Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 966
Filter
1.
Aging Cell ; : e14231, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38952076

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder associated with behavioral and cognitive impairments. Unfortunately, the drugs the Food and Drug Administration currently approved for AD have shown low effectiveness in delaying the progression of the disease. The focus has shifted to non-pharmacological interventions (NPIs) because of the challenges associated with pharmacological treatments for AD. One such intervention is environmental enrichment (EE), which has been reported to restore cognitive decline associated with AD effectively. However, the therapeutic mechanisms by which EE improves symptoms associated with AD remain unclear. Therefore, this study aimed to reveal the mechanisms underlying the alleviating effects of EE on AD symptoms using histological, proteomic, and neurotransmitter-related analyses. Wild-type (WT) and 5XFAD mice were maintained in standard housing or EE conditions for 4 weeks. First, we confirmed the mitigating effects of EE on cognitive impairment in an AD animal model. Then, histological analysis revealed that EE reduced Aß accumulation, neuroinflammation, neuronal death, and synaptic loss in the AD brain. Moreover, proteomic analysis by liquid chromatography-tandem mass spectrometry showed that EE enhanced synapse- and neurotransmitter-related networks and upregulated synapse- and neurotransmitter-related proteins in the AD brain. Furthermore, neurotransmitter-related analyses showed an increase in acetylcholine and serotonin concentrations as well as a decrease in polyamine concentration in the frontal cortex and hippocampus of 5XFAD mice raised under EE conditions. Our findings demonstrate that EE restores cognitive impairment by alleviating AD pathology and regulating synapse-related proteins and neurotransmitters. Our study provided neurological evidence for the application of NPIs in treating AD.

2.
Sci Rep ; 14(1): 15143, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956228

ABSTRACT

Laboratory mice are typically housed in "shoebox" cages with limited opportunities to engage in natural behaviour. Temporary access to environments with increased space and complexity (playpens) may improve mouse welfare. Previous work by our group has shown that mice are motivated to access and use these environments, but it is unknown how other aspects of welfare are impacted. Female C57BL/6J, BALB/cJ, and DBA/2J mice (n = 21; 7 mice per strain) were housed in mixed-strain trios and given temporary access to a large playpen with their cage mates three times per week. Control mice (n = 21; 7 mice per strain) remained in their home cages. Home cage behaviour (development of stereotypic behaviour over time, aggression following cage-changing) and anxiety tests were used to assess how playpen access impacted welfare. Contrary to our predictions, we found increased time spent performing stereotypies in playpen mice; this difference may be related to negative emotional states, increased motivation to escape the home cage, or active coping strategies. Playpen access resulted in strain-dependent improvements in aggression and some measures of anxiety. Aggression was lower for C57BL/6J mice in the playpen treatment following cage changing than it was for C57BL/6J control mice, while playpen mice, and particularly the C57BL/6J strain, spent more time in the center of the open field test and produced fewer fecal boli during anxiety testing, supporting other research showing that strain differences play an important role in behaviour and stress resiliency.


Subject(s)
Aggression , Animal Welfare , Behavior, Animal , Housing, Animal , Mice, Inbred C57BL , Animals , Mice , Female , Behavior, Animal/physiology , Anxiety , Mice, Inbred BALB C , Mice, Inbred DBA , Stereotyped Behavior
3.
Zebrafish ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976485

ABSTRACT

Over the years, scientific research with fish models has grown at a rapid pace, and issues such as animal welfare are becoming increasingly important in various areas of animal husbandry and experimentation. Here, we evaluated whether Danio rerio behavior is affected by long-term maintenance (75 days) in an enriched environment or a chronic stress (CS) situation. In addition, we evaluated some biochemical parameters related to redox status. We concluded that long-term maintenance of zebrafish in enriched environment might induce an anxiety-like behavior pattern when these fish are faced with an acute subsequent stressor. These anxiety results, the increased school cohesion, and the absence of oxidative damage allow us to hypothesize that the fish maintained in environmental enrichment (EE) situation is more reactive, showing a strong protective reaction to the stress. From an applicable perspective, we show that both too much stress and too little stress are not ideal for zebrafish stocks. In CS situations, fish can habituate and might not respond optimally to test conditions. In opposite, the low stress promoted by environmental enrichment also renders the fish incapable of dealing with occasional stressors optimally, because now even normal conditions appear stressful to them and may elicit fear behaviors they normally would not exhibit.

