Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.596
Filter
1.
Food Chem ; 463(Pt 1): 141031, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39236381

ABSTRACT

Ficus auriculata Lour. (Moraceae) is an underutilized wild edible fruit widely consumed for its nutritional properties. The present study aimed to determine the phytochemical composition and in vitro antioxidant, enzyme inhibitory, anti-inflammatory and anti-cancerous properties of the F. auriculata fruit extracts through in vitro digestion (oral, gastric and intestinal phases). The extracts were obtained by hot extraction and cold maceration methods using aqueous and methanolic solvents. Major phytoconstituents identified through LC-MS was subjected to molecular docking against the target proteins. The elemental analysis shows the presence of major elements; high levels of total phenolics (124.61 ± 0.82 mg gallic acid equivalent/g), flavonoids (76.38 ± 0.82 mg quercetin equivalent/g), vitamin E (32.48 ± 0.09 mg alpha-tocopherol equivalent/g), and carbohydrate (34.59 ± 0.45 mg glucose equivalent/g) in hot extracted methanolic undigested extract (HEM UD) and high level of total protein (124.71 ± 0.34 mg bovine serum albumin equivalent/g) in cold extracted methanolic undigested fruit extract were found. HEM UD showed high antioxidant activity in 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), 2,2-diphenyl-1-picryl-hydrazyl, and superoxide radical scavenging assays with IC50 of 53.30 ± 0.57, 80.69 ± 0.12, and 65.47 ± 1.13 µg/mL, respectively. The HEM UD extract also potentially inhibited the enzyme activity of α-amylase, α-glucosidase, tyrosinase, and protein denaturation (IC50 of 67.76 ± 1.22, 83.18 ± 1.23, 87.24 ± 1.15, and 65.76 ± 0.60 µg/mL). The most potent extract (HEM UD) was studied for its anticancer effects by MTT assay against the MCF-7 and HeLa cell lines and showed the IC50 of 89.80 ± 0.56 and 60.76 ± 0.04 µg/mL, respectively. The LC-MS analysis elucidated ten phytoconstituents. Based on the molecular docking study, querciturone could potentially be an effective constituent in treating diabetes and inflammation-related issues. The findings indicated the ability of F. auriculata fruits as a promising functional food.

2.
BBA Adv ; 6: 100119, 2024.
Article in English | MEDLINE | ID: mdl-39246819

ABSTRACT

Pain arising from trigeminal systems such as headache is common, debilitating, and current treatments (e.g., sumatriptan) are limited. New treatments that target novel mechanisms of action may be required to innovate both short- and long-term pain therapy. Fatty acid amide hydrolase and soluble epoxide hydrolase are two pain-related enzymes that regulate pain and inflammation via independent pathways. We have previously demonstrated that simultaneous inhibition of these enzymes using a novel dual inhibitor alleviates acute inflammatory pain in the hindpaw and does not depress wheel running in rats. Here, we expanded on these findings and performed structure-activity relationships of our lead compound, the 4-phenyl-thiazole-based dual inhibitor SW-17, to generate 18 analogs and tested them for their inhibition at both enzymes. Conversion of the sulfonamide group to a tertiary amine led to a general decrease in the potency for the sEH enzyme, while this change was well-tolerated at the FAAH enzyme yielding several strong inhibitors. Six selected inhibitors were evaluated in mouse and rat sEH inhibition assays and results showed a species difference, i.e. 4-phenyl-thiazole-based analogs are significantly less or not active in mouse sEH compared to human and rat enzymes. The most potent inhibitor, SW-17, was evaluated in a plasma stability assay in human and rat plasma and showed moderate stability. However, SW-17 did not alleviate orofacial inflammatory pain in female rats compared to the traditional anti-migraine agent sumatriptan. Although modification of 4-phenyl-thiazole-based dual inhibitor SW-17 changes potencies at both FAAH and sEH, these approaches may not produce antinociception against trigeminal pain. Key Words: polypharmacology, formalin, inflammation, enzyme inhibition, structure-activity relationship studies.

