as a homogeneous catalyst. The influences of the operating conditions (initial concentrations of glucose, TEMPO, and K2CO3 along with applied anode potential) on the conversion, selectivity toward gluconate/glucarate, and faradaic efficiency were assessed first. Then, optimizations of the conversion, selectivity, and faradaic efficiency were performed using design of experiments based on the L9 (34) Taguchi table, which resulted in 84% selectivity toward gluconate with 71% faradaic efficiency for up to 79% glucose conversion. Side products such as glucaric acid were also obtained when the applied potential exceeded 1.5 V vs. reversible hydrogen electrode.

10.
Small Methods ; : e2400368, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745535

ABSTRACT

The development of highly efficient electrocatalysts for the ethanol oxidation reaction (EOR) is essential for the commercialization of direct ethanol fuel cells, yet challenges remain. In this study, a one-pot solution-phase method to synthesize Pd nanowire networks (NNWs) with very high surface-to-volume ratio having numerous twin and grain boundaries is developed. Using the same method, the Pd lattice is further engineered by introducing Ag and Cu atoms to produce AgPd, and CuPd alloy structure which significantly shifts the Pd d-band center upward and downward, respectively due to strain and ligand effects. Theoretical analysis employing density functional theory (DFT) demonstrates that such modification of the d-band center significantly influences the adsorption energies of reactants on the catalytic surface. Owing to their notably high surface-to-volume ratio and the presence of multiple twin and grain boundaries, Pd NNWs demonstrate significantly enhanced electrocatalytic activity toward EOR, ≈7.2 times greater than that of commercial Pd/C. Remarkably, compared to Pd NNWs, AgPd, and CuPd NNWs display enlarged and reduced electrocatalytic activity toward EOR, respectively. Specifically, Ag4Pd7 NNWs achieve a remarkable mass activity of 9.00 A mgpd -1 for EOR, which is 13.6 times higher than commercial Pd/C.

11.
Chem Asian J ; 19(12): e202400166, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38664856

ABSTRACT

In this study, we demonstrate the influence of crystallinity and morphology on the analytical performance of various Cu2MoS4 (CMS) nanocatalysts-based electrochemical sensors for the high-efficiency detection of Ofloxacin (OFX) antibiotic. The electrochemical kinetics parameters including peak current response (ΔIp), peak-to-peak separation (ΔEp), electrochemically active surface area (ECSA), electron-transfer resistance (Rct), were obtained through the electrochemical analyses, which indicate the single-crystalline nature of CMS nanomaterials (NMs) is beneficial for enhanced electron-transfer kinetics. The morphological features and the electrochemical results for OFX detection substantiate that by tuning the tube-like to plate-like structures of the CMS NMs, it might noticeably enhance multiple adsorption sites and more intrinsic active catalytic sites due to the diffusion of analytes into the interstitial spaces between CMS nanoplates. As results, highly single-crystalline and plate-shaped morphology structures of CMS NMs would significantly enhance the electrocatalytic OFX oxidation in terms of onset potential (Eonset), Tafel slope, catalytic rate constant (kcat), and adsorption capacity (Γ). The CMS NMs-based electrochemical sensing platform showed excellent analytical performance toward the OFX detection with two ultra-wide linear detection concentration ranges from 0.25-100 and 100-1000 µM, a low detection limit of 0.058 µM, and an excellent electrochemical sensitivity (0.743 µA µM-1 cm-2).

12.
Sensors (Basel) ; 24(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38676181

ABSTRACT

Active medical devices rely on a source of energy that is applied to the human body for specific purposes such as electrosurgery, ultrasounds for breaking up kidney stones (lithotripsy), laser irradiation, and other medical techniques and procedures that are extensively used. These systems must provide adequate working power with a commitment not to produce side effects on patients. Therefore, the materials used in these devices must effectively transmit energy, allow for security control, sense real-time variations in case of any issues, and ensure the implementation of closed-loop systems for control. This work extends to the experimental data adjustment of some different coating techniques based on plasma electro-oxidation (PEO) and thermal spray (TS) using fractional-order models. According to the physical structure of the coating in different coating techniques, Cole family models were selected. The experimental data were obtained by means of a vector network analyzer (VNA) in the frequency spectrum from 0.3 MHz to 5 MHz. The results show that some models from the Cole family (the single-dispersion model and inductive model) offered a goodness of fit to the experimental impedance in terms of RMSE error and a squared error R2 close to unity. The use of this type of fractional-order electrical model allows an adjustment with a very small number of elements compared to integer-order models, facilitating its use and a consequent reduction in instrumentation cost and the development of control devices that are more robust and easily miniaturized for embedded applications. Additionally, fractional-order models allow for more accurate assessment in industrial and medical applications.