4.
ArXiv ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38947919

ABSTRACT

Continual learning (CL) refers to an agent's capability to learn from a continuous stream of data and transfer knowledge without forgetting old information. One crucial aspect of CL is forward transfer, i.e., improved and faster learning on a new task by leveraging information from prior knowledge. While this ability comes naturally to biological brains, it poses a significant challenge for artificial intelligence (AI). Here, we suggest that environmental enrichment (EE) can be used as a biological model for studying forward transfer, inspiring human-like AI development. EE refers to animal studies that enhance cognitive, social, motor, and sensory stimulation and is a model for what, in humans, is referred to as 'cognitive reserve'. Enriched animals show significant improvement in learning speed and performance on new tasks, typically exhibiting forward transfer. We explore anatomical, molecular, and neuronal changes post-EE and discuss how artificial neural networks (ANNs) can be used to predict neural computation changes after enriched experiences. Finally, we provide a synergistic way of combining neuroscience and AI research that paves the path toward developing AI capable of rapid and efficient new task learning.

5.
Article in English | MEDLINE | ID: mdl-38863379

ABSTRACT

The overall beneficial effect of live black soldier fly larvae (BSFL) on the welfare of broiler chickens, turkeys, and laying hens has already been discussed in the literature. However, scant information is available regarding the benefits of feeding live BSFL to medium-growing chicken hybrids reared under organic/free-range conditions, and whose welfare is frequently cited as being inadequate. The aim of this research was to advance our knowledge of this topic. To this end, 240 label naked neck birds (Hubbard JA57 hybrid) were assigned, at 21 days of age, to four experimental groups (6 replicates/treatment, 10 chickens/replicate), created according to sex (M/F) and the provision of a 10% live BSFL dietary supplementation (control males, control females, larvae males, and larvae females), and raised until 82 days of age. We performed behavioural observations, a tonic immobility test, and an avoidance distance (AD) test. We assessed feather damage and cleanliness, hock burn, footpad dermatitis, and skin lesion scores, and determined the concentration of excreta corticosterone metabolites (ECM) and the heterophile to lymphocyte heterophile/lymphocyte (H/L) ratio. The behavioural observations demonstrated increased physical and foraging activity (p < 0.05) in the live BSFL administered groups compared with C ones, providing valuable data on the explorative and recreational behaviour of this chicken genotype. The results also evidenced the usefulness of live BSFL as a fear reducer in females, as those receiving the BSFL supplement moved closer to the operator during the AD test (p < 0.01). No physical injuries or damage were observed on the birds, regardless of whether they received the BSFL supplementation or not. The ECM were unaffected by BSFL supplementation, while the H/L ratio was higher in the larvae groups than in the control ones (p = 0.050). In conclusion, live BSFL provision could constitute a powerful tool for improving life quality in medium-growing chickens. Further research is required to clarify the stress modulation role of live BSFL on poultry production.

6.
Mol Biol Rep ; 51(1): 742, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874703

ABSTRACT

BACKGROUND: Enrichment activities may influence the microbiomes of captive tigers', affecting their health, digestion, and behavior. Currently, there are few studies that address the impact of enrichment activity on tigers' health. This study aimed to determine the diversity of the gut microbiome in captive Malayan tigers at Zoo Melaka and Night Safari during the environmental enrichment phase using a metabarcoding approach. METHODS AND RESULTS: This study utilized different enrichment activities which catered for food, sensory, and cognitive enrichment. Eleven fresh fecal samples from captive Malayan tigers at Zoo Melaka and Night Safari were collected under different conditions. All samples were extracted and 16S rRNA V3-V4 region amplicon sequencing was used to characterize the gut microbiome of captive Malayan tigers subjected to various enrichment activities. Firmicutes, Actinobacteriota, and Fusobacteriota were the dominant phyla observed in the gut microbiome of captive Malayan tigers during enrichment activities. This study revealed ß-diversity significantly varied between normal and enrichment phase, however no significant differences were observed in α-diversity. This study demonstrates that environmental enrichment improves the gut microbiome of Malayan tigers because gut microbes such as Lachnoclostridium, which has anti-inflammatory effects and helps maintain homeostasis, and Romboutsia, which has a probiotic effect on the gut microbiome. CONCLUSIONS: This study provides valuable insights into the effects of enrichment activities on the gut microbiome of captive Malayan tigers, offering guidance for enhancing captive management practices aimed at promoting the health and well-being of Malayan tiger in captivity.