3.
Chem Biol Drug Des ; 104(3): e14605, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39231795

ABSTRACT

A novel and efficient protocol for the microwave-assisted synthesis of diversely substituted 2,2'-bisbenzimidazol-5,6'-dicarboxylic acid (BIMCA) from the reaction of 3,4-diaminobenzoic acid with oxalic acid has been developed, which proceeds through sequential nucleophilic addition and electrophilic substitution in accordance with the Philips method. The synthetic utility of this strategy was demonstrated by the concise, one-pot synthesis of (BIMCA) and metal complexes. (BIMCA) with a [{Fe(salen)}2O] Schiff base ligand complex and new benzimidazole coordination compounds with double oxygen [(BIMCA){Fe(salen)}2] ligand complexes were obtained. The resulting [(BIMCA){Fe(salen)}2] ligand complex was then synthesized from Co(CH3COO)2.4H2O, Ni(CH3COO)2.4H2O and Cu(CH3COO)2.H2O heteronuclear complexes. The condensations proceed with good yield to give products that, in certain instances, are not readily attainable by conventional condensation techniques. The structures of the compounds were identified by Fourier-transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), elemental analysis and magnetic susceptibility. The mutagenic potential of the synthesized chemicals was evaluated by the Ames test towards mutant Salmonella typhimurium strains TA98 and TA100. It was recorded that these chemicals had no mutagenic action. Also, antimicrobial activities were screened by broth microdilution test. It was seen that the minimum inhibitory concentration (MIC) against Klebsiella pneumoniae, Staphylococcus aureus and Staphylococcus epidermidis was 0.195 mg/mL, followed by a MIC value of 0.390 mg/mL against Escherichia coli and Salmonella typhimurium. [(BIMCA){Fe(salen)}2Co(II)] demonstrated significant antimicrobial activity against Proteus mirabilis and Staphylococcus aureus, with an MIC of 0.195 mg/mL, followed by an MIC of 0.390 mg/mL against Pseudomonas aeruginosa, K. pneumonia and Salmonella typhimurium. The antioxidant properties were examined using various chemical assays, and [(BIMCA){Fe(salen)}2O] and (BIMCA) exhibited greater 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability, when compared with other compounds. Enzyme inhibitory effects were tested against acetylcholinesterase (AChE), amylase, butyrylcholinesterase (BChE) and tyrosinase. [(BIMCA){Fe(salen)}2Cu(II)] displayed the best AChE (IC50 0.51 mg/mL), BChE (IC50 0.51 mg/mL) and tyrosinase (IC50 1.52 mg/mL) inhibitory effects. Furthermore, molecular docking calculations were performed to gain insights into the interaction between [(BIMCA){Fe(salen)}2] and AChE, and between [(BIMCA){Fe(salen)}2Cu(II)] and amylase. Both compounds showed the potential inhibition of the protein targets.


Subject(s)
Anti-Bacterial Agents , Benzimidazoles , Coordination Complexes , Microbial Sensitivity Tests , Microwaves , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Bacteria/drug effects , Klebsiella pneumoniae/drug effects , Staphylococcus aureus/drug effects , Molecular Docking Simulation
4.
Biomed Pharmacother ; 179: 117357, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39232382

ABSTRACT

INTRODUCTION: Obesity is a chronic noncommunicable disease characterized by excessive body fat that can have negative health consequences. Obesity is a complex disease caused by a combination of genetic, environmental, and lifestyle factors. It is characterized by a discrepancy between caloric intake and expenditure. Obesity increases the risk of acquiring major chronic diseases, including heart disease, stroke, cancer, and Type 2 diabetes mellitus (T2DM). Currently, the inhibition of pancreatic lipases (PL) is a promising pharmacological therapy for obesity and weight management. In this study, the inhibition of pancreatic lipase by Cannabis sativa (C. sativa) plant extract and cannabinoids was investigated. METHODS: The inhibitory effect was assessed using p-nitrophenyl butyrate (pNPB), and the results were obtained by calculating the percentage relative activity and assessed using one-way analysis of variance (ANOVA). Kinetic studies and spectroscopy techniques were used to evaluate the mode of inhibition. Diet-induced; and diabetic rat models were studied to evaluate the direct effects of C. sativa extract on PL activity. RESULTS: Kinetic analyses showed that the plant extracts inhibited pancreatic lipase, with tetrahydrocannabinol (THC) and cannabinol (CBN) being the potential cause of the inhibition noted for the C. sativa plant extract. CBN and THC inhibited the pancreatic lipase activity in a competitive manner, with the lowest residual enzyme activity of 52 % observed at a 10 µg/mL concentration of CBN and 39 % inhibition at a 25 µg/mL concentration of THC. Circular dichroism (CD) spectroscopy revealed that the inhibitors caused a change in the enzyme's secondary structure. At low concentrations, THC showed potential for synergistic inhibition with orlistat. C.sativa treatment in an in vivo rat model confirmed its inhibitory effects on pancreatic lipase activity. CONCLUSION: The findings in this study provided insight into the use of cannabinoids as pancreatic lipase inhibitors and the possibility of using these compounds to develop new pharmacological treatments for obesity.

