Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.627
Filter
1.
J Environ Sci (China) ; 147: 294-309, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003048

ABSTRACT

Endocrine-disrupting chemicals (EDCs) are compounds, either natural or man-made, that interfere with the normal functioning of the endocrine system. There is increasing evidence that exposure to EDCs can have profound adverse effects on reproduction, metabolic disorders, neurological alterations, and increased risk of hormone-dependent cancer. Stem cells (SCs) are integral to these pathological processes, and it is therefore crucial to understand how EDCs may influence SC functionality. This review examines the literature on different types of EDCs and their effects on various types of SCs, including embryonic, adult, and cancer SCs. Possible molecular mechanisms through which EDCs may influence the phenotype of SCs are also evaluated. Finally, the possible implications of these effects on human health are discussed. The available literature demonstrates that EDCs can influence the biology of SCs in a variety of ways, including by altering hormonal pathways, DNA damage, epigenetic changes, reactive oxygen species production and alterations in the gene expression patterns. These disruptions may lead to a variety of cell fates and diseases later in adulthood including increased risk of endocrine disorders, obesity, infertility, reproductive abnormalities, and cancer. Therefore, the review emphasizes the importance of raising broader awareness regarding the intricate impact of EDCs on human health.


Subject(s)
Endocrine Disruptors , Stem Cells , Endocrine Disruptors/toxicity , Humans , Stem Cells/drug effects , Environmental Pollutants/toxicity , Environmental Exposure
2.
World J Gastroenterol ; 30(27): 3284-3289, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39086746

ABSTRACT

Inflammatory bowel disease (IBD) is the consequence of a complex interplay between environmental factors, like dietary habits, that alter intestinal microbiota in response to luminal antigens in genetically susceptible individuals. Epigenetics represents an auspicious area for the discovery of how environmental factors influence the pathogenesis of inflammation, prognosis, and response to therapy. Consequently, it relates to gene expression control in response to environmental influences. The increasing number of patients with IBD globally is indicative of the negative effects of a food supply rich in trans and saturated fats, refined sugars, starches and additives, as well as other environmental factors like sedentarism and excess bodyweight, influencing the promotion of gene expression and increasing DNA hypomethylation in IBD. As many genetic variants are now associated with Crohn's disease (CD), new therapeutic strategies targeting modifiable environmental triggers, such as the implementation of an anti-inflammatory diet that involves the removal of potential food antigens, are of growing interest in the current literature. Diet, as a strong epigenetic factor in the pathogenesis of inflammatory disorders like IBD, provides novel insights into the pathophysiology of intestinal and extraintestinal inflammatory disorders.


Subject(s)
DNA Methylation , Diet , Epigenesis, Genetic , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/immunology , Diet/adverse effects , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/microbiology , Crohn Disease/genetics , Crohn Disease/immunology , Feeding Behavior , Genetic Predisposition to Disease
3.
Cell Reprogram ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088354

ABSTRACT

Cloning by somatic cell nuclear transfer (SCNT) remained challenging for Rhesus monkeys, mostly due to its low efficiency and neonatal death. Genome-scale analyses revealed that monkey SCNT embryos displayed widespread DNA methylation and transcriptional alterations, thus including loss of genomic imprinting that correlated with placental dysfunction. The transfer of inner cell masses (ICM) from cloned blastocysts into ICM-depleted fertilized embryos rescued placental insufficiency and gave rise to a cloned Rhesus monkey that reached adulthood without noticeable abnormalities.

5.
Aging Cell ; : e14288, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092674

ABSTRACT

Reactivation of retroelements in the human genome has been linked to aging. However, whether the epigenetic state of specific retroelements can predict chronological age remains unknown. We provide evidence that locus-specific retroelement DNA methylation can be used to create retroelement-based epigenetic clocks that accurately measure chronological age in the immune system, across human tissues, and pan-mammalian species. We also developed a highly accurate retroelement epigenetic clock compatible with EPICv.2.0 data that was constructed from CpGs that did not overlap with existing first- and second-generation epigenetic clocks, suggesting a unique signal for epigenetic clocks not previously captured. We found retroelement-based epigenetic clocks were reversed during transient epigenetic reprogramming, accelerated in people living with HIV-1, and responsive to antiretroviral therapy. Our findings highlight the utility of retroelement-based biomarkers of aging and support a renewed emphasis on the role of retroelements in geroscience.

6.
MedComm (2020) ; 5(8): e658, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39092292

ABSTRACT

Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.

