Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
ACS Appl Mater Interfaces ; 16(28): 36727-36734, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38972069

ABSTRACT

Understanding the dynamics of ion migration and volume change is crucial to studying the functionality and long-term stability of soft polymeric materials operating at liquid interfaces, but the subsurface characterization of swelling processes in these systems remains elusive. In this work, we address the issue using modulated electrochemical atomic force microscopy as a depth-sensitive technique to study electroswelling effects in the high-performance actuator material polypyrrole doped with dodecylbenzenesulfonate (Ppy:DBS). We perform multidimensional measurements combining local electroswelling and electrochemical impedance spectroscopies on microstructured Ppy:DBS actuators. We interpret charge accumulation in the polymeric matrix with a quantitative model, giving access to both the spatiotemporal dynamics of ion migration and the distribution of electroswelling in the electroactive polymer layer. The findings demonstrate a nonuniform distribution of the effective ionic volume in the Ppy:DBS layer depending on the film morphology and redox state. Our findings indicate that the highly efficient actuation performance of Ppy:DBS is caused by rearrangements of the polymer microstructure induced by charge accumulation in the soft polymeric matrix, increasing the effective ionic volume in the bulk of the electroactive film for up to two times the value measured in free water.

2.
Angew Chem Int Ed Engl ; 63(38): e202409435, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38945832

ABSTRACT

In situ analysis of Li plating/stripping processes and evolution of solid electrolyte interphase (SEI) are critical for optimizing all-solid-state Li metal batteries (ASSLMB). However, the buried solid-solid interfaces present a challenge for detection which preclude the employment of multiple analysis techniques. Herein, by employing complementary in situ characterizations, morphological/chemical evolution, Li plating/stripping dynamics and SEI dynamics were directly detected. As a mixed ionic-electronic conducting interface, Li|Li10GeP2S12 (LGPS) performed distinct interfacial morphological/chemical evolution and dynamics from ionic-conducting/electronic-isolating interface like Li|Li3PS4 (LPS), which were revealed by combination of in situ atomic force microscopy and in situ X-ray photoelectron spectroscopy. Though Li plating speed in LGPS was higher than LPS, speed of SSE decomposition was similar and ~85 % interfacial SSE turned into SEI during plating and remained unchanged in stripping. To leverage strengths of different SSEs, an LPS-LGPS-LPS sandwich electrolyte was developed, demonstrating enhanced ionic conductivity and improved interfacial stability with less SSE decomposition (25 %). Using in situ Kelvin probe force microscopy, Li-ion behavior at interface between different SSEs was effectively visualized, uncovering distribution of Li ions at LGPS|LPS interface under different potentials.

3.
Adv Sci (Weinh) ; 11(18): e2308746, 2024 May.
Article in English | MEDLINE | ID: mdl-38429898

ABSTRACT

The conversion of electrochemical processes into mechanical deformation in organic mixed ionic-electronic conductors (OMIECs) enables artificial muscle-like actuators but is also critical for degradation processes affecting OMIEC-based devices. To provide a microscopic understanding of electroactuation, the modulated electrochemical atomic force microscopy (mEC-AFM) is introduced here as a novel in-operando characterization method for electroactive materials. The technique enables multidimensional spectroscopic investigations of local electroactuation and charge uptake giving access to the electroactuation transfer function. For poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) based microelectrodes, the spectroscopic measurements are combined with multichannel mEC-AFM imaging, providing maps of local electroactuation amplitude and phase as well as surface morphology. The results demonstrate that the amplitude and timescales of electroactuation are governed by the drift motion of hydrated ions. Accordingly, slower water diffusion processes are not limiting, and the results illustrate how OMIEC microactuators can operate at sub-millisecond timescales.