Subject(s)
Animals, Zoo , Endangered Species , Feces , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Tigers , Animals , Tigers/microbiology , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Bacteria/genetics , Bacteria/classification
7.
Neurobiol Stress ; 31: 100651, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38933284

ABSTRACT

Stress is a major influence on mental health status; the ways that individuals respond to or copes with stressors determine whether they are negatively affected in the future. Stress responses are established by an interplay between genetics, environment, and life experiences. Psychosocial stress is particularly impactful during adolescence, a critical period for the development of mood disorders. In this study we compared two established, selectively-bred Sprague Dawley rat lines, the "internalizing" bred Low Responder (bLR) line versus the "externalizing" bred High Responder (bHR) line, to investigate how genetic temperament and adolescent environment impact future responses to social interactions and psychosocial stress, and how these determinants of stress response interact. Male bLR and bHR rats were exposed to social and environmental enrichment in adolescence prior to experiencing social defeat and were then assessed for social interaction and anxiety-like behavior. Adolescent enrichment caused rats to display more social interaction, as well as nominally less social avoidance, less submission during defeat, and resilience to the effects of social stress on corticosterone, in a manner that seemed more notable in bLRs. For bHRs, enrichment also caused greater aggression during a neutral social encounter and nominally during defeat, and decreased anxiety-like behavior. To explore the neurobiology underlying the development of social resilience in the anxious phenotype bLRs, RNA-seq was conducted on the hippocampus and nucleus accumbens, two brain regions that mediate stress regulation and social behavior. Gene sets previously associated with stress, social behavior, aggression and exploratory activity were enriched with differential expression in both regions, with a particularly large effect on gene sets that regulate social behaviors. Our findings provide further evidence that adolescent enrichment can serve as an inoculating experience against future stressors. The ability to induce social resilience in a usually anxious line of animals by manipulating their environment has translational implications, as it underscores the feasibility of intervention strategies targeted at genetically vulnerable adolescent populations.

8.
Anim Reprod Sci ; 267: 107522, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901082

ABSTRACT

Environmental enrichment is used to provide well-being to the animals, such as fish, in captive conditions, mimicking their natural habitat. It may influence fish behavior, physiology, and survival. In terms of reproduction, however, the relationship between environment enrichment and successful reproduction in captivity is still poorly explored in fish species. Aiming to understand any possible benefits of structural enrichment on fish reproduction, 10-days-hatched larvae of the twospot astyanax Astyanax bimaculatus were raised for 18 weeks in tanks with different elements of structural environmental enrichment (PVC pipes, stones, and artificial plants). In the 5th month of life, those animals were hormonally induced to reproduce to assess gamete formation and offspring quality. Animals raised in a sterile-reared environment (non-enriched) showed earlier spawning than the enriched one, presenting significant quantities of Postovulatory follicle complexes (POCs) and cells in atresia in female ovaries, indicating possible reproductive dysfunction or stress, as well as a greater quantity of empty testicular lumen in males, indicating great release of sperm. On the contrary, animals cultivated in enriched environments showed gonads filled with semen in males and vitellogenic oocytes in females. Furthermore, offspring from the sterile-reared group presented significant rates of larval abnormality compared to the enriched group. In conclusion, the results of this study show that environmental enrichment can interfere with the reproduction of fish in captivity, mainly by preventing early maturation of gametes, which can result in low-quality offspring and, consequently, low production of fish species.