7.
Mol Cell ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39094566

ABSTRACT

Chromatin-based epigenetic memory relies on the symmetric distribution of parental histones to newly synthesized daughter DNA strands, aided by histone chaperones within the DNA replication machinery. However, the mechanism of parental histone transfer remains elusive. Here, we reveal that in fission yeast, the replisome protein Mrc1 plays a crucial role in promoting the transfer of parental histone H3-H4 to the lagging strand, ensuring proper heterochromatin inheritance. In addition, Mrc1 facilitates the interaction between Mcm2 and DNA polymerase alpha, two histone-binding proteins critical for parental histone transfer. Furthermore, Mrc1's involvement in parental histone transfer and epigenetic inheritance is independent of its known functions in DNA replication checkpoint activation and replisome speed control. Instead, Mrc1 interacts with Mcm2 outside of its histone-binding region, creating a physical barrier to separate parental histone transfer pathways. These findings unveil Mrc1 as a key player within the replisome, coordinating parental histone segregation to regulate epigenetic inheritance.

8.
Cell ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39094569

ABSTRACT

The inheritance of parental histones across the replication fork is thought to mediate epigenetic memory. Here, we reveal that fission yeast Mrc1 (CLASPIN in humans) binds H3-H4 tetramers and operates as a central coordinator of symmetric parental histone inheritance. Mrc1 mutants in a key connector domain disrupted segregation of parental histones to the lagging strand comparable to Mcm2 histone-binding mutants. Both mutants showed clonal and asymmetric loss of H3K9me-mediated gene silencing. AlphaFold predicted co-chaperoning of H3-H4 tetramers by Mrc1 and Mcm2, with the Mrc1 connector domain bridging histone and Mcm2 binding. Biochemical and functional analysis validated this model and revealed a duality in Mrc1 function: disabling histone binding in the connector domain disrupted lagging-strand recycling while another histone-binding mutation impaired leading strand recycling. We propose that Mrc1 toggles histones between the lagging and leading strand recycling pathways, in part by intra-replisome co-chaperoning, to ensure epigenetic transmission to both daughter cells.

9.
Ecotoxicol Environ Saf ; 283: 116823, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39096687

ABSTRACT

BACKGROUND: This study investigated the association of prenatal and early childhood exposure to air pollution with epigenetic age acceleration (EAA) at six years of age using the Environment and Development of Children Cohort (EDC Cohort) MATERIALS & METHODS: Air pollution, including particulate matter [< 2.5 µm (PM2.5) and < 10 µm (PM10) in an aerodynamic diameter], nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO), and sulfur dioxide (SO2) were estimated based on the residential address for two periods: 1) during the whole pregnancy, and 2) for one year before the follow-up in children at six years of age. The methylation levels in whole blood at six years of age were measured, and the methylation clocks, including Horvath's clock, Horvath's skin and blood clock, PedBE, and Wu's clock, were estimated. Multivariate linear regression models were constructed to analyze the association between EAA and air pollutants. RESULTS: A total of 76 children in EDC cohort were enrolled in this study. During the whole pregnancy, interquartile range (IQR) increases in exposure to PM2.5 (4.56 µg/m3) and CO (0.156 ppm) were associated with 0.406 years and 0.799 years of EAA (Horvath's clock), respectively. An IQR increase in PM2.5 (4.76 µg/m3) for one year before the child was six years of age was associated with 0.509 years of EAA (Horvath's clock) and 0.289 years of EAA (Wu's clock). PM10 (4.30 µg/m3) and O3 (0.003 ppm) exposure in the period were also associated with EAA in Horvath's clock (0.280 years) and EAA in Horvath's skin and blood clock (0.163 years), respectively. CONCLUSION: We found that prenatal and childhood exposure to ambient air pollutants is associated with EAA among children. The results suggest that air pollution could induce excess biological aging even in prenatal and early life.

10.
Mol Cell ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39096900

ABSTRACT

Heterochromatin enforces transcriptional gene silencing and can be epigenetically inherited, but the underlying mechanisms remain unclear. Here, we show that histone deacetylation, a conserved feature of heterochromatin domains, blocks SWI/SNF subfamily remodelers involved in chromatin unraveling, thereby stabilizing modified nucleosomes that preserve gene silencing. Histone hyperacetylation, resulting from either the loss of histone deacetylase (HDAC) activity or the direct targeting of a histone acetyltransferase to heterochromatin, permits remodeler access, leading to silencing defects. The requirement for HDAC in heterochromatin silencing can be bypassed by impeding SWI/SNF activity. Highlighting the crucial role of remodelers, merely targeting SWI/SNF to heterochromatin, even in cells with functional HDAC, increases nucleosome turnover, causing defective gene silencing and compromised epigenetic inheritance. This study elucidates a fundamental mechanism whereby histone hypoacetylation, maintained by high HDAC levels in heterochromatic regions, ensures stable gene silencing and epigenetic inheritance, providing insights into genome regulatory mechanisms relevant to human diseases.