4.
ACS Nano ; 18(13): 9389-9402, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38507591

ABSTRACT

Degradation of cathode materials in lithium-ion batteries results in the presence of transition metal ions in the electrolyte, and these ions are known to play a major role in capacity fade and cell failure. Yet, while it is known that transition metal ions migrate from the metal oxide cathode and deposit on the graphite anode, their specific influence on anode reactions and structures, such as the solid electrolyte interphase (SEI), is still quite poorly understood due to the complexity in studying this interface in operational cells. In this work we combine operando electrochemical atomic force microscopy (EC-AFM), electrochemical quartz crystal microbalance (EQCM), and electrochemical impedance spectroscopy (EIS) measurements to probe the influence of a range of transition metal ions on the morphological, mechanical, chemical, and electrical properties of the SEI. By adding representative concentrations of Ni2+, Mn2+, and Co2+ ions into a commercially relevant battery electrolyte, the impacts of each on the formation and stability of the anode interface layer is revealed; all are shown to pose a threat to battery performance and stability. Mn2+, in particular, is shown to induce a thick, soft, and unstable SEI layer, which is known to cause severe degradation of batteries, while Co2+ and Ni2+ significantly impact interfacial conductivity. When transition metal ions are mixed, SEI degradation is amplified, suggesting a synergistic effect on the cell stability. Hence, by uncovering the roles these cathode degradation products play in operational batteries, we have provided a foundation upon which strategies to mitigate or eliminate these degradation products can be developed.

5.
Angew Chem Int Ed Engl ; 63(13): e202316837, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38315104

ABSTRACT

The interfacial processes, mainly the lithium (Li) plating/stripping and the evolution of the solid electrolyte interphase (SEI), are directly related to the performance of all-solid-state Li-metal batteries (ASSLBs). However, the complex processes at solid-solid interfaces are embedded under the solid-state electrolyte, making it challenging to analyze the dynamic processes in real time. Here, using in situ electrochemical atomic force microscopy and optical microscopy, we directly visualized the Li plating/stripping/replating behavior, and measured the morphological and mechanical properties of the on-site formed SEI at nanoscale. Li spheres plating/stripping/replating at the argyrodite solid electrolyte (Li6 PS5 Cl)/Li electrode interface is coupled with the formation/wrinkling/inflating of the SEI on its surface. Combined with in situ X-ray photoelectron spectroscopy, details of the stepwise formation and physicochemical properties of SEI on the Li spheres are obtained. It is shown that higher operation rates can decrease the uniformity of the Li+ -conducting networks in the SEI and worsen Li plating/stripping reversibility. By regulating the applied current rates, uniform nucleation and reversible plating/stripping processes can be achieved, leading to the extension of the cycling life. The in situ analysis of the on-site formed SEI at solid-solid interfaces provides the correlation between the interfacial evolution and the electrochemical performance in ASSLBs.

6.
Angew Chem Int Ed Engl ; 63(1): e202316781, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37955211

ABSTRACT

Lithium-carbon dioxide (Li-CO2 ) battery technology presents a promising opportunity for carbon capture and energy storage. Despite tremendous efforts in Li-CO2 batteries, the complex electrode/electrolyte/CO2 triple-phase interfacial processes remain poorly understood, in particular at the nanoscale. Here, using in situ atomic force microscopy and laser confocal microscopy-differential interference contrast microscopy, we directly observed the CO2 conversion processes in Li-CO2 batteries at the nanoscale, and further revealed a laser-tuned reaction pathway based on the real-time observations. During discharge, a bi-component composite, Li2 CO3 /C, deposits as micron-sized clusters through a 3D progressive growth model, followed by a 3D decomposition pathway during the subsequent recharge. When the cell operates under laser (λ=405 nm) irradiation, densely packed Li2 CO3 /C flakes deposit rapidly during discharge. Upon the recharge, they predominantly decompose at the interfaces of the flake and electrode, detaching themselves from the electrode and causing irreversible capacity degradation. In situ Raman shows that the laser promotes the formation of poorly soluble intermediates, Li2 C2 O4 , which in turn affects growth/decomposition pathways of Li2 CO3 /C and the cell performance. Our findings provide mechanistic insights into interfacial evolution in Li-CO2 batteries and the laser-tuned CO2 conversion reactions, which can inspire strategies of monitoring and controlling the multistep and multiphase interfacial reactions in advanced electrochemical devices.