Subject(s)
Characidae , Gametogenesis , Reproduction , Animals , Female , Male , Gametogenesis/physiology , Reproduction/physiology , Characidae/physiology , Environment , Aquaculture
9.
Front Neurosci ; 18: 1368411, 2024.
Article in English | MEDLINE | ID: mdl-38919908

ABSTRACT

Introduction: Hippocampal neurogenesis is critical for improving learning, memory, and spatial navigation. Inhabiting and navigating spatial complexity is key to stimulating adult hippocampal neurogenesis (AHN) in rodents because they share similar hippocampal neuroplasticity characteristics with humans. AHN in humans has recently been found to persist until the tenth decade of life, but it declines with aging and is influenced by environmental enrichment. This systematic review investigated the impact of spatial complexity on neurogenesis and hippocampal plasticity in rodents, and discussed the translatability of these findings to human interventions. Methods: Comprehensive searches were conducted on three databases in English: PubMed, Web of Science, and Scopus. All literature published until December 2023 was screened and assessed for eligibility. A total of 32 studies with original data were included, and the process is reported in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement and checklist. Results: The studies evaluated various models of spatial complexity in rodents, including environmental enrichment, changes to in-cage elements, complex layouts, and navigational mazes featuring novelty and intermittent complexity. A regression equation was formulated to synthesize key factors influencing neurogenesis, such as duration, physical activity, frequency of changes, diversity of complexity, age, living space size, and temperature. Conclusion: Findings underscore the cognitive benefits of spatial complexity interventions and inform future translational research from rodents to humans. Home-cage enrichment and models like the Hamlet complex maze and the Marlau cage offer insight into how architectural design and urban navigational complexity can impact neurogenesis in humans. In-space changing complexity, with and without physical activity, is effective for stimulating neurogenesis. While evidence on intermittent spatial complexity in humans is limited, data from the COVID-19 pandemic lockdowns provide preliminary evidence. Existing equations relating rodent and human ages may allow for the translation of enrichment protocol durations from rodents to humans.

10.
Biol Futur ; 75(2): 193-197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710982

ABSTRACT

Dolphins in the wild cooperate to find food, gain and maintain access to mating partners, look after their young ones, or for the sheer joy of play. Under human care, environmental enrichments provide mental and physical stimulation and opportunities for the dolphins to practice their natural abilities. In this review, I focus on a set of enrichment devices we designed for cooperative problem-solving. They allowed the dolphins to utilize and improve their cognitive skills, leading to improved socialization within the group. While the devices provided appropriate challenges to the dolphins, they also allowed the investigation of the impact of demographic and social factors on the cooperative actions. We found that age and relatedness had no impact on cooperation; in turn, cooperation increased with group size. In addition, during the use of these cognitive enrichments, partner preference and intersexual differences were revealed in cooperative actions. The novel multi-partner devices were not only used by dolphin pairs but also by dolphin trios and quartets, providing evidence for group-level cooperation. In addition, a novel food-sharing device was used prosocially by dolphin pairs. Finally, the introduction of these cognitive enrichments leads to measurable short- and long-term welfare improvement. Thus, the use of these cognitive enrichments paired with systematic data collection bridged science with welfare. Future studies will investigate intersexual differences in independent groups, the emergence and function of cooperative interactions, and the socio-dynamics using cognitive enrichments.


Subject(s)
Bottle-Nosed Dolphin , Animals , Bottle-Nosed Dolphin/physiology , Bottle-Nosed Dolphin/psychology , Social Behavior , Behavior, Animal/physiology , Cooperative Behavior , Male , Female
11.
Animal ; 18(6): 101157, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744228