11.
Behav Processes ; : 105090, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39097176

ABSTRACT

The aim of this work was to study the, so far, unexplored possibility that non-genetic inheritance of animal behavioral characteristics could depend on the state of the parents at the time of conception. In this study, we measured the levels of motor and exploratory activity in rats at the ages of 2 and 5 months. Male and female rats were mated at the age of 5 months. The following groups were used: male and female rats with high motor activity at ages of 2 and 5 months (ACT+); male and female rats with high activity at the age of 2 months, but low activity at the age of 5 months (ACT-); male and female rats with low activity at the ages of 2 and 5 months (PAS-); male and female rats with low activity at the age of 2 months, but high activity at the age of 5 months (PAS+). It was found that both males and females ACT+ had significantly higher motor activity, which was observed in the first 10minutes, in the next 20-60minutes, in the center of the cage and more rearings as compared with PAS-rats. Significant differences in the severity of exploratory activity were found between the male offspring of ACT+ and ACT- rats. Differences between the offspring of PAS+ and PAS- rats were observed in both the male and female rats. The motor activity of animals in the period from 20minutes after the start of registration did not differ between groups. Thus, it can be considered that individual characteristics of general motor activity are due to genetically inherited factors, while differences in the level of exploratory activity, apparently, are formed due to non-genetic influences from parents during mating.

12.
Mol Cancer ; 23(1): 154, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095874

ABSTRACT

Cancer is the second leading cause of death worldwide and disease burden is expected to increase globally throughout the next several decades, with the majority of cancer-related deaths occurring in metastatic disease. Cancers exhibit known hallmarks that endow them with increased survival and proliferative capacities, frequently as a result of de-stabilizing mutations. However, the genomic features that resolve metastatic clones from primary tumors are not yet well-characterized, as no mutational landscape has been identified as predictive of metastasis. Further, many cancers exhibit no known mutation signature. This suggests a larger role for non-mutational genome re-organization in promoting cancer evolution and dissemination. In this review, we highlight current critical needs for understanding cell state transitions and clonal selection advantages for metastatic cancer cells. We examine links between epigenetic states, genome structure, and misregulation of tumor suppressors and oncogenes, and discuss how recent technologies for understanding domain-scale regulation have been leveraged for a more complete picture of oncogenic and metastatic potential.


Subject(s)
Epigenesis, Genetic , Epigenome , Neoplasm Metastasis , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/pathology , Animals , Gene Expression Regulation, Neoplastic , Mutation
13.
Clin Epigenetics ; 16(1): 103, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103963

ABSTRACT

BACKGROUND: Childhood maltreatment (CM) is linked to long-term adverse health outcomes, including accelerated biological aging and cognitive decline. This study investigates the relationship between CM and various aging biomarkers: telomere length, facial aging, intrinsic epigenetic age acceleration (IEAA), GrimAge, HannumAge, PhenoAge, frailty index, and cognitive performance. METHODS: We conducted a Mendelian randomization (MR) study using published GWAS summary statistics. Aging biomarkers included telomere length (qPCR), facial aging (subjective evaluation), and epigenetic age markers (HannumAge, IEAA, GrimAge, PhenoAge). The frailty index was calculated from clinical assessments, and cognitive performance was evaluated with standardized tests. Analyses included Inverse-Variance Weighted (IVW), MR Egger, and Weighted Median (WM) methods, adjusted for multiple comparisons. RESULTS: CM was significantly associated with shorter telomere length (IVW: ß = - 0.1, 95% CI - 0.18 to - 0.02, pFDR = 0.032) and increased HannumAge (IVW: ß = 1.33, 95% CI 0.36 to 2.3, pFDR = 0.028), GrimAge (IVW: ß = 1.19, 95% CI 0.19 to 2.2, pFDR = 0.040), and PhenoAge (IVW: ß = 1.4, 95% CI 0.12 to 2.68, pFDR = 0.053). A significant association was also found with the frailty index (IVW: ß = 0.31, 95% CI 0.13 to 0.49, pFDR = 0.006). No significant associations were found with facial aging, IEAA, or cognitive performance. CONCLUSIONS: CM is linked to accelerated biological aging, shown by shorter telomere length and increased epigenetic aging markers. CM was also associated with increased frailty, highlighting the need for early interventions to mitigate long-term effects. Further research should explore mechanisms and prevention strategies.