5.
Protein J ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222239

ABSTRACT

A diminutive chemical library of acyl thiotriazinoindole (ATTI) based bioactive scaffolds was synthesized, instigated by taking the economical starting material Isatin, through a series of five steps. Isatin was first nitrated followed by the attachment of pentyl moiety via nucleophilic substitution reaction. The obtained compound was reacted with thiosemicarbazide to obtain thiosemicarbazone derivative, which was eventually cyclized using basic conditions in water as solvent. Finally, the reported series was obtained through reaction of nitrated thiotriazinoindole moiety with differently substituted phenacyl bromides. The synthesized compounds were characterized using NMR spectroscopy and elemental analysis. Finally, the synthesized motifs were scrutinized for their potential to impede urease, α-glucosidase, DPPH, and α-amylase. Compound 5 h with para cyano group manifested the most pivotal biological activity among all, displaying IC50 values of 29.7 ± 0.8, 20.5 ± 0.5 and 36.8 ± 3.9 µM against urease, α-glucosidase, and DPPH assay, respectively. Simultaneously, for α-amylase compound 5 g possessing a p-CH3 at phenyl ring unfolded as most active, with calculated IC50 values 90.3 ± 1.1 µM. The scaffolds were additionally gauged for their antifungal and antibacterial activity. Among the tested strains, 5d having bromo as substituent exhibited the most potent antibacterial activity, while it also demonstrated the highest potency against Aspergillus fumigatus. Other derivatives 5b, 5e, 5i, and 5j also exhibited dual inhibition against both antibacterial and antifungal strains. The interaction pattern of derivatives clearly displayed their SAR, and their docking scores were correlated with their IC50 values. In molecular docking studies, the importance of interactions like hydrogen bonding was further asserted. The electronic factors of various substituents engendered variety of interactions between the ligands and targets implying their importance in the structures of the synthesized heterocyclic scaffolds. To conclude, the synthesized compounds had satisfactory biological activity against various important targets. Further studies are therefore encouraged by attachment of different substitutions in the structure at various positions to enhance the activity of these compounds.

6.
Bioorg Chem ; 151: 107705, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39137600

ABSTRACT

The increasing prevalence of drug-resistant Mycobacterium tuberculosis strains stimulates the discovery of new drug candidates. Among them are 8-hydroxyquinoline (8HQ) derivatives that exhibited antimicrobial properties. Unfortunately, there is a lack of data assessing possible targets for this class mainly against Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (MtInhA), a validated target in this field. Thus, the main purpose of this study was to identify 8HQ derivatives that are active against M. tuberculosis and MtInhA. Initially, the screening against the microorganism of a small antimicrobial library and its new derivatives that possess some structural similarity with MtInhA inhibitors identified four 7-substituted-8HQ (series 5 - 5a, 5c, 5d and 5i) and four 5-substituted-8HQ active derivatives (series 7 - 7a, 7c, 7d and 7j). In general, the 7-substituted 8-HQs were more potent and, in the enzymatic assay, were able to inhibit MtInhA at low micromolar range. However, the 5-substituted-8-HQs that presented antimycobacterial activity were not able to inhibit MtInhA. These findings indicate the non-promiscuous nature of 8-HQ derivatives and emphasize the significance of selecting appropriate substituents to achieve in vitro enzyme inhibition. Finally, 7-substituted-8HQ series are promising new derivatives for structure-based drug design and further development.


Subject(s)
Antitubercular Agents , Enzyme Inhibitors , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Oxyquinoline , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Structure-Activity Relationship , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Molecular Structure , Oxyquinoline/chemistry , Oxyquinoline/pharmacology , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/antagonists & inhibitors , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism , Dose-Response Relationship, Drug
7.
Protein Sci ; 33(7): e5072, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39133178