ABSTRACT

The comb is an ornament involved in signalling condition in domestic fowl. We hypothesised that comb size, comb shape complexity (i.e., rugosity, the comb perimeter jaggedness), and comb laterality of laying hens would be influenced by the degree of environmental enrichment experienced during juvenile development in the form of resource choice. We conducted a 2 × 2 factorial crossover experiment with pullets reared in pens containing four perches of equal length and four litter areas of equal size. Pullets were exposed to a single choice vs multiple choices of perch and litter types (i.e., all the same vs all different) during Weeks 1-4 (Period 1) and/or Weeks 5-15 (Period 2) of rearing (n = 4 pens/treatment combination) prior to transfer to standard adult laying pens for Weeks 16-27 (Period 3). In Week 27, combs were photographed, and comb laterality (hanging on left or right side) was noted. Using a custom-made image analysis programme, we captured comb area (mm2), perimeter length (mm), and rugosity ((perimeter length - horizontal length) / horizontal length) from comb photographs of 6-7 randomly selected hens/pen. We predicted that hens reared in the multi-choice environment during Periods 1 and 2 would have larger, more complex, and left-side-biased combs than those in the other treatment groups, reflecting lower allostatic load. The predicted comb side bias was based on a possible bias in head posture/movements associated with greater right eye/ear use and left-brain hemispheric dominance. Contrary to our predictions, we detected an overall right-side bias in comb laterality, and no associations between resource choice treatment in Period 1 or Period 2 and comb area, perimeter length, rugosity, or laterality of the adult hens. Thus, variation in allostatic load resulting from the rearing treatments was insufficient to modify the trajectory of comb morphological development, possibly due to a ceiling effect when comparing environmental treatments on the positive end of the welfare spectrum. We found that left-lopping combs had shorter perimeters than right-lopping combs. However, among hens with left-lopping combs, those with larger combs were heavier and had less feather damage, while among hens with right-lopping combs, those with longer-perimeter combs were heavier and tended to have less comb damage. In conclusion, comb characteristics were related to physical condition at the individual level but did not serve as sensitive integrated indicators of hen welfare in response to basic vs enhanced resource choice during rearing.


Subject(s)
Chickens , Animals , Chickens/physiology , Chickens/anatomy & histology , Chickens/growth & development , Female , Comb and Wattles/anatomy & histology , Comb and Wattles/physiology , Housing, Animal , Functional Laterality/physiology , Environment , Animal Husbandry/methods , Cross-Over Studies
12.
Pharmacol Biochem Behav ; 240: 173790, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761992

ABSTRACT

Ketamine is a rapid-acting antidepressant associated with various cognitive side effects. To mitigate these side effects while enhancing efficacy, it can be co-administered with other antidepressants. In our study, we adopted a similar strategy by combining ketamine with environmental enrichment, a potent sensory-motor paradigm, in adult male Wistar rats. We divided the animals into four groups based on a combination of housing conditions and ketamine versus vehicle injections. The groups included those housed in standard cages or an enriched environment for 50 days, which encompassed a 13-day-long behavioral testing period. Each group received either two doses of ketamine (20 mg/kg, IP) or saline as a vehicle. We tested the animals in the novel object recognition test (NORT), forced swim test (FST), open field test (OFT), elevated plus maze (EPM), and Morris water maze (MWM), which was followed by ex vivo c-Fos immunohistochemistry. We observed that combining environmental enrichment with ketamine led to a synergistic antidepressant effect. Environmental enrichment also ameliorated the spatial memory deficits caused by ketamine in the MWM. There was enhanced neuronal activity in the habenula of the enrichment only group following the probe trial of the MWM. In contrast, no differential activity was observed in enriched animals that received ketamine injections. The present study showed how environmental enrichment can enhance the antidepressant properties of ketamine while reducing some of its side effects, highlighting the potential of combining pharmacological and sensory-motor manipulations in the treatment of mood disorders.


Subject(s)
Antidepressive Agents , Ketamine , Memory Disorders , Rats, Wistar , Spatial Memory , Animals , Ketamine/pharmacology , Ketamine/administration & dosage , Male , Rats , Antidepressive Agents/pharmacology , Antidepressive Agents/administration & dosage , Memory Disorders/drug therapy , Memory Disorders/chemically induced , Spatial Memory/drug effects , Environment , Open Field Test/drug effects , Maze Learning/drug effects , Behavior, Animal/drug effects
13.
Biomed Pharmacother ; 175: 116729, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38776676