Subject(s)
Aging , Biomarkers , Mendelian Randomization Analysis , Humans , Mendelian Randomization Analysis/methods , Biomarkers/blood , Aging/genetics , Epigenesis, Genetic/genetics , Male , Female , Frailty/genetics , Child , Genome-Wide Association Study/methods , Child Abuse/psychology , Child Abuse/statistics & numerical data , Telomere/genetics , Adult , Aged , Middle Aged
14.
Heliyon ; 10(14): e34043, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39100496

ABSTRACT

The increasing global burden of metabolic disorders including obesity and diabetes necessitates a comprehensive understanding of their etiology, which not only encompasses genetic and environmental factors but also parental influence. Recent evidence has unveiled paternal obesity as a contributing factor to offspring's metabolic health via sperm epigenetic modifications. In this study, we investigated the impact of a Western diet-induced obesity in C57BL/6 male mice on sperm chromatin accessibility and the subsequent metabolic health of their progeny. Utilizing Assay for Transposase-Accessible Chromatin with sequencing, we discovered 450 regions with differential accessibility in sperm from obese fathers, implicating key developmental and metabolic pathways. Contrary to expectations, these epigenetic alterations in sperm were not predictive of long-term metabolic disorders in offspring, who exhibited only mild transient metabolic changes early in life. Both male and female F1 progeny showed no enduring predisposition to obesity or diabetes. These results underscore the biological resilience of offspring to paternal epigenetic inheritance, suggesting a complex interplay between inherited epigenetic modifications and the offspring's own developmental compensatory mechanisms. This study calls for further research into the biological processes that confer this resilience, which could inform interventional strategies to combat the heritability of metabolic diseases.

15.
Front Immunol ; 15: 1423843, 2024.
Article in English | MEDLINE | ID: mdl-39100669

ABSTRACT

The Bacillus Calmette Guerin (BCG) vaccine has been shown to induce non-specific protection against diseases other than tuberculosis in vaccinated individuals, attributed to the induction of trained immunity. We have previously demonstrated that BCG administration induces innate immune training in mixed peripheral blood mononuclear cells and monocytes in calves. Gamma Delta (γδ) T cells are non-conventional T cells that exhibit innate and adaptive immune system features. They are in higher proportion in the peripheral blood of cattle than humans or rodents and play an essential role in bovine immune response to pathogens. In the current study, we determined if BCG administration induced innate immune training in bovine γδ T cells. A group of 16 pre-weaned Holstein calves (2-4 d age) were enrolled in the study and randomly assigned to vaccine and control groups (n=8/group). The vaccine group received two doses of 106 colony forming units (CFU) BCG Danish strain subcutaneously, separated by 2 weeks. The control group remained unvaccinated. Gamma delta T cells were purified from peripheral blood using magnetic cell sorting three weeks after receiving the 1st BCG dose. We observed functional changes in the γδ T cells from BCG-treated calves shown by increased IL-6 and TNF-α cytokine production in response to in vitro stimulation with Escherichia coli LPS and PAM3CSK4. ATAC-Seq analysis of 78,278 regions of open chromatin (peaks) revealed that γδ T cells from BCG-treated calves had an altered epigenetic status compared to cells from the control calves. Differentially accessible peaks (DAP) found near the promoters of innate immunity-related genes like Siglec14, Irf4, Ifna2, Lrrfip1, and Tnfrsf10d were 1 to 4-fold more accessible in cells from BCG-treated calves. MOTIF enrichment analysis of the sequences within DAPs, which explores transcription factor binding motifs (TFBM) upstream of regulatory elements, revealed TFBM for Eomes and IRF-5 were among the most enriched transcription factors. GO enrichment analysis of genes proximal to the DAPs showed enrichment of pathways such as regulation of IL-2 production, T-cell receptor signaling pathway, and other immune regulatory pathways. In conclusion, our study shows that subcutaneous BCG administration in pre-weaned calves can induce innate immune memory in the form of trained immunity in γδ T cells. This memory is associated with increased chromatin accessibility of innate immune response-related genes, thereby inducing a functional trained immune response evidenced by increased IL-6 and TNF-α cytokine production.