ABSTRACT

Δ1-pyrroline-5-carboxylate reductase isoform 1 (PYCR1) is the last enzyme of proline biosynthesis and catalyzes the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate to L-proline. High PYCR1 gene expression is observed in many cancers and linked to poor patient outcomes and tumor aggressiveness. The knockdown of the PYCR1 gene or the inhibition of PYCR1 enzyme has been shown to inhibit tumorigenesis in cancer cells and animal models of cancer, motivating inhibitor discovery. We screened a library of 71 low molecular weight compounds (average MW of 131 Da) against PYCR1 using an enzyme activity assay. Hit compounds were validated with X-ray crystallography and kinetic assays to determine affinity parameters. The library was counter-screened against human Δ1-pyrroline-5-carboxylate reductase isoform 3 and proline dehydrogenase (PRODH) to assess specificity/promiscuity. Twelve PYCR1 and one PRODH inhibitor crystal structures were determined. Three compounds inhibit PYCR1 with competitive inhibition parameter of 100 µM or lower. Among these, (S)-tetrahydro-2H-pyran-2-carboxylic acid (70 µM) has higher affinity than the current best tool compound N-formyl-l-proline, is 30 times more specific for PYCR1 over human Δ1-pyrroline-5-carboxylate reductase isoform 3, and negligibly inhibits PRODH. Structure-affinity relationships suggest that hydrogen bonding of the heteroatom of this compound is important for binding to PYCR1. The structures of PYCR1 and PRODH complexed with 1-hydroxyethane-1-sulfonate demonstrate that the sulfonate group is a suitable replacement for the carboxylate anchor. This result suggests that the exploration of carboxylic acid isosteres may be a promising strategy for discovering new classes of PYCR1 and PRODH inhibitors. The structure of PYCR1 complexed with l-pipecolate and NADH supports the hypothesis that PYCR1 has an alternative function in lysine metabolism.


Subject(s)
Enzyme Inhibitors , Proline , Pyrroline Carboxylate Reductases , delta-1-Pyrroline-5-Carboxylate Reductase , Pyrroline Carboxylate Reductases/metabolism , Pyrroline Carboxylate Reductases/antagonists & inhibitors , Pyrroline Carboxylate Reductases/chemistry , Pyrroline Carboxylate Reductases/genetics , Humans , Crystallography, X-Ray , Proline/chemistry , Proline/analogs & derivatives , Proline/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Molecular Weight , Proline Oxidase/metabolism , Proline Oxidase/chemistry , Proline Oxidase/antagonists & inhibitors , Proline Oxidase/genetics , Models, Molecular
8.
Drug Metab Pharmacokinet ; 57: 101023, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39088906

ABSTRACT

Rosiglitazone is an activator of nuclear peroxisome proliferator-activated (PPAR) receptor gamma used in the treatment of type 2 diabetes mellitus. The elimination of rosiglitazone occurs mainly via metabolism, with major contribution by enzyme cytochrome P450 (CYP) 2C8. Primary routes of rosiglitazone metabolism are N-demethylation and hydroxylation. Modulation of CYP2C8 activity by co-administered drugs lead to prominent changes in the exposure of rosiglitazone and its metabolites. Here, we attempt to develop mechanistic parent-metabolite physiologically based pharmacokinetic (PBPK) model for rosiglitazone. Our goal is to predict potential drug-drug interaction (DDI) and consequent changes in metabolite N-desmethyl rosiglitazone exposure. The PBPK modeling was performed in the PKSim® software using clinical pharmacokinetics data from literature. The contribution to N-desmethyl rosiglitazone formation by CYP2C8 was delineated using vitro metabolite formation rates from recombinant enzyme system. Developed model was verified for prediction of rosiglitazone DDI potential and its metabolite exposure based on observed clinical DDI studies. Developed model exhibited good predictive performance both for rosiglitazone and N-desmethyl rosiglitazone respectively, evaluated based on commonly acceptable criteria. In conclusion, developed model helps with prediction of CYP2C8 DDI using rosiglitazone as a substrate, as well as changes in metabolite exposure. In vitro data for metabolite formation can be successfully utilized to translate to in vivo conditions.


Subject(s)
Cytochrome P-450 CYP2C8 , Drug Interactions , Models, Biological , Rosiglitazone , Rosiglitazone/pharmacokinetics , Rosiglitazone/metabolism , Rosiglitazone/pharmacology , Cytochrome P-450 CYP2C8/metabolism , Humans , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/metabolism , Thiazolidinediones/pharmacokinetics , Thiazolidinediones/metabolism
9.
J Food Sci ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138636

ABSTRACT

Mushrooms have been essential to the human diet because they contain balanced chemical components and some biologically active substances. In this work, we investigated the phenolics, essential oils, metal contents, antioxidant, antibacterial, DNA protective, and enzyme inhibition activities for Clitocybe geotropa, Ramaria aurea, Rhizopogon luteolus (RL), Russula delica (RD), Verpa bohemica, and Marasmius oreades mushrooms. Results exhibited a higher content for citric and succinic acids in all tested kinds. Further, we detected a high content of cis-9-oleic acid, linoleate, and cis-11-eicosanoate. All mushroom species contain a significant percentage of both Cu and Zn. Moreover, RL and RD recorded the highest phenolic and flavonoid contents. Furthermore, all samples showed standard to good antioxidant activity, and the same is true for the antibacterial and DNA protective activities. Enzyme inhibition activity was generally high and significantly higher against the urease than the thiourea. We applied molecular docking between the highest phenolic molecules with the urease to determine the mushroom extracts' high inhibition mechanism. In conclusion, all mushroom species revealed a variety in chemical content that is probably related to their multi-bioactivity.