13.
Angew Chem Int Ed Engl ; 63(21): e202319642, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38554014

ABSTRACT

Maximizing the loadings of active centers without aggregation for a supported catalyst is a grand challenge but essential for achieving high gravimetric catalytic activity, especially toward multi-step reactions. The oxidation of 5-hydroxymethylfurfural (HMF), a key biomass-derived platform molecule, into 2,5-furandicarboxylic acid (FDCA), a promising alternative to polyester monomer, is such a multi-step reaction that involves 6 proton and electron transfers. This process often demands strong alkaline environment but also suffers from the alkali-driven polymerization side-reaction. Meanwhile, neutral media ameliorates the polymerization, but lacks efficient catalyst toward deep oxidation. Herein, we devised a strategy of creating ultra-dense supported Ru oxide clusters via directed ion exchange in a Co hydroxyanion (CoHA) support material. Pyrimidine ligands were first incorporated into the CoHA interlayers, and the subsequent evacuation of pyrimidines created porous channels for the directed ion exchange with the built-in anions in CoHA, which allowed the dense and mono-disperse functionalization of RuCl6 2- anions and their resulting Ru oxide clusters. These ultra-dense Ru oxide clusters not only enable high HMF electrooxidation currents under neutral conditions but also create microscopic channels in-between the clusters for the expedited re-adsorption and oxidation of intermediates toward highly oxidized product, such as 5-formyl-2-furoic acid (FFCA) and FDCA. A two-stage HMF oxidation process, consisting of ambient conversion of HMF into FFCA and FFCA oxidation into FDCA under 60 °C, was eventually developed to first achieve a high FDCA yield of 92.1 % under neutral media with significantly reduced polymerization.

14.
Front Microbiol ; 15: 1297721, 2024.
Article in English | MEDLINE | ID: mdl-38544856

ABSTRACT

Background: Cooling towers are specialized heat exchanger devices in which air and water interact closely to cool the water's temperature. However, the cooling water contains organic nutrients that can cause microbial corrosion (MC) on the metal surfaces of the tower. This research explores the combined wastewater treatment approach using electrochemical-oxidation (EO), photo-oxidation (PO), and photoelectrochemical oxidation (PEO) to contain pollutants and prevent MC. Methods: The study employed electro-oxidation, a process involving direct current (DC) power supply, to degrade wastewater. MC studies were conducted using weight loss assessments, scanning electron microscopy (SEM), and x-ray diffraction (XRD). Results: After wastewater is subjected to electro-oxidation for 4 h, a notable decrease in pollutants was observed, with degradation efficiencies of 71, 75, and 96%, respectively. In the wastewater treated by PEO, microbial growth is restricted as the chemical oxygen demand decreases. Discussion: A metagenomics study revealed that bacteria present in the cooling tower water consists of 12% of Nitrospira genus and 22% of Fusobacterium genus. Conclusively, PEO serves as an effective method for treating wastewater, inhibiting microbial growth, degrading pollutants, and protecting metal from biocorrosion.

15.
Chempluschem ; 89(6): e202300671, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38326237

ABSTRACT

Hemodialysis treatment in specialized clinics within the same hospital significantly impacts environmental water health due to contaminated wastewater. The issues observed included changes in electrical conductivity, the presence of dangerous bacterial loads, toxicity from heavy metals, total cyanide content, and helminth parasite eggs. The level of damage is dependent on the patient's health under treatment. This research will use a modular system that employs electrocoagulation and electro-oxidation processes at the laboratory and pilot levels to treat hemodialysis wastewater using synthetically prepared and real samples extracted from local clinics. The results showed that these hybrid systems improved various physicochemical parameters. Specifically, decreases in electrical conductivity of 49 %, total suspended solids of 27-100 %, chemical oxygen demand of 49 %, biochemical oxygen demand of 49 %, and cation and anion loading were observed at 96-100 % and pH 8.13 UpH in accordance with the established standards. With these results and the experimental conditions used, the proposed treatment system was modeled using the GPS-X program, and it was concluded that the modular system used and the electrocoagulation/electro-oxidation/activated carbon configuration is suitable for treating wastewater from hemodialysis and that scaling up this process to facilities that have dialysate machines more advanced than those considered in this work is possible.