Subject(s)
BCG Vaccine , Immunity, Innate , Animals , Cattle , BCG Vaccine/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Injections, Subcutaneous , Mycobacterium bovis/immunology , Cytokines/metabolism , Intraepithelial Lymphocytes/immunology , Intraepithelial Lymphocytes/metabolism , Vaccination , Immunologic Memory
16.
Sci Rep ; 14(1): 17792, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39090212

ABSTRACT

Hypertension is a disease associated with epigenetic aging. However, the pathogenic mechanism underlying this relationship remains unclear. We aimed to characterize the shared genetic architecture of hypertension and epigenetic aging, and identify novel risk loci. Leveraging genome-wide association studies (GWAS) summary statistics of hypertension (129,909 cases and 354,689 controls) and four epigenetic clocks (N = 34,710), we investigated genetic architectures and genetic overlap using bivariate casual mixture model and conditional/conjunctional false discovery rate methods. Functional gene-sets pathway analyses were performed by functional mapping and gene annotation (FUMA) protocol. Hypertension was polygenic with 2.8 K trait-influencing genetic variants. We observed cross-trait genetic enrichment and genetic overlap between hypertension and all four measures of epigenetic aging. Further, we identified 32 distinct genomic loci jointly associated with hypertension and epigenetic aging. Notably, rs1849209 was shared between hypertension and three epigenetic clocks (HannumAge, IEAA, and PhenoAge). The shared loci exhibited a combination of concordant and discordant allelic effects. Functional gene-set analyses revealed significant enrichment in biological pathways related to sensory perception of smell and nervous system processes. We observed genetic overlaps with mixed effect directions between hypertension and all four epigenetic aging measures, and identified 32 shared distinct loci with mixed effect directions, 25 of which were novel for hypertension. Shared genes enriched in biological pathways related to olfaction.


Subject(s)
Aging , Epigenesis, Genetic , Genetic Predisposition to Disease , Genome-Wide Association Study , Hypertension , Humans , Hypertension/genetics , Aging/genetics , Polymorphism, Single Nucleotide , Multifactorial Inheritance/genetics , Genetic Loci , Quantitative Trait Loci
17.
bioRxiv ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39091753

ABSTRACT

Xist, a pivotal player in X chromosome inactivation (XCI), has long been perceived as a cis-acting long noncoding RNA that binds exclusively to the inactive X chromosome (Xi). However, Xist's ability to diffuse under select circumstances has also been documented, leading us to suspect that Xist RNA may have targets and functions beyond the Xi. Here, using female mouse embryonic stem cells (ES) and mouse embryonic fibroblasts (MEF) as models, we demonstrate that Xist RNA indeed can localize beyond the Xi. However, its binding is limited to ~100 genes in cells undergoing XCI (ES cells) and in post-XCI cells (MEFs). The target genes are diverse in function but are unified by their active chromatin status. Xist binds discretely to promoters of target genes in neighborhoods relatively depleted for Polycomb marks, contrasting with the broad, Polycomb-enriched domains reported for human XIST RNA. We find that Xist binding is associated with down-modulation of autosomal gene expression. However, unlike on the Xi, Xist binding does not lead to full silencing and also does not spread beyond the target gene. Over-expressing Xist in transgenic ES cells similarly lead to autosomal gene suppression, while deleting Xist's Repeat B motif reduces autosomal binding and perturbs autosomal down-regulation. Furthermore, treating female ES cells with the Xist inhibitor, X1, leads to loss of autosomal suppression. Altogether, our findings reveal Xist targets ~100 genes beyond the Xi, identify Repeat B as a crucial domain for its in-trans function in mice, and indicate that autosomal targeting can be disrupted by the X1 small molecule inhibitor.