10.
Xenobiotica ; : 1-6, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39105612

ABSTRACT

Cytochrome P450 (CYP) 2J2 is responsible for the epoxidation of arachidonic acid, producing epoxyeicosatrienoic acids (EETs) that are known to enhance tumorigenesis. CYP2J2 is prominently expressed in the heart and also found in the lungs. Furthermore, the expression level of CYP2J2 in tumour tissues is higher than that in adjacent normal tissues. Non-small cell lung carcinoma is a common cancer, and tyrosine kinase inhibitors (TKIs) are powerful tools for its treatment. This study aimed to elucidate the inhibitory effects of 17 TKIs on CYP2J2 activity using LC-MS/MS.Seventeen TKIs exhibited different inhibitory effects on CYP2J2-catalysed astemizole O-demethylation in recombinant CYP2J2. Pralsetinib and selpercatinib showed strong competitive inhibition, with inhibition constant values of 0.48 and 1.1 µM, respectively. They also inhibited other CYP2J2 activities, including arachidonic acid epoxidation, hydroxyebastine carboxylation, and rivaroxaban hydroxylation.In conclusion, we showed that pralsetinib and selpercatinib strongly inhibit CYP2J2 activity. Inhibition of 14,15-EET production by these TKIs may be a novel mechanism for suppressing tumour growth and proliferation. Additionally, when these TKIs are co-administered with a CYP2J2 substrate, we may consider the possibility of drug-drug interactions via CYP2J2 inhibition.

11.
Foods ; 13(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39123605

ABSTRACT

Recent consumer demand for non-dairy alternatives has forced many manufacturers to turn their attention to cereal-based non-alcoholic fermented products. In contrast to fermented dairy products, there is no defined and standardized starter culture for manufacturing cereal-based products. Since spontaneous fermentation is rarely suitable for large-scale commercial production, it is not surprising that manufacturers have started to adopt centuries-known dairy starters based on lactic acid bacteria (LABs) for the fermentation of cereals. However, little is known about the fermentation processes of cereals with these starters. In this study, we combined various analytical tools in order to understand how the most common starter cultures of LABs affect the most common types of cereals during fermentation. Specifically, 3% suspensions of rice, oat, and wheat flour were fermented by the pure cultures of 16 LAB strains belonging to five LAB species-Lacticaseibacillus paracasei, Lactobacillus delbrueckii, Lactobacillus helveticus, Streptococcus thermophilus, and Lactococcus lactis. The fermentation process was described in terms of culture growth and changes in the pH, reducing sugars, starch, free proteins, and free phenolic compounds. The organoleptic and rheological features of the obtained fermented products were characterized, and their functional properties, such as their antioxidant capacity and angiotensin-converting enzyme inhibitory activity, were determined.

12.
Plants (Basel) ; 13(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39124192

ABSTRACT

Halophytic plants possess a huge range of active constituents and medicinal benefits. In this study, extracts (water, ethanol, ethyl acetate, dichloromethane, and n-hexane) of two halophytes of the genus Petrosimonia (P. brachiata and P. nigdeensis) were investigated for their phytochemical profiles and pharmacological properties. The phytochemical profiles of both species were investigated using an untargeted metabolomics approach based on high-resolution mass spectrometry. The two species show different polyphenolic profiles and these are influenced by the different extraction solvents used. The same extracts were used for different bioactivity assays. The results show that all extracts yielded total flavonoid and phenolic contents of 11.14-24.22 mg GAE/g and 3.15-22.03 mg RE/g, respectively. While extracts of both species demonstrated a radical scavenging ability in the ABTS assay (16.12-98.02 mg TE/g), only the polar and moderately polar extracts (water, ethanol, and ethyl acetate) showed scavenging potential in the DPPH assay (4.74-16.55 mg TE/g). A reducing potential was also displayed by all extracts in the CUPRAC and FRAP assays (26.02-80.35 mg TE/g and 31.70-67.69 mg TE/g, respectively). The total antioxidant capacity of the extracts ranged from 0.24 to 2.17 mmol TE/g, and the metal chelating activity ranged from 14.74 to 33.80 mg EDTAE/g. The water extracts possessed a higher metal chelating power than the other extracts. All extracts acted as inhibitors of acetylcholinesterase (0.16-3.85 mg GALAE/g) and amylase (0.11-1.28 mmol ACAE/g). Moreover, apart from the water extracts, the other extracts also showed anti-butyrylcholinesterase activity (0.73-2.86 mg GALAE/g), as well as anti-tyrosinase (36.74-61.40 mg KAE/g) and anti-glucosidase (2.37-2.73 mmol ACAE/g) potential. In general, the water extracts were found to be weak inhibitors of the tested enzymes, while the ethanol extracts mostly showed an inhibitory effect. The obtained findings revealed the antioxidant and enzyme inhibitory properties of these two species and demonstrated that the solvent type used affected the pharmacological properties of the extracts and hence, can be useful to further investigate the active constituents yielded in the extracts and understand the mechanisms involved.