7.
ACS Appl Mater Interfaces ; 15(29): 34711-34725, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37433014

ABSTRACT

Aqueous redox flow battery systems that use a zinc negative electrode have a relatively high energy density. However, high current densities can lead to zinc dendrite growth and electrode polarization, which limit the battery's high power density and cyclability. In this study, a perforated copper foil with a high electrical conductivity was used on the negative side, combined with an electrocatalyst on the positive electrode in a zinc iodide flow battery. A significant improvement in the energy efficiency (ca. 10% vs using graphite felt on both sides) and cycling stability at a high current density of 40 mA cm-2 was observed. A long cycling stability with a high areal capacity of 222 mA h cm-2 is obtained in this study, which is the highest reported areal capacity for zinc-iodide aqueous flow batteries operating at high current density, in comparison to previous studies. Additionally, the use of a perforated copper foil anode in combination with a novel flow mode was discovered to achieve consistent cycling at exceedingly high current densities of >100 mA cm-2. In situ and ex situ characterization techniques, including in situ atomic force microscopy coupled with in situ optical microscopy and X-ray diffraction, are applied to clarify the relationship between zinc deposition morphology on the perforated copper foil and battery performance in two different flow field conditions. With a portion of the flow going through the perforations, a significantly more uniform and compact zinc deposition was observed compared to the case where all of the flow passed over the surface of the electrode. Results from modeling and simulation support the conclusion that the flow of a fraction of electrolyte through the electrode enhances mass transport, enabling a more compact deposit.

8.
ACS Nano ; 17(7): 6220-6233, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36972510

ABSTRACT

Numerous layered materials are being recognized as promising candidates for high-performance alkali-ion battery anodes, but black phosphorus (BP) has received particular attention. This is due to its high specific capacity, due to a mixed alkali-ion storage mechanism (intercalation-alloying), and fast alkali-ion transport within its layers. Unfortunately, BP based batteries are also commonly associated with serious irreversible losses and poor cycling stability. This is known to be linked to alloying, but there is little experimental evidence of the morphological, mechanical, or chemical changes that BP undergoes in operational cells and thus little understanding of the factors that must be mitigated to optimize performance. Here the degradation mechanisms of BP alkali-ion battery anodes are revealed through operando electrochemical atomic force microscopy (EC-AFM) and ex situ spectroscopy. Among other phenomena, BP is observed to wrinkle and deform during intercalation but suffers from complete structural breakdown upon alloying. The solid electrolyte interphase (SEI) is also found to be unstable, nucleating at defects before spreading across the basal planes but then disintegrating upon desodiation, even above alloying potentials. By directly linking these localized phenomena with the whole-cell performance, we can now engineer stabilizing protocols for next-generation high-capacity alkali-ion batteries.

9.
ACS Nano ; 16(11): 19594-19604, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36351178

ABSTRACT

The accumulation and depletion of charges at electrode-electrolyte interfaces is crucial for all types of electrochemical processes. However, the spatial profile of such interfacial charges remains largely elusive. Here we develop charge profiling three-dimensional (3D) atomic force microscopy (CP-3D-AFM) to experimentally quantify the real-space charge distribution of the electrode surface and electric double layers (EDLs) with angstrom depth resolution. We first measure the 3D force maps at different electrode potentials using our recently developed electrochemical 3D-AFM. Through statistical analysis, peak deconvolution, and electrostatic calculations, we derive the depth profile of the local charge density. We perform such charge profiling for two types of emergent electrolytes, ionic liquids, and highly concentrated aqueous solutions, observe pronounced sub-nanometer charge variations, and find the integrated charge densities to agree with those derived from macroscopic electrochemical measurements.

10.
Angew Chem Int Ed Engl ; 61(48): e202211626, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36181671

ABSTRACT

Single-crystalline Ni-rich cathode (SC-NCM) has attracted increasing interest owing to its greater capacity retention in advanced solid-state lithium batteries (SSLBs), while suffers from severe interfacial instability during cycling. Here, via atomic layer deposition, Li3 PO4 is introduced to coat SC-NCM (L-NCM), to suppress undesired side reaction and enhance interfacial stability. The dynamic degradation and surface regulation of SC-NCM are investigated inside a working SSLB by in situ atomic force microscopy (AFM). We directly observe the uneven cathode electrolyte interphase (CEI) and surface defects on pristine SC-NCM particle. Remarkably, the formed amorphous LiF-rich CEI on L-NCM maintains its initial structure upon cycling, and thus endows the battery with improved cycling stability and excellent rate capability. Such on-site tracking provides deep insights into surface mechanism and structure-reactivity correlation of SC-NCM, and thus benefits the optimizations of SSLBs.