Subject(s)
Oxidation-Reduction , Renal Dialysis , Wastewater , Wastewater/chemistry , Pilot Projects , Electrocoagulation/methods , Water Purification/methods , Electric Conductivity , Electrochemical Techniques
16.
ChemSusChem ; 17(13): e202301739, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38389167

ABSTRACT

The widespread application of electrochemical hydrogen production faces significant challenges, primarily attributed to the high overpotential of the oxygen evolution reaction (OER) in conventional water electrolysis. To address this issue, an effective strategy involves substituting OER with the value-added oxidation of biomass feedstock, reducing the energy requirements for electrochemical hydrogen production while simultaneously upgrading the biomass. Herein, we introduce an electrocatalytic approach for the value-added oxidation of isobutanol, a high energy density bio-fuel, coupled with hydrogen production. This approach offers a sustainable route to produce the valuable fine chemical isobutyric acid under mild condition. The electrodeposited Ni(OH)2 electrocatalyst exhibits exceptional electrocatalytic activity and durability for the electro-oxidation of isobutanol, achieving an impressive faradaic efficiency of up to 92.4 % for isobutyric acid at 1.45 V vs. RHE. Mechanistic insights reveal that side reactions predominantly stem from the oxidative C-C cleavage of isobutyraldehyde intermediate, forming by-products including formic acid and acetone. Furthermore, we demonstrate the electro-oxidation of isobutanol coupled with hydrogen production in a two-electrode undivided cell, notably reducing the electrolysis voltage by approximately 180 mV at 40 mA cm-2. Overall, this work represents a significant step towards improving the cost-effectiveness of hydrogen production and advancing the conversion of bio-fuels.

17.
Water Res ; 252: 121229, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38324989

ABSTRACT

Exploiting electrochemically active materials as flow-anodes can effectively alleviate mass transfer restriction in an electro-oxidation system. However, the electrocatalytic activity and persistence of the conventional flow-anode materials are insufficient, resulting in limited improvement in the electro-oxidation rate and efficiency. Herein, we reported a rational strategy to substantially enhance the electrocatalytic performance of flow-anodes in electro-oxidation by introducing the redox cycle of high-valent metal in a suitable carbon substrate. The characterization suggested that the SnOx-CeOx/carbon black (CB) featured well-distributed morphology, rapid charge transfer, high oxygen evolution potential, and strong water adsorption, and stood out among three kinds of SnOx-CeOx loaded carbon materials. Mechanistic analysis indicated that the redox cycle of Ce species played a key role in accelerating the electron transfer from SnOx to CB directionally and could continuously create the electron-deficient state of the SnOx, thereby sustainably triggering the generation of ·OH. All these features enabled the resulting SnOx-CeOx/CB flow-anode to accomplish a calculated maximum kinetic constant of 0.02461 1/min, a higher current efficiency of 47.1%, and a lower energy consumption of 21.3 kWh/kg COD compared with other conventional flow-anodes reported to date. Additionally, SnOx-CeOx/CB exhibited excellent stability with extremely low leaching concentrations of Sn and Ce ions. This study provides a feasible manner for efficient water decontamination using the electro-oxidation system with SnOx-CeOx/CB.


Subject(s)
Carbon , Water Pollutants, Chemical , Ibuprofen , Metals/chemistry , Oxidation-Reduction , Water , Electrodes , Water Pollutants, Chemical/chemistry
18.
Environ Technol ; : 1-14, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38234107

ABSTRACT

Fluoxetine (FLX) is a selective serotonin reuptake inhibitor (SSRI) medication commonly used to treat mental health disorders, but it can be harmful to the environment if not properly disposed of due to incomplete metabolism. In this study, electrochemical anodic oxidation with mixed metal oxide anodes was studied as a method to remove FLX from water and wastewater. Iridium dioxide-coated titanium (Ti/IrO2) and ruthenium dioxide-coated Ti (Ti/RuO2) electrodes were found to be more effective than platinum-coated Ti (Ti/Pt) electrodes, with removal efficiencies of 91.5% and 93.9%, respectively. Optimal conditions for FLX removal were determined to be an applied current of 150 mA, initial pH of 5, and oxidation time of 120 min. The rate of FLX degradation (kFLX) for the Ti/Pt, Ti/IrO2, and Ti/RuO2 electrodes were determined to be 0.0081 min-1 (R2:0,8161), 0.0163 min-1 (R2:0,9823), and 0.0168 (R2:0,9901) min-1 for 25 mg/L initial FLX concentration, respectively. The kFLX values varied based on the initial FLX concentration and decreased as the initial FLX concentration increased. The specific energy consumption (SEC) after 120 min of operation was 51.0 kWh/m3 for the Ti/Pt electrode, 39.6 kWh/m3 for the Ti/IrO2 electrode, and 48.6 kWh/m3 for the Ti/RuO2 electrode under optimised conditions. Overall, electrochemical anodic oxidation is an effective method for removing FLX from water and wastewater, with Ti/IrO2 and Ti/RuO2 electrodes providing superior performance compared to Ti/Pt electrodes.

19.
Small ; 20(4): e2306488, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37712127

ABSTRACT

Conventional designing principal of electrocatalyst is focused on the electronic structure tuning, on which effectively promotes the electrocatalysis. However, as a typical kind of electrode-electrolyte interface reaction, the electrocatalysis performance is also closely dependent on the electrocatalyst interfacial micro-environment (IME), including pH, reactant concentration, electric field, surface geometry structure, hydrophilicity/hydrophobicity, etc. Recently, organic electro-oxidation reaction (OEOR), which simultaneously reduces the anodic polarization potential and produces value-added chemicals, has emerged as a competitive alternative to oxygen evolution reaction, and the role IME played in OEOR is receiving great interest. Thus, this article provides a timely review on IME and its applications toward OEOR. In this review, the IME for conventional gas-involving reactions, as a contrast, is first presented, and then the recent progresses of IME toward diverse typical OEOR are summarized; especially, some representative works are thoroughly discussed. Additionally, cutting-edge analytical methods and characterization techniques are introduced to comprehensively understand the role IME played in OEOR. In the last section, perspectives and challenges of IME regulation for OEOR are shared.

20.
Ultrason Sonochem ; 102: 106735, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38128390

ABSTRACT

Extracting vanadium (V) from vanadium slag (VS) by the traditional roasting-leaching process has disadvantages of high energy consumption and high poisonous gases emission. In this work, a green and efficient route was developed to extract V from VS without roasting by electro-oxidation combined with ultrasound cavitation (EOUC) intensification in sulfuric acid solution. The leaching parameters (e.g., leaching temperature, sulfuric acid concentration, anodic current density, ultrasound power, liquid to solid ratio, leaching time and particle size) were optimized. The leaching mechanism was explored by comparing the leaching behavior and mineralogical evolution of the direct sulfuric acidic leaching (DSL), electro-oxidation-assisted sulfuric acidic leaching (EOSL), ultrasound cavitation-assisted sulfuric acidic leaching (UCSL) and EOUC methods. The results show that introducing electric field strengthens the ultrasound cavitation effect on slag particles in sulfuric acid solution. Under the optimum parameter of EOUC method, the leaching rate of V from VS is as high as 94.64 %. Using EOUC method can open the silicate-wrapped structure of the spinel, increase pore volume of VS from 0.00127 cm3 g-1 to 0.01124 cm3 g-1, decrease slag particle size from 26.8 µm to 16.4 µm and improve specific surface area from 0.508 m2 g-1 to 10.855 m2 g-1, which significantly accelerate V leaching process. The exposed spinel was oxidized by both electrochemical route and chemical route, forming a mixture of V3+ ion and VO2+ ion after leaching.

SELECTION OF CITATIONS
SEARCH DETAIL