13.
Nutrients ; 16(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39125445

ABSTRACT

Researchers are increasingly interested in discovering new pancreatic lipase inhibitors as anti-obesity ingredients. Medicine-and-food homology plants contain a diverse set of natural bioactive compounds with promising development potential. This study screened and identified potent pancreatic lipase inhibitors from 20 commonly consumed medicine-and-food homology plants using affinity ultrafiltration combined with spectroscopy and docking simulations. The results showed that turmeric exhibited the highest pancreatic lipase-inhibitory activity, and curcumin, demethoxycurcumin, and bisdemethoxycurcumin were discovered to be potent pancreatic lipase inhibitors within the turmeric extract, with IC50 values of 0.52 ± 0.04, 1.12 ± 0.05, and 3.30 ± 0.08 mg/mL, respectively. In addition, the enzymatic kinetics analyses demonstrated that the inhibition type of the three curcuminoids was the reversible competitive model, and curcumin exhibited a higher binding affinity and greater impact on the secondary structure of pancreatic lipase than found with demethoxycurcumin or bisdemethoxycurcumin, as observed through fluorescence spectroscopy and circular dichroism. Furthermore, docking simulations supported the above experimental findings, and revealed that the three curcuminoids might interact with amino acid residues in the binding pocket of pancreatic lipase through non-covalent actions, such as hydrogen bonding and π-π stacking, thereby inhibiting the pancreatic lipase. Collectively, these findings suggest that the bioactive compounds of turmeric, in particular curcumin, can be promising dietary pancreatic lipase inhibitors for the prevention and management of obesity.


Subject(s)
Curcuma , Curcumin , Diarylheptanoids , Enzyme Inhibitors , Lipase , Molecular Docking Simulation , Pancreas , Lipase/antagonists & inhibitors , Curcumin/pharmacology , Curcumin/analogs & derivatives , Curcumin/chemistry , Curcuma/chemistry , Diarylheptanoids/pharmacology , Pancreas/enzymology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Plants, Medicinal/chemistry
14.
Antibiotics (Basel) ; 13(8)2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39200051

ABSTRACT

Bacteria are capable of remarkable adaptations to their environment, including undesirable bacterial resistance to antibacterial agents. One of the most serious cases is an infection caused by multidrug-resistant Staphylococcus aureus, which has unfortunately also spread outside hospitals. Therefore, the development of new effective antibacterial agents is extremely important to solve the increasing problem of bacterial resistance. The bacteriolytic enzyme autolysin E (AtlE) is a promising new drug target as it plays a key role in the degradation of peptidoglycan in the bacterial cell wall. Consequently, disruption of function can have an immense impact on bacterial growth and survival. An in silico and in vitro evaluation of iminosugar derivatives as potent inhibitors of S. aureus (AtlE) was performed. Three promising hit compounds (1, 3 and 8) were identified as AtlE binders in the micromolar range as measured by surface plasmon resonance. The most potent compound among the SPR response curve hits was 1, with a KD of 19 µM. The KD value for compound 8 was 88 µM, while compound 3 had a KD value of 410 µM.