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) with depression causes severe cognitive impairments. The devastating conditions will further compromise the overall quality of life. The overconsumption of high-fat and high-sucrose (HFS) diet is one of the modifiable risk factors for T2D, depression, and cognitive impairments. Thus, it is essential to identify effective therapeutic strategies to overcome the cognitive impairments in T2D with depression. We proposed environmental enrichment (EE) which encompasses social, cognitive, and physical components as the alternative treatment for such impairments. We also investigated the potential neuroprotective properties of the antidiabetic drug metformin. This study aimed to investigate the effects of EE and metformin interventions on hippocampal neuronal death, and hippocampal-dependent memory impairment in T2D rats under stress. METHODS: Thirty-two male rats (200-250 g) were divided into four groups: C group (standard diet + conventional cage), DS group [HFS-induced T2D + restraint stress (RS)], DSE group [HFS-induced T2D + RS + EE] and DSEM group [HFS + RS + EE + metformin]. Serum corticosterone (CORT) was measured to evaluate stress levels. The serum Free Oxygen Radicals Testing (FORT) and Free Oxygen Radicals Defence Test (FORD) were measured to evaluate the systemic oxidative status (OS). Serum brain-derived neurotrophic factor (BDNF) and T-maze tasks were performed to evaluate cognitive functions. Rats were humanely sacrificed to collect brains for histological, morphometric, and hippocampal gene expression studies. RESULTS: The CORT and the serum FORT levels in the DSE and DSEM groups were lower than in the DS group. Meanwhile, the serum BDNF, T-maze scores, histological, and morphometric analysis were improved in the DSE and DSEM groups than in the DS group. These findings supported that EE and the combined interventions of EE and metformin had neuroprotective properties. The hippocampal gene expression analysis revealed that the DSE and DSEM groups showed improved regulation of BDNF-TrkB signalling pathways, including the BDNF/TrkB binding, PI3K - Akt pathway, Ras-MAPK pathway, PLCγ-Ca2+ pathway, and CREB transcription. CONCLUSION: EE and the combined interventions of EE and metformin improved hippocampal neuron survival and hippocampal-dependent memory in T2D rats under stress by enhancing gene expression regulation of neurogenesis and synaptic plasticity.


Subject(s)
Brain-Derived Neurotrophic Factor , Cell Survival , Diabetes Mellitus, Type 2 , Hippocampus , Memory , Metformin , Neurons , Receptor, trkB , Signal Transduction , Stress, Psychological , Animals , Metformin/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Male , Hippocampus/drug effects , Hippocampus/metabolism , Signal Transduction/drug effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Rats , Neurons/drug effects , Neurons/metabolism , Memory/drug effects , Stress, Psychological/complications , Stress, Psychological/drug therapy , Cell Survival/drug effects , Receptor, trkB/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Environment , Memory Disorders/drug therapy , Rats, Wistar
14.
Brain Inj ; 38(9): 742-749, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-38695288

ABSTRACT

BACKGROUND: The use of Environmental Enrichment (EE) has been widely studied in animal models. However, the application of the same in humans is limited to rehabilitation settings. OBJECTIVE: To investigate the feasibility of a community-based EE paradigm in adults with brain injury. METHODS: Six individuals diagnosed with traumatic brain injury enrolled in the study. The Go Baby Go Café instrumented with a body weight harness system, provided physical and social enrichment as participants performed functional tasks for 2 hours, three times a week, for 2 months. Feasibility and safety outcomes were recorded throughout sessions. Clinical measures including 10-meter walk, timed up and go, jebsen hand function, 6-minute walk, and trail making tests were obtained pre and post intervention. RESULTS: All participants completed the study. The attendance was 100% and adherence was 87%. Positive changes in clinical measures were statistically significant for the timed up and go (p = 0.0175), TUG-cognitive (p = 0.0064), 10-meter walk (p = 0.0428), six-minute walk (p = 0.0196), TMT-A (p = 0.034). Changes in JHFT were not significant (p = 0.0506), with one subject recording values counter to the trend. CONCLUSION: The Café was a comprehensive EE-based intervention that was feasible, safe, and has the potential to enhance motor and cognitive function in individuals with brain injury.