18.
Chemosphere ; 364: 143011, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39098352

ABSTRACT

Nanoplastics at environmentally relevant concentrations (ERCs) could cause transgenerational toxicity on organisms. Caenorhabditis elegans is an important model for the study of transgenerational toxicology of pollutants. Nevertheless, the underlying mechanisms for the control of transgenerational nanoplastic toxicity by germline signals remain largely unclear. In C. elegans, exposure to 1-100 µg/L polystyrene nanoparticle (PS-NP) decreased expression of germline ced-1 encoding a G protein-coupled receptor at parental generation (P0-G). After PS-NP exposure at P0-G, transgenerational decrease in germline ced-1 expression could be detected. Meanwhile, the susceptibility to transgenerational PS-NP toxicity was observed in ced-1(RNAi) animals. After PS-NP exposure at P0-G, germline RNAi of ced-1 increased expressions of met-2 and set-6 encoding histone methylation transferases. The susceptibility of ced-1(RNAi) to transgenerational PS-NP toxicity could be inhibited by RNAi of met-2 and set-6. Moreover, in PS-NP exposed met-2(RNAi) and set-6(RNAi) nematodes, expressions of ins-39, wrt-3, and/or efn-3 encoding secreted ligands were decreased. Therefore, our results demonstrated that inhibition in germline CED-1 mediated the toxicity induction of nanoplastics at ERCs across multiple generations in nematodes.

19.
Soc Sci Med ; 355: 117142, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39106784

ABSTRACT

We examined three generations (grandparents, mothers, and grandchildren) to assess the association between grandparents' educational attainment and their grandchildren's epigenetic-based age acceleration and whether the association was mediated by parental educational attainment and mothers' life course health-related factors. Mothers were recruited to the NHLBI Growth and Health Study at 9-10 years and followed for 10 years (1987-1998). Mothers were then re-contacted three decades later (ages 37-42) to participate in the National Growth and Health Study (NGHS), and health information from their youngest child (i.e., grandchildren; N = 241, ages 2-17) was collected, including their saliva samples to calculate epigenetic age. Five epigenetic-based age acceleration measures were included in this analysis, including four epigenetic clock age accelerations (Horvath, Hannum, GrimAge, and PhenoAge) and DunedinPACE. Grandparents reported their highest education during the initial enrollment interviews. Parental educational attainment and mothers' life course health-related factors (childhood BMI trajectories, adult cardiovascular health behavioral risk score, and adult c-reactive protein) are included as mediators. Grandparents' education was significantly associated with Horvath age acceleration (b = -0.32, SE = 0.14, p = 0.021). Grandchildren with college-degree grandparents showed significantly slower Horvath age accelerations than those without college degrees. This association was partially mediated by parental education and mothers' health-related factors, especially adult cardiovascular health behavioral risk score and CRP, but not mothers' childhood BMI trajectory. This ability to conserve the speed of biological aging may have considerable consequences in shaping health trajectories across the lifespan.


Subject(s)
Educational Status , Grandparents , Humans , Grandparents/psychology , Female , Child , Adult , Male , Adolescent , Child, Preschool , Mothers/psychology , Mothers/statistics & numerical data , Aging
20.
Sci Total Environ ; 951: 175431, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39128511

ABSTRACT

Harmful algal blooms and the toxins produced during these events are a human and environmental health concern worldwide. Saxitoxin and its derivatives are potent natural aquatic neurotoxins produced by certain freshwater cyanobacteria and marine algae species during these bloom events. Saxitoxins effects on human health are well studied, however its effects on aquatic biota are still largely unexplored. This work aims at evaluating the effects of a pulse acute exposure (24 h) of the model cladoceran Daphnia magna to 30 µg saxitoxin L-1, which corresponds to the safety guideline established by the World Health Organization (WHO) for these toxins in recreational freshwaters. Saxitoxin effects were assessed through a comprehensive array of biochemical (antioxidant enzymes activity and lipid peroxidation), genotoxicity (alkaline comet assay), neurotoxicity (total cholinesterases activity), behavioral (swimming patterns), physiological (feeding rate and heart rate), and epigenetic (total 5-mC DNA methylation) biomarkers. Exposure resulted in decreased feeding rate, heart rate, total cholinesterases activity and catalase activity. Contrarily, other antioxidant enzymes, namely glutathione-S-transferases and selenium-dependent Glutathione peroxidase had their activity increased, together with lipid peroxidation levels. The enhancement of the antioxidant enzymes was not sufficient to prevent oxidative damage, as underpinned by lipid peroxidation enhancement. Accordingly, average DNA damage level was significantly increased in STX-exposed daphnids. Total DNA 5-mC level was significantly decreased in exposed organisms. Results showed that even a short-term exposure to saxitoxin causes significant effects on critical molecular and cellular pathways and modulates swimming patterns in D. magna individuals. This study highlights sub-lethal effects caused by saxitoxin in D. magna, suggesting that these toxins may represent a marked challenge to their thriving even at a concentration deemed safe for humans by the WHO.

SELECTION OF CITATIONS
SEARCH DETAIL