15.
J Agric Food Chem ; 72(35): 19424-19435, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39172074

ABSTRACT

Fusarium verticillioides is the primary pathogen causing ear rot and stalk rot in corn (Zea mays). It not only affects yields but also produces mycotoxins endangering both human and animal health. Aldehyde dehydrogenase (ALDH) is essential for the oxidation of aldehydes in living organisms, making it a potential target for human drug design. However, there are limited reports on its function in plant pathogenic fungus. In this study, we analyzed the expression levels and gene knockout mutants, revealing that ALDH genes FvALDH-43 and FvALDH-96 in F. verticillioides played significant roles in pathogenicity and resistance to low-temperature stress by affecting antioxidant capacity. Virtual screening for natural product inhibitors and molecular docking were performed targeting FvALDH-43 and FvALDH-96. Following the biological activity analysis, three natural flavonoid compounds featuring a 2-hydroxyphenol chromene were identified. Among these, Taxifolin exhibited the highest biological activity and low toxicity. Both in vitro and in vivo biological evaluations confirmed that Taxifolin targeted ALDH and inhibited its activity. These findings indicate that aldehyde dehydrogenase may serve as a promising target for the design of novel fungicides.


Subject(s)
Aldehyde Dehydrogenase , Fungal Proteins , Fungicides, Industrial , Fusarium , Molecular Docking Simulation , Plant Diseases , Zea mays , Fusarium/enzymology , Fusarium/genetics , Fusarium/drug effects , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/antagonists & inhibitors , Aldehyde Dehydrogenase/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungal Proteins/genetics , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Fungal Proteins/antagonists & inhibitors , Zea mays/microbiology , Zea mays/chemistry , Plant Diseases/microbiology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
16.
Comput Biol Med ; 180: 108969, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39089106

ABSTRACT

ß-Glucuronidase, a crucial enzyme in drug metabolism and detoxification, represents a promising target for therapeutic intervention due to its potential to modulate drug pharmacokinetics and enhance therapeutic efficacy. Herein, we assessed the inhibitory potential of phytochemicals from Hibiscus trionum against ß-glucuronidase. Grossamide and grossamide K emerged as the most potent ß-glucuronidase inhibitors with IC50 values of 0.73 ± 0.03 and 1.24 ± 0.03 µM, respectively. The investigated alkaloids effectively inhibited ß-glucuronidase-catalyzed PNPG hydrolysis through a noncompetitive inhibition mode, whereas steppogenin displayed a mixed inhibition mechanism. Molecular docking analyses highlighted grossamide and grossamide K as inhibitors with the lowest binding free energy, all compounds successfully docked into the same main binding site occupied by the reference drug Epigallocatechin gallate (EGCG). We explored the interaction dynamics of isolated compounds with ß-glucuronidase through a 200 ns molecular dynamics (MD) simulation. Analysis of various MD parameters revealed that grossamide and grossamide K maintained stable trajectories and demonstrated significant energy stabilization upon binding to ß-glucuronidase. Additionally, these compounds exhibited the lowest average interaction energies with the target enzyme. The MM/PBSA calculations further supported these findings, showing the lowest binding free energies for grossamide and grossamide K. These computational results are consistent with experimental data, suggesting that grossamide and grossamide K could be potent inhibitors of ß-glucuronidase.


Subject(s)
Alkaloids , Glucuronidase , Hibiscus , Molecular Docking Simulation , Alkaloids/chemistry , Alkaloids/pharmacology , Glucuronidase/antagonists & inhibitors , Glucuronidase/chemistry , Glucuronidase/metabolism , Hibiscus/chemistry , Molecular Dynamics Simulation , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glycoproteins/chemistry , Glycoproteins/metabolism , Humans
17.
Sci Rep ; 14(1): 18420, 2024 08 08.
Article in English | MEDLINE | ID: mdl-39117724

ABSTRACT

A zinc metallopeptidase neurolysin (Nln) processes diverse bioactive peptides to regulate signaling in the mammalian nervous system. To understand how Nln interacts with various peptides with dissimilar sequences, we determined crystal structures of Nln in complex with diverse peptides including dynorphins, angiotensin, neurotensin, and bradykinin. The structures show that Nln binds these peptides in a large dumbbell-shaped interior cavity constricted at the active site, making minimal structural changes to accommodate different peptide sequences. The structures also show that Nln readily binds similar peptides with distinct registers, which can determine whether the peptide serves as a substrate or a competitive inhibitor. We analyzed the activities and binding of Nln toward various forms of dynorphin A peptides, which highlights the promiscuous nature of peptide binding and shows how dynorphin A (1-13) potently inhibits the Nln activity while dynorphin A (1-8) is efficiently cleaved. Our work provides insights into the broad substrate specificity of Nln and may aid in the future design of small molecule modulators for Nln.