Subject(s)
Brain Injuries, Traumatic , Feasibility Studies , Humans , Male , Pilot Projects , Female , Adult , Brain Injuries, Traumatic/rehabilitation , Middle Aged , Environment , Treatment Outcome , Young Adult
15.
J Headache Pain ; 25(1): 74, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724948

ABSTRACT

BACKGROUND: Chronic migraine (CM) is a debilitating neurofunctional disorder primarily affecting females, characterized by central sensitization. Central sensitization refers to the enhanced response to sensory stimulation, which involves changes in neuronal excitability, synaptic plasticity, and neurotransmitter release. Environmental enrichment (EE) can increase the movement, exploration, socialization and other behaviors of mice. EE has shown promising effects in various neurological disorders, but its impact on CM and the underlying mechanism remains poorly understood. Therefore, the purpose of this study was to determine whether EE has the potential to serve as a cost-effective intervention strategy for CM. METHODS: A mouse CM model was successfully established by repeated administration of nitroglycerin (NTG). We selected adult female mice around 8 weeks old, exposed them to EE for 2 months, and then induced the CM model. Nociceptive threshold tests were measured using Von Frey filaments and a hot plate. The expression of c-Fos, calcitonin gene-related peptide (CGRP) and inflammatory response were measured using WB and immunofluorescence to evaluate central sensitization. RNA sequencing was used to find differentially expressed genes and signaling pathways. Finally, the expression of the target differential gene was investigated. RESULTS: Repeated administration of NTG can induce hyperalgesia in female mice and increase the expression of c-Fos and CGRP in the trigeminal nucleus caudalis (TNC). Early exposure of mice to EE reduced NTG-induced hyperalgesia in CM mice. WB and immunofluorescence revealed that EE inhibited the overexpression of c-Fos and CGRP in the TNC of CM mice and alleviated the inflammatory response of microglia activation. RNA sequencing analysis identified that several central sensitization-related signaling pathways were altered by EE. VGluT1, a key gene involved in behavior, internal stimulus response, and ion channel activity, was found to be downregulated in mice exposed to EE. CONCLUSION: EE can significantly ameliorate hyperalgesia in the NTG-induced CM model. The mechanisms may be to modulate central sensitization by reducing the expression of CGRP, attenuating the inflammatory response, and downregulating the expression of VGluT1, etc., suggesting that EE can serve as an effective preventive strategy for CM.


Subject(s)
Central Nervous System Sensitization , Disease Models, Animal , Hyperalgesia , Migraine Disorders , Nitroglycerin , Animals , Nitroglycerin/toxicity , Migraine Disorders/chemically induced , Migraine Disorders/metabolism , Hyperalgesia/chemically induced , Female , Central Nervous System Sensitization/drug effects , Central Nervous System Sensitization/physiology , Mice , Calcitonin Gene-Related Peptide/metabolism , Environment , Mice, Inbred C57BL
16.
Animals (Basel) ; 14(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731300

ABSTRACT

Fish models used for chemical exposure in toxicological studies are normally kept in barren tanks without any structural environmental enrichment. Here, we tested the combined effects of environmental enrichment and exposure to two mixtures of endocrine disrupting chemicals (EDCs) in zebrafish. Firstly, we assessed whether developmental exposure to an EDC mixture (MIX G1) combined with rearing the fish in an enriched environment influenced behaviour later in life. This was evaluated using locomotion tracking one month after exposure, showing a significant interaction effect between enrichment and the MIX G1 exposure on the measured locomotion parameters. After three months, we assessed behaviour using custom-made behaviour tanks, and found that enrichment influenced swimming activity. Control fish from the enriched environment were more active than control fish from the barren environment. Secondly, we exposed adult zebrafish to a separate EDC mixture (MIX G0) after rearing them in a barren or enriched environment. Behaviour and hepatic mRNA expression for thyroid-related genes were assessed. There was a significant interaction effect between exposure and enrichment on swimming activity and an effect of environment on latency to approach the group of conspecifics, where enriched fish took more time to approach the group, possibly indicating that they were less anxious. Hepatic gene expression of a thyroid-related gene (thrb) was significantly affected by EDC exposure, while enrichment had no discernible impact on the expression of the measured genes. In conclusion, environmental enrichment is important to consider when studying the effects of EDCs in fish.

17.
Animals (Basel) ; 14(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791707

ABSTRACT

The effects of sound stimulation as a sensorial environmental enrichment for captive animals have been studied. When appropriately implemented for farm animals, it can improve welfare, health, and productivity. Furthermore, there are indications that music can induce positive emotions in non-human animals, similar to humans. Emotion is a functional state of the organism involving both physiological processes, mediated by neuroendocrine regulation, and changes in behavior, affecting various aspects, including contextual perception and welfare. As there is very limited information on non-human animals, the objective of this review is to highlight what is known about these processes from human biological and comparative perspectives and stimulate future research on using music to improve animal welfare.

18.
Neurotoxicology ; 103: 9-15, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38801998

ABSTRACT

Environmental factors can modify addictive responses induced by drugs of abuse; however, little is known about the impact of environmental conditions on behavioral responses induced by inhalants. In this study, we analyzed the effects of housing conditions, considering environmental enrichment (EE; n = 10), social isolation (SI; n = 10), and standard housing (STD; n = 10), as positive, negative, and control environments, respectively, on the development and persistence of behavioral sensitization induced by toluene. Mice exposed to air were used as a comparative control groups for each housing condition (EE: n = 11, SI: n = 10 and STD: n = 11). Results showed that a history of toluene exposure induced the development of locomotor sensitization in mice, independent of their housing conditions. However, SI increased the expression of behavioral sensitization to toluene after a drug-free period.

19.
Behav Processes ; 218: 105045, 2024 May.
Article in English | MEDLINE | ID: mdl-38692461

ABSTRACT

Growing evidence reveals notable phenotypic plasticity in cognition among teleost fishes. One compelling example is the positive impact of enriched environments on learning performance. Most studies on this effect have focused on juvenile or later life stages, potentially overlooking the importance of early life plasticity. To address this gap, we investigated whether cognitive plasticity in response to environmental factors emerges during the larval stage in zebrafish. Our findings indicate that larvae exposed to an enriched environment after hatching exhibited enhanced habituation learning performance compared to their counterparts raised in a barren environment. This work underscores the presence of developmental phenotypic plasticity in cognition among teleost fish, extending its influence to the very earliest stages of an individual's life.


Subject(s)
Environment , Larva , Learning , Zebrafish , Animals , Zebrafish/physiology , Larva/physiology , Learning/physiology , Habituation, Psychophysiologic/physiology , Cognition/physiology , Behavior, Animal/physiology
20.
Front Behav Neurosci ; 18: 1380031, 2024.
Article in English | MEDLINE | ID: mdl-38817806

ABSTRACT

Background: Excessive alcohol consumption leads to serious health problems. Mechanisms regulating the consumption of alcohol are insufficiently understood. Previous preclinical studies suggested that non-social environmental and social environmental complexities can regulate alcohol consumption in opposite directions. However, previous studies did not include all conditions and/or did not include female rodents. Therefore, in this study, we examined the effects of social versus single housing in standard versus non-standard housing conditions in male and female mice. Methods: Adult C57BL/6 J mice were housed in either standard shoebox cages or in automated Herdsman 2 (HM2) cages and exposed to a two-bottle choice procedure with 3% or 6% ethanol versus water for 5 days. The HM2 cages use radiotracking devices to measure the fluid consumption of individual mice in an undisturbed and automated manner. In both housing conditions, mice were housed either at one or at four per cage. Results: In standard cages, group housing of animals decreased alcohol consumption and water consumption. In HM2 cages, group housing significantly increased ethanol preference and decreased water intake. There were no significant differences in these effects between male and female animals. These observations were similar for 3 and 6% ethanol solutions but were more pronounced for the latter. The effects of social environment on ethanol preference in HM2 cages were accompanied by an increase in the number of approaches to the ethanol solution and a decrease in the number of approaches to water. The differences in ethanol intake could not be explained by differences in locomotor or exploratory activity as socially housed mice showed fewer non-consummatory visits to the ethanol solutions than single-housed animals. In addition, we observed that significant changes in behaviors measuring the approach to the fluid were not always accompanied by significant changes in fluid consumption, and vice versa, suggesting that it is important to assess both measures of motivation to consume alcohol. Conclusion: Our results indicate that the direction of the effects of social environment on alcohol intake in mice depends on the non-social housing environment. Understanding mechanisms by which social and non-social housing conditions modulate alcohol intake could suggest approaches to counteract environmental factors enhancing hazardous alcohol consumption.

SELECTION OF CITATIONS
SEARCH DETAIL
...