11.
Materials (Basel) ; 15(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35629689

ABSTRACT

Solid electrolyte interphase (SEI) formed at the interface in lithium-ion batteries plays an important role in isolating electrons and permeating ions during charging/discharging processes. Therefore, the formation of a good interface is crucial for better battery performance. In this study, additives based on adiponitrile (ADN) and trimethyl borate (TMB) were employed to broaden the electrochemical window and form a good SEI layer. Electrochemical Atomic force microscopy (EC-AFM) was used for in situ studies of film-formation mechanisms in high-voltage electrolytes on high-temperature pyrolytic graphite (HOPG), as well as Li- and Mn-rich (LMR) materials. X-ray photoelectron spectroscopy (XPS) combined with electrochemical methods revealed a synergistic reaction between the two additives to form a more stable interfacial film during charging/discharging processes to yield assembled batteries with improved cycle performance, its capacity increased from below 100 mAh/g to 200 mAh/g after 50 cycles. In sum, these findings would have great significance for the development of high voltage lithium-ion batteries with enhanced performance.

12.
ACS Appl Mater Interfaces ; 12(15): 17602-17610, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32191029

ABSTRACT

Comprehensive understanding of the catalyst corrosion dynamics is a prerequisite for the development of an efficient cathode catalyst in proton-exchange membrane fuel cells. To reach this aim, the behavior of fuel cell catalysts must be investigated directly under reaction conditions. Herein, we applied a strategic combination of in situ/online techniques: in situ electrochemical atomic force microscopy, in situ grazing incidence small angle X-ray scattering, and electrochemical scanning flow cell with online detection by inductively coupled plasma mass spectrometry. This combination of techniques allows in-depth investigation of the potential-dependent surface restructuring of a PtNi model thin film catalyst during potentiodynamic cycling in an aqueous acidic electrolyte. The study reveals a clear correlation between the upper potential limit and structural behavior of the PtNi catalyst, namely, its dealloying and coarsening. The results show that at 0.6 and 1.0 VRHE upper potentials, the PtNi catalyst essentially preserves its structure during the entire cycling procedure. The crucial changes in the morphology of PtNi layers are found to occur at 1.3 and 1.5 VRHE cycling potentials. Strong dealloying at the early stage of cycling is substituted with strong coarsening of catalyst particles at the later stage. The coarsening at the later stage of cycling is assigned to the electrochemical Ostwald ripening process.

13.
J Colloid Interface Sci ; 559: 1-12, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31605780

ABSTRACT

Experimental and computational approaches are utilized to investigate the influence of electrostatic fields on the binding force between human coagulation protein thrombin and its DNA aptamer. The thiolated aptamer was deposited onto gold substrate located in a liquid cell filled with binding buffer, then the thrombin-functionalized atomic force microscopy (AFM) probe was repeatedly brought into contact with the aptamer-coated surface under applied electrical potentials of -100, 0, and 100 mV respectively. Force drops during the pull-off process were measured to determine the unbinding forces between thrombin and aptamer in a range of loading rates spanning from ~3 × 102 to ~1 × 104 pN/s. The results from experiments showed that both of the binding strength and propensity of the complex are drastically diminished under positive electrode potential, whereas there is no influence on the molecular binding from negative electrode potential. We also used a theoretical analysis to explain the nature of electrostatic potential and field inside the aptamer-thrombin layer, which in turn could quantify the influence of the electrostatically repulsive force on a thrombin molecule that promotes dissociation from the aptamer due to positive electrode potential, and achieve good agreement with the experimental results. The study confirms the feasibility of electrostatic modulation upon the binding interaction between thrombin and aptamer, and implicates an underlying application perspective upon nanoscale manipulation of the stimuli responsive biointerface.