Subject(s)
Dynorphins , Neurotensin , Humans , Substrate Specificity , Dynorphins/chemistry , Dynorphins/metabolism , Neurotensin/chemistry , Neurotensin/metabolism , Metalloendopeptidases/metabolism , Metalloendopeptidases/chemistry , Metalloendopeptidases/antagonists & inhibitors , Protein Binding , Crystallography, X-Ray , Models, Molecular , Catalytic Domain , Bradykinin/chemistry , Bradykinin/metabolism , Angiotensins/metabolism , Angiotensins/chemistry , Amino Acid Sequence
18.
Structure ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39208793

ABSTRACT

N-myristoyltransferases (NMTs) catalyze essential acylations of N-terminal alpha or epsilon amino groups of glycines or lysines. Here, we reveal that peptides tightly fitting the optimal glycine recognition pattern of human NMTs are potent prodrugs relying on a single-turnover mechanism. Sequence scanning of the inhibitory potency of the series closely reflects NMT glycine substrate specificity rules, with the lead inhibitor blocking myristoylation by NMTs of various species. We further redesigned the series based on the recently recognized lysine-myristoylation mechanism by taking advantage of (1) the optimal peptide chassis and (2) lysine side chain mimicry with unnatural enantiomers. Unlike the lead series, the inhibitory properties of the new compounds rely on the protonated state of the side chain amine, which stabilizes a salt bridge with the catalytic base at the active site. Our study provides the basis for designing first-in-class NMT inhibitors tailored for infectious diseases and alternative active site targeting.

19.
Plants (Basel) ; 13(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39204631

ABSTRACT

In this work, homogenizer-assisted extraction (HAE) and maceration (MAE) were applied on leaves and bark of Ziziphus mauritiana using water and methanol (MeOH) as solvents. HAE and MAE extracts were compared through liquid chromatography coupled with mass spectrometry (LC-MS) and evaluating the antioxidant activity, and enzyme inhibition against acetylcholinesterase (AChE), butrylcholinesterase (BChE), tyrosinase, α-amylase, and α-glucosidase. Considering the phytochemical contents and the bioassays results, the HAE extracts resulted favorably with larger content of phenolics and higher antioxidant activity. The MeOH extracts displayed the highest α-amylase inhibitory activity, with HAE MeOH leaf extract leading at 0.78 mmol acarbose equivalent (ACAE)/g. In conclusion, the study highlights that HAE can increase the extraction of phenolic and flavonoid from Z. mauritiana plant materials compared to maceration. Further research could explore the potential therapeutic applications of Z. mauritiana extracts, especially HAE MeOH leaf extracts, for their notable antioxidant and enzyme inhibitory activities, facilitating the way for the development of novel pharmaceutical interventions.

20.
Int J Mol Sci ; 25(16)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39201735

ABSTRACT

Cholinesterase (ChE) inhibitors are crucial therapeutic agents for the symptomatic treatment of certain chronic neurodegenerative diseases linked to functional disorders of the cholinergic system. Significant research efforts have been made to develop novel derivatives of classical ChE inhibitors and ChE inhibitors with novel scaffolds. Over the past decade, ruthenium complexes have emerged as promising novel therapeutic alternatives for the treatment of neurodegenerative diseases. Our research group has investigated a number of newly synthesized organoruthenium(II) complexes for their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Three complexes (C1a, C1-C, and C1) inhibit ChE in a pharmacologically relevant range. C1a reversibly inhibits AChE and BChE without undesirable peripheral effects, making it a promising candidate for the treatment of Alzheimer's disease. C1-Cl complex reversibly and competitively inhibits ChEs, particularly AChE. It inhibits nerve-evoked skeletal muscle twitch and tetanic contraction in a concentration-dependent manner with no effect on directly elicited twitch and tetanic contraction and is promising for further preclinical studies as a competitive neuromuscular blocking agent. C1 is a selective, competitive, and reversible inhibitor of BChE that inhibits horse serum BChE (hsBChE) without significant effect on the peripheral neuromuscular system and is a highly species-specific inhibitor of hsBChE that could serve as a species-specific drug target. This research contributes to the expanding knowledge of ChE inhibitors based on ruthenium complexes and highlights their potential as promising therapeutic candidates for chronic neurodegenerative diseases.


Subject(s)
Acetylcholinesterase , Butyrylcholinesterase , Cholinesterase Inhibitors , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Animals , Humans , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Ruthenium/chemistry , Ruthenium/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Horses , Drug Evaluation, Preclinical
SELECTION OF CITATIONS
SEARCH DETAIL