Subject(s)
Aptamers, Nucleotide/chemistry , Thrombin/chemistry , Biosensing Techniques/methods , Electricity , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Mechanical Phenomena , Models, Molecular , Protein Binding , Static Electricity , Surface Properties
14.
ACS Appl Mater Interfaces ; 11(6): 5590-5594, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-29708339

ABSTRACT

Metal (oxy)hydroxides (MO xH y, M = Fe, Co, Ni, and mixtures thereof) are important materials in electrochemistry. In particular, MO xH y are the fastest known catalysts for the oxygen evolution reaction (OER) in alkaline media. While key descriptors such as overpotentials and activity have been thoroughly characterized, the nanostructure and its dynamics under electrochemical conditions are not yet fully understood. Here, we report on the structural evolution of Ni1-δCoδO xH y nanosheets with varying ratios of Ni to Co, in operando using atomic force microscopy during electrochemical cycling. We found that the addition of Co to NiO xH y nanosheets results in a higher porosity of the as-synthesized nanosheets, apparently reducing mechanical stress associated with redox cycling and hence enhancing stability under electrochemical conditions. As opposed to nanosheets composed of pure NiO xH y, which dramatically reorganize under electrochemical conditions to form nanoparticle assemblies, restructuring is not found for Ni1-δCoδO xH y with a high Co content. Ni0.8Fe0.2O xH y nanosheets show high roughness as-synthesized which increases during electrochemical cycling while the integrity of the nanosheet shape is maintained. These findings enhance the fundamental understanding of MO xH y materials and provide insight into how nanostructure and composition affect structural dynamics at the nanoscale.

15.
Methods Mol Biol ; 1776: 455-470, 2018.
Article in English | MEDLINE | ID: mdl-29869260

ABSTRACT

We present in this chapter a new experimental approach allowing the high resolution imaging of immune complexes on virus particles. Combined atomic force-electrochemical microscopy (AFM-SECM) is used to image the presence of ferrocene functionalized specific antibodies on the surface of potyvirus particles. For this purpose, potyviruses, flexuous filamentous phytoviruses with a high aspect ratio, have been chosen. This technique allows analysis of the distribution of antibody labeling over the virus population. But, more importantly, it opens up the imaging of immune complexes decorating a single viral particle. Finally, its high resolution allows the characterization in situ of the ultrastructure of a single immune complex on the particle.


Subject(s)
Antigen-Antibody Complex/ultrastructure , Nanoparticles/ultrastructure , Potyvirus/ultrastructure , Virion/ultrastructure , Antigen-Antibody Complex/chemistry , Extracellular Space , Ferrous Compounds/chemistry , Metallocenes/chemistry , Microscopy, Atomic Force , Nanoparticles/virology , Oxidation-Reduction , Potyvirus/chemistry , Virion/chemistry
16.
Beilstein J Nanotechnol ; 7: 1878-1884, 2016.
Article in English | MEDLINE | ID: mdl-28144537

ABSTRACT

Phosphoric acid is an inorganic acid used for producing graphene sheets by delaminating graphite in (electro-)chemical baths. The observed phenomenology during the electrochemical treatment in phosphoric acid solution is partially different from other acidic solutions, such as sulfuric and perchloric acid solutions, where the graphite surface mainly forms blisters. In fact, the graphite surface is covered by a thin layer of modified (oxidized) material that can be observed when an electrochemical potential is swept in the anodic current regime. We characterize this particular surface evolution by means of a combined electrochemical, atomic force microscopy and Raman spectroscopy investigation.

17.
ACS Nano ; 9(5): 4911-24, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25905663

ABSTRACT

We show herein that electrochemical atomic force microscopy (AFM-SECM), operated in molecule touching (Mt) mode and combined with redox immunomarking, enables the in situ mapping of the distribution of proteins on individual virus particles and makes localization of individual viral proteins possible. Acquisition of a topography image allows isolated virus particles to be identified and structurally characterized, while simultaneous acquisition of a current image allows the sought after protein, marked by redox antibodies, to be selectively located. We concomitantly show that Mt/AFM-SECM, due to its single-particle resolution, can also uniquely reveal the way redox functionalization endowed to viral particles is distributed both statistically among the viruses and spatially over individual virus particles. This possibility makes Mt/AFM-SECM a unique tool for viral nanotechnology.


Subject(s)
Capsid Proteins/metabolism , Microscopy, Atomic Force/methods , Potyvirus/metabolism , Virion/metabolism , Electrochemistry , Gold/chemistry , Microscopy, Electrochemical, Scanning , Nanotechnology , Oxidation-Reduction , Potyvirus/chemistry , Surface Properties , Virion/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL