Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000481

ABSTRACT

Pollen, in addition to allergens, comprise low molecular weight components (LMC) smaller than 3 kDa. Emerging evidence indicates the relevance of LMC in allergic immune responses. However, the interaction of birch pollen (BP)-derived LMC and epithelial cells has not been extensively studied. We investigated epithelial barrier modifications induced by exposure to BP LMC, using the human bronchial epithelial cell line 16HBE14o-. Epithelial cell monolayers were apically exposed to the major BP allergen Bet v 1, aqueous BP extract or BP-derived LMC. Barrier integrity after the treatments was monitored by measuring transepithelial electrical resistance at regular intervals and by using the xCELLigence Real-Time Cell Analysis system. The polarized release of cytokines 24 h following treatment was measured using a multiplex immunoassay. Epithelial barrier integrity was significantly enhanced upon exposure to BP LMC. Moreover, BP LMC induced the repair of papain-mediated epithelial barrier damage. The apical release of CCL5 and TNF-α was significantly reduced after exposure to BP LMC, while the basolateral release of IL-6 significantly increased. In conclusion, the results of our study demonstrate that BP-derived LMC modify the physical and immunological properties of bronchial epithelial cells and thus regulate airway epithelial barrier responses.


Subject(s)
Betula , Bronchi , Epithelial Cells , Molecular Weight , Pollen , Humans , Bronchi/metabolism , Bronchi/cytology , Bronchi/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Cell Line , Allergens , Cytokines/metabolism , Respiratory Mucosa/metabolism , Respiratory Mucosa/drug effects
2.
Int Immunopharmacol ; 135: 112322, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38788452

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive respiratory disorder characterized by poor prognosis, often presenting with acute exacerbation. The primary cause of death associated with IPF is acute exacerbation of IPF (AE-IPF). However, the pathophysiology of acute exacerbation has not been clearly elucidated yet. This study aims to investigate the underlying pathophysiological molecular mechanism in a mouse AE-PF model. C57BL/6J mice were intratracheally administered bleomycin (BLM, 5 mg/kg) to induce pulmonary fibrosis. After 14 days, lipopolysaccharide (LPS, 2 mg/kg) was injected via the trachea route. Histological assessments, including H&E and Masson staining, as well as inflammatory indicators, were included to evaluate the induction of AE-PF by BLM and LPS in mice. Transcriptomic profiling of pulmonary tissues identified CSF3 as one of the top 10 upregulated DEGs in AE-PF mice. Indeed, administration of exogenous CSF3 protein exacerbated AE-PF in mice. Mechanistically, CSF3 disrupted alveolar epithelial barrier integrity and permeability by regulating specialized cell adhesion complexes such as tight junctions (TJs) and adherens junctions (AJs) via PI3K/p-Akt/Snail pathway, contributing to the aggravation of AE-PF in mice. Moreover, the discovery of elevated sera CSF3 indicated a notable increase in IPF patients during the exacerbation of the disease. Pearson correlation analysis in IPF patients revealed significant positive associations between CSF3 levels and KL-6 levels, LDH levels, CRP levels, respectively. These results provide mechanistic insights into the role of CSF3 in exacerbating of lung fibrotic disease and indicate monitoring CSF3 levels may aid in early clinical decisions for alternative therapy in the management of rapidly progressing IPF.


Subject(s)
Bleomycin , Idiopathic Pulmonary Fibrosis , Mice, Inbred C57BL , Animals , Humans , Mice , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Male , Disease Models, Animal , Disease Progression , Female , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Signal Transduction , Middle Aged , Tight Junctions/metabolism , Tight Junctions/drug effects , Tight Junctions/pathology , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Proto-Oncogene Proteins c-akt/metabolism
3.
Front Immunol ; 15: 1324552, 2024.
Article in English | MEDLINE | ID: mdl-38524119

ABSTRACT

Air pollution plays an important role in the mortality and morbidity of chronic airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Particulate matter (PM) is a significant fraction of air pollutants, and studies have demonstrated that it can cause airway inflammation and injury. The airway epithelium forms the first barrier of defense against inhaled toxicants, such as PM. Airway epithelial cells clear airways from inhaled irritants and orchestrate the inflammatory response of airways to these irritants by secreting various lipid mediators, growth factors, chemokines, and cytokines. Studies suggest that PM plays an important role in the pathogenesis of chronic airway diseases by impairing mucociliary function, deteriorating epithelial barrier integrity, and inducing the production of inflammatory mediators while modulating the proliferation and death of airway epithelial cells. Furthermore, PM can modulate epithelial plasticity and airway remodeling, which play central roles in asthma and COPD. This review focuses on the effects of PM on airway injury and epithelial plasticity, and the underlying mechanisms involving mucociliary activity, epithelial barrier function, airway inflammation, epithelial-mesenchymal transition, mesenchymal-epithelial transition, and airway remodeling.


Subject(s)
Air Pollution , Asthma , Pulmonary Disease, Chronic Obstructive , Humans , Airway Remodeling , Irritants , Air Pollution/adverse effects , Asthma/etiology , Pulmonary Disease, Chronic Obstructive/etiology , Particulate Matter/adverse effects , Inflammation/pathology , Dust
4.
Mol Immunol ; 168: 51-63, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422887

ABSTRACT

Allergic rhinitis (AR) is caused by immunoglobulin E (IgE)-mediated reactions to inhaled allergens, which leads to mucosal inflammation and barrier dysfunction. The transcription factor forkhead box C1 (FOXC1) has been identified to be associated with allergic inflammation. This study sought to uncover the role of FOXC1 in AR. A murine model of AR was induced by repeated intranasal ovalbumin (OVA) challenges. Results revealed that high FOXC1 expression was found in the nasal mucosal epithelium of AR mice. Nasal allergy symptoms, mucosal epithelial swelling, goblet cell hyperplasia and eosinophil infiltration in AR mice were attenuated after silencing of FOXC1. Knockdown of FOXC1 decreased the levels of T-helper 2 cytokines interleukin(IL)-4 and IL-13 in nasal lavage fluid, and serum OVA-specific IgE and histamine. Silencing of FOXC1 restored nasal epithelial integrity in AR mice by enhancing the expression of tight junctions (TJs) and adherence junction. Furthermore, knocking down FOXC1 increased tight junction expression and transepithelial electrical resistance (TEER) in IL-13-treated air-liquid interface (ALI) cultures of human nasal epithelial cells (HNEpCs). Mechanistically, silencing of FOXC1 induced DNA methylation of secreted frizzled-related protein 5 (SFRP5) promoter and increased its expression in the nasal mucosa of AR mice and IL-13-treated ALI cultures. FOXC1 overexpression transcriptionally activated DNA methyltransferase 3B (DNMT3B) in IL-13-treated ALI cultures. Knockdown of SFRP5 reversed the protection of FOXC1 silencing on epithelial barrier damage induced by IL-13. Collectively, silencing of FOXC1 reduced allergic inflammation and nasal epithelial barrier damage in AR mice via upregulating SFRP5, which may be attribute to DNMT3B-driven DNA methylation. Our study indicated that FOXC1 may represent a potential therapeutic target for AR.


Subject(s)
Rhinitis, Allergic , Secreted Frizzled-Related Proteins , Animals , Humans , Mice , Cytokines/metabolism , Disease Models, Animal , Immunoglobulin E/metabolism , Inflammation/metabolism , Interleukin-13/metabolism , Mice, Inbred BALB C , Nasal Mucosa/metabolism , Ovalbumin/metabolism , Rhinitis, Allergic/genetics , Rhinitis, Allergic/drug therapy
5.
Clin Sci (Lond) ; 137(11): 913-930, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37254732

ABSTRACT

Compromised barrier function of colon epithelium with aging is largely due to gut microbial dysbiosis. Recent studies implicate an important role for angiotensin converting enzymes, ACE and ACE2, angiotensins, and the receptors, AT1 receptor (AT1R) and Mas receptor (MasR), in the regulation of colon functions. The present study tested the hypothesis that leaky gut in aging is associated with an imbalance in ACE2/ACE and that the treatment with angiotenisn-(1-7) (Ang-(1-7)) will restore gut barrier integrity and microbiome. Studies were carried out in Young (3-4 months) and old (20-24 months) male mice. Ang-(1-7) was administered by using osmotic pumps. Outcome measures included expressions of ACE, ACE2, AT1R, and MasR, intestinal permeability by using FITC-dextran, and immunohistochemistry of claudin 1 and occludin, and intestinal stem cells (ISCs). ACE2 protein and activity were decreased in Old group while that of ACE were unchanged. Increased intestinal permeability and plasma levels of zonulin-1 in the Old group were normalized by Ang-(1-7). Epithelial disintegrity, reduced number of goblet cells and ISCs in the old group were restored by Ang-(1-7). Expression of claudin 1 and occludin in the aging colon was increased by Ang-(1-7). Infiltration of CD11b+ or F4/80+ inflammatory cells in the old colons were decreased by Ang-(1-7). Gut microbial dysbiosis in aging was evident by decreased richness and altered beta diversity that were reversed by Ang-(1-7) with increased abundance of Lactobacillus or Lachnospiraceae. The present study shows that Ang-(1-7) restores gut barrier integrity and reduces inflammation in the aging colon by restoring the layer of ISCs and by restructuring the gut microbiome.


Subject(s)
Gastrointestinal Microbiome , Mice , Male , Animals , Angiotensin-Converting Enzyme 2 , Dysbiosis , Claudin-1 , Occludin , Angiotensin I/pharmacology , Angiotensin I/metabolism , Peptidyl-Dipeptidase A/metabolism , Peptide Fragments/pharmacology , Peptide Fragments/metabolism , Aging , Angiotensin II/metabolism
6.
Front Microbiol ; 14: 1157164, 2023.
Article in English | MEDLINE | ID: mdl-37020718

ABSTRACT

The maintenance of intestinal barrier function is essential for preventing different pathologies, such as the leaky gut syndrome (LGS), which is characterized by the passage of harmful agents, like bacteria, toxins, and viruses, into the bloodstream. Intestinal barrier integrity is controlled by several players, including the gut microbiota. Various molecules, called postbiotics, are released during the natural metabolic activity of the microbiota. Postbiotics can regulate host-microbe interactions, epithelial homeostasis, and have overall benefits for our health. In this work, we used in vitro and in vivo systems to demonstrate the role of Lactobacillus paracasei CNCM I-5220-derived postbiotic (LP-PBF) in preserving intestinal barrier integrity. We demonstrated in vitro that LP-PBF restored the morphology of tight junctions (TJs) that were altered upon Salmonella typhimurium exposure. In vivo, LP-PBF protected the gut vascular barrier and blocked S. typhimurium dissemination into the bloodstream. Interestingly, we found that LP-PBF interacts not only with the host cells, but also directly with S. typhimurium blocking its biofilm formation, partially due to the presence of biosurfactants. This study highlights that LP-PBF is beneficial in maintaining gut homeostasis due to the synergistic effect of its different components. These results suggest that LP-PBF could be utilized in managing several pathologies displaying an impaired intestinal barrier function.

7.
Porcine Health Manag ; 9(1): 18, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37069650

ABSTRACT

BACKGROUND: In swine intestinal barrier deterioration can be caused by exposure to harmful bacteria, toxins or contaminants that can lead to a leaky gut and post weaning diarrhoea. A leaky gut leads to increased infection, inflammation and poor nutrient absorption that can impair piglet growth and ultimately survival. Application of yeast cell wall (YCW) products may offer an opportunity to reduce the intestinal barrier damage caused by microbial challenge. A Mannan rich fraction (MRF) and three YCW products were compared by examining their impact on intestinal barrier function using a Jejunal model of intestine in response to a bacterial challenge using Salmonella LPS. RESULTS: Trans epithelial electrical resistance (TEER) readings showed MRF had a significantly higher barrier function (P ≤ 0.05) over the positive control while YCW products A, B and C demonstrated no significant improvement to the positive control. Transcriptome analysis of the IPEC-J2 cells showed that differentially expressed genes associated with the gene ontology (GO) term for Structural molecule activity was significantly upregulated in the MRF treated cells over the positive control cells with 56 genes upregulated compared to product B (50 genes), Product C, (25 genes) and the negative control's 60 genes. Product A had no functional grouping under the structural molecule activity term. Both qPCR and western blotting analysis of tight junction associated genes showed that MRF treated cells demonstrated significantly higher Claudin 3 junctional gene expression (P ≤ 0.05) over the positive control and treatments A, B and C. Occludin expression was significantly higher in MRF treated cells (P ≤ 0.05) over the positive control and product B. A nonsignificant rise in TJP-1 gene expression was observed in the MRF treated cells when compared to the positive control. Protein abundances of Claudin 3, Occludin and TJP-1 were significantly (P ≤ 0.05) higher following MRF application to LPS challenged IPEC-J2 cells over the positive control. CONCLUSIONS: The difference in each YCW products production and composition appeared to influence intestinal barrier integrity. The action of MRF demonstrates its potential ability to raise intestinal barrier integrity of IPEC-J2 intestinal cells on an in vitro level through significantly elevated intracellular connections.

8.
Adv Mater ; 35(17): e2211581, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36799712

ABSTRACT

Low-profile and transient ingestible electronic capsules for diagnostics and therapeutics can replace widely used yet invasive procedures such as endoscopies. Several gastrointestinal diseases such as reflux disease, Crohn's disease, irritable bowel syndrome, and eosinophilic esophagitis result in increased intercellular dilation in epithelial barriers. Currently, the primary method of diagnosing and monitoring epithelial barrier integrity is via endoscopic tissue biopsies followed by histological imaging. Here, a gelatin-based ingestible electronic capsule that can monitor epithelial barriers via electrochemical impedance measurements is proposed. Toward this end, material-specific transfer printing methodologies to manufacture soft-gelatin-based electronics, an in vitro synthetic disease model to validate impedance-based sensing, and tests of capsules using ex vivo using porcine esophageal tissue are described. The technologies described herein can advance next generation of oral diagnostic devices that reduce invasiveness and improve convenience for patients.


Subject(s)
Eosinophilic Esophagitis , Gastroesophageal Reflux , Animals , Swine , Gelatin , Electric Impedance , Capsules , Gastroesophageal Reflux/diagnosis , Gastroesophageal Reflux/pathology , Eosinophilic Esophagitis/diagnosis
9.
Front Microbiol ; 14: 1302480, 2023.
Article in English | MEDLINE | ID: mdl-38274758

ABSTRACT

Introduction: Bacillus coagulans species have garnered much interest in health-related functional food research owing to their desirable probiotic properties, including pathogen exclusion, antioxidant, antimicrobial, immunomodulatory and food fermentation capabilities coupled with their tolerance of extreme environments (pH, temperature, gastric and bile acid resistance) and stability due to their endosporulation ability. Methods: In this study, the novel strain Bacillus coagulans CGI314 was assessed for safety, and functional probiotic attributes including resistance to heat, gastric acid and bile salts, the ability to adhere to intestinal cells, aggregation properties, the ability to suppress the growth of human pathogens, enzymatic profile, antioxidant capacity using biochemical and cell-based methods, cholesterol assimilation, anti-inflammatory activity, and attenuation of hydrogen peroxide (H2O2)-induced disruption of the intestinal-epithelial barrier. Results: B. coagulans CGI314 spores display resistance to high temperatures (40°C, 70°C, and 90°C), and gastric and bile acids [pH 3.0 and bile salt (0.3%)], demonstrating its ability to survive and remain viable under gastrointestinal conditions. Spores and the vegetative form of this strain were able to adhere to a mucous-producing intestinal cell line, demonstrated moderate auto-aggregation properties, and could co-aggregate with potentially pathogenic bacteria. Vegetative cells attenuated LPS-induced pro-inflammatory cytokine gene expression in HT-29 intestinal cell lines and demonstrated broad antagonistic activity toward numerous urinary tract, intestinal, oral, and skin pathogens. Metabolomic profiling demonstrated its ability to synthesize several amino acids, vitamins and short-chain fatty acids from the breakdown of complex molecules or by de novo synthesis. Additionally, B. coagulans CGI314's strong antioxidant capacity was demonstrated using enzyme-based methods and was further supported by its cytoprotective and antioxidant effects in HepG2 and HT-29 cell lines. Furthermore, B. coagulans CGI314 significantly increased the expression of tight junction proteins and partially ameliorated the detrimental effects of H2O2 induced intestinal-epithelial barrier integrity. Discussion: Taken together these beneficial functional properties provide strong evidence for B. coagulans CGI314 as a promising potential probiotic candidate in food products.

10.
Int J Mol Sci ; 23(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36293259

ABSTRACT

The environmental and occupational risk we confront from agricultural chemicals increases as their presence in natural habitats rises to hazardous levels, building a major part of the exposome. This is of particular concern in low- and middle-income countries, such as Brazil, known as a leading producer of agricultural commodities and consumer of pesticides. As long as public policies continue to encourage the indiscriminate use of pesticides and governments continue to support this strategy instead of endorsing sustainable agricultural alternatives, the environmental burden that damages epithelial barriers will continue to grow. Chronic exposure to environmental contaminants in early life can affect crucial barrier tissue, such as skin epithelium, airways, and intestine, causing increased permeability, leaking, dysbiosis, and inflammation, with serious implications for metabolism and homeostasis. This vicious cycle of exposure to environmental factors and the consequent damage to the epithelial barrier has been associated with an increase in immune-mediated chronic inflammatory diseases. Understanding how the harmful effects of pesticides on the epithelial barrier impact cellular interactions mediated by endogenous sensors that coordinate a successful immune system represents a crucial challenge. In line with the epithelial barrier hypothesis, this narrative review reports the available evidence on the effects of pesticides on epithelial barrier integrity, dysbiosis, AhR signaling, and the consequent development of immune-mediated inflammatory diseases.


Subject(s)
Dysbiosis , Pesticides , Humans , Dysbiosis/chemically induced , Pesticides/toxicity , Epithelium , Intestines , Signal Transduction , Intestinal Mucosa
11.
Sci Total Environ ; 809: 151119, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-34757100

ABSTRACT

Airborne oil mist particulate matter (OMPM) is generated during industrial processes such as metalworking and may be associated with pulmonary dysfunction. In this study, we employed the normal human bronchial epithelial BEAS-2B cell line to elucidate the association between pulmonary toxicity and OMPM of 2.5-10 µm, 1.0-2.5 µm and <1.0 µm particle sizes (OMPM10-2.5, OMPM2.5-1.0 and OMPM1.0). We measured OMPM concentrations at a precision machinery factory to estimate lung deposition rates and select realistic environmental concentrations for testing. All OMPMs (1-50 µg/cm2) significantly decreased BEAS-2B cell viability (>38% of control), except for low-dose OMPM1.0 (1 µg/cm2). OMPM10-2.5 and OMPM2.5-1.0, but not OMPM1.0, induced oxidative stress (1.5-4-fold increase compared with the control) and increased the production of proinflammatory cytokines (1.5-3-fold). However, only OMPM1.0 induced pulmonary epithelial barrier dysfunction via depletion of zonula occludens (0.65-0.8-fold) and α1-antitrypsin proteins (0.65-0.8-fold). In conclusion, a higher risk of lung disease was associated with smaller particle size OMPM. Exposure to OMPM1.0 may be a potential risk factor for chronic obstructive pulmonary disease. The evidence also demonstrates that occupational exposure to OMPM may cause pulmonary disease at very low concentrations.


Subject(s)
Air Pollutants , Particulate Matter , Air Pollutants/analysis , Air Pollutants/toxicity , Epithelial Cells , Humans , Lung , Particle Size , Particulate Matter/analysis , Particulate Matter/toxicity
12.
Int J Mol Sci, v. 23, 20, 12402, out. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4667

ABSTRACT

The environmental and occupational risk we confront from agricultural chemicals increases as their presence in natural habitats rises to hazardous levels, building a major part of the exposome. This is of particular concern in low- and middle-income countries, such as Brazil, known as a leading producer of agricultural commodities and consumer of pesticides. As long as public policies continue to encourage the indiscriminate use of pesticides and governments continue to support this strategy instead of endorsing sustainable agricultural alternatives, the environmental burden that damages epithelial barriers will continue to grow. Chronic exposure to environmental contaminants in early life can affect crucial barrier tissue, such as skin epithelium, airways, and intestine, causing increased permeability, leaking, dysbiosis, and inflammation, with serious implications for metabolism and homeostasis. This vicious cycle of exposure to environmental factors and the consequent damage to the epithelial barrier has been associated with an increase in immune-mediated chronic inflammatory diseases. Understanding how the harmful effects of pesticides on the epithelial barrier impact cellular interactions mediated by endogenous sensors that coordinate a successful immune system represents a crucial challenge. In line with the epithelial barrier hypothesis, this narrative review reports the available evidence on the effects of pesticides on epithelial barrier integrity, dysbiosis, AhR signaling, and the consequent development of immune-mediated inflammatory diseases.

13.
Ecotoxicol Environ Saf ; 226: 112837, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34619472

ABSTRACT

Nanoplastics, including polystyrene nanoplastics (PS-NPs), are widely existed in the atmosphere, which can be directly and continuously inhaled into the human body, posing a serious threat to the respiratory system. Therefore, it is urgent to estimate the potential pulmonary toxicity of airborne NPs and understand its underlying mechanism. In this research, we used two types of human lung epithelial cells (bronchial epithelium transformed with Ad12-SV40 2B, BEAS-2B) and (human pulmonary alveolar epithelial cells, HPAEpiC) to investigate the association between lung injury and PS-NPs. We found PS-NPs could significantly reduce cell viability in a dose-dependent manner and selected 7.5, 15 and 30 µg/cm2 PS-NPs as the exposure dosage levels. Microarray detection revealed that 770 genes in the 7.5 µg/cm2 group and 1951 genes in the 30 µg/cm2 group were distinctly altered compared to the control group. Function analysis suggested that redox imbalance might play central roles in PS-NPs induced lung injury. Further experiments verified that PS-NPs could break redox equilibrium, induce inflammatory effects, and triggered apoptotic pathways to cause cell death. Importantly, we found that PS-NPs could decrease transepithelial electrical resistance by depleting tight junctional proteins. Result also demonstrated that PS-NPs-treated cells increased matrix metallopeptidase 9 and Surfactant protein A levels, suggesting the exposure of PS-NPs might reduce the repair ability of the lung and cause tissue damage. In conclusion, nanoplastics could induce oxidative stress and inflammatory responses, followed by cell death and epithelial barrier destruction, which might result in tissue damage and lung disease after prolonged exposure.


Subject(s)
Microplastics , Nanoparticles , Coculture Techniques , Epithelial Cells , Humans , Lung , Microarray Analysis , Polystyrenes
14.
Int J Mol Sci ; 22(16)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34445491

ABSTRACT

In this study we assessed the effects of antigen exposure in mice pre-sensitized with allergen following viral infection on changes in lung function, cellular responses and tight junction expression. Female BALB/c mice were sensitized to ovalbumin and infected with influenza A before receiving a second ovalbumin sensitization and challenge with saline, ovalbumin (OVA) or house dust mite (HDM). Fifteen days post-infection, bronchoalveolar inflammation, serum antibodies, responsiveness to methacholine and barrier integrity were assessed. There was no effect of infection alone on bronchoalveolar lavage cellular inflammation 15 days post-infection; however, OVA or HDM challenge resulted in increased bronchoalveolar inflammation dominated by eosinophils/neutrophils or neutrophils, respectively. Previously infected mice had higher serum OVA-specific IgE compared with uninfected mice. Mice previously infected, sensitized and challenged with OVA were most responsive to methacholine with respect to airway resistance, while HDM challenge caused significant increases in both tissue damping and tissue elastance regardless of previous infection status. Previous influenza infection was associated with decreased claudin-1 expression in all groups and decreased occludin expression in OVA or HDM-challenged mice. This study demonstrates the importance of the respiratory epithelium in pre-sensitized individuals, where influenza-infection-induced barrier disruption resulted in increased systemic OVA sensitization and downstream effects on lung function.


Subject(s)
Bronchial Hyperreactivity/drug therapy , Methacholine Chloride/administration & dosage , Orthomyxoviridae Infections/complications , Ovalbumin/immunology , Pyroglyphidae/immunology , Airway Resistance/drug effects , Animals , Bronchial Hyperreactivity/etiology , Claudin-1/metabolism , Down-Regulation , Female , Influenza A virus/pathogenicity , Methacholine Chloride/pharmacology , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Ovalbumin/administration & dosage , Treatment Outcome
15.
Am J Reprod Immunol ; 86(5): e13478, 2021 11.
Article in English | MEDLINE | ID: mdl-34077596

ABSTRACT

In order to establish productive infection in women, HIV must transverse the vaginal epithelium and gain access to local target cells. Genital inflammation contributes to the availability of HIV susceptible cells at the female genital mucosa and is associated with higher HIV transmission rates in women. Factors that contribute to genital inflammation may subsequently increase the risk of HIV infection in women. Semen is a highly immunomodulatory fluid containing several bioactive molecules with the potential to influence inflammation and immune activation at the female genital tract. In addition to its role as a vector for HIV transmission, semen induces profound mucosal changes to prime the female reproductive tract for conception. Still, most studies of mucosal immunity are conducted in the absence of semen or without considering its immune impact on the female genital tract. This review discusses the various mechanisms by which semen exposure may influence female genital inflammation and highlights the importance of routine screening for semen biomarkers in vaginal specimens to account for its impact on genital inflammation.


Subject(s)
HIV Infections/transmission , HIV-1/pathogenicity , Semen/virology , Vagina/virology , Vaginitis/virology , Adaptive Immunity , Animals , Female , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , Host-Pathogen Interactions , Humans , Immunity, Innate , Immunity, Mucosal , Male , Risk Factors , Semen/immunology , Vagina/immunology , Vaginitis/immunology
16.
PeerJ ; 8: e9834, 2020.
Article in English | MEDLINE | ID: mdl-32953271

ABSTRACT

Allergic rhinitis (AR) is a common disease affecting 400 million of the population worldwide. Nasal epithelial cells form a barrier against the invasion of environmental pathogens. These nasal epithelial cells are connected together by tight junction (TJ) proteins including zonula occludens-1 (ZO-1), ZO-2 and ZO-3. Impairment of ZO proteins are observed in AR patients whereby dysfunction of ZOs allows allergens to pass the nasal passage into the subepithelium causing AR development. In this review, we discuss ZO proteins and their impairment leading to AR, regulation of their expression by Th1 cytokines (i.e., IL-2, TNF-α and IFN-γ), Th2 cytokines (i.e., IL-4 and IL-13) and histone deacetylases (i.e., HDAC1 and HDAC2). These findings are pivotal for future development of targeted therapies by restoring ZO protein expression and improving nasal epithelial barrier integrity in AR patients.

17.
J Hazard Mater ; 385: 121575, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31727530

ABSTRACT

Microplastics (MPs) have become a global environmental concern. Recent studies have shown that MPs, of which the predominant type is often polystyrene (PS; known as PS-MPs), can extend to and affect remote, sparsely inhabited areas via atmospheric transport. Although exposure to inhaled MPs may induce lung dysfunction, further experimental verification of the pulmonary toxic potential of MPs and the mechanism underlying the toxicity is needed. Here we used normal human lung epithelial BEAS-2B cells to clarify the association between pulmonary toxicity and PS-MPs. Results revealed that PS-MPs can cause cytotoxic and inflammatory effects in BEAS-2B cells by inducing reactive oxygen species formation. PS-MPs can decrease transepithelial electrical resistance by depleting zonula occludens proteins. Indeed, decreased α1-antitrypsin levels in BEAS-2B cells suggest that exposure to PS-MPs increases the risk for chronic obstructive pulmonary disease, and high concentrations of PS-MPs can induce these adverse responses. While low PS-MP levels can only disrupt the protective pulmonary barrier, they may also increase the risk for lung disease. Collectively, our findings indicate that PS-MP inhalation may influence human respiratory health.


Subject(s)
Lung/drug effects , Microplastics/toxicity , Polystyrenes/toxicity , Cell Line , Humans , In Vitro Techniques , Inflammation/metabolism , Inhalation Exposure , Lung/cytology , Lung/metabolism , Microplastics/chemistry , Oxidative Stress , Polystyrenes/chemistry
18.
Chemosphere ; 241: 125087, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31622892

ABSTRACT

Brominated flame-retardant (BFRs) exposure promotes multiple adverse health outcomes involved in oxidative stress, inflammation, and tissues damage. We investigated BFR effects, known as polybrominated diphenyl ethers (PBDEs) (47, 99 and 209) in an air-liquid-interface (ALI) airway tissue derived from A549 cell line, and compared with ALI culture of primary human bronchial epithelial cells (pHBEC). The cells, exposed to PBDEs (47, 99 and 209) (0.01-1 µM) for 24 h, were studied for IL-8, Muc5AC and Muc5B (mRNAs and proteins) production, as well as NOX-4 (mRNA) expression. Furthermore, we evaluated tight junction (TJ) integrity by Trans-Epithelial Electrical Resistance (TEER) measurements, and zonula occludens-1 (ZO-1) expression in the cells, and pH variations and rheological properties (elastic G', and viscous G″, moduli) in apical washes of ALI cultures. N-acetylcysteine (NAC) (10 mM) effects were tested in our experimental model of A549 cells. PBDEs (47, 99 and 209) exposure decreased TEER, ZO-1 and pH values, and increased IL-8, Muc5AC, Muc5B (mRNAs and proteins), NOX-4 (mRNA), and rheological parameters (G', G″) in ALI cultures of A549 cell line and pHBEC. NAC inhibited PBDE effects in A549 cells. PBDE inhalation might impairs human health of the lungs inducing oxidative stress, inflammatory response, loss of barrier integrity, unchecked mucus production, as well as altered physicochemical and biological properties of the fluids in airway epithelium. The treatment with anti-oxidants restored the negative effects of PBDEs in epithelial cells.


Subject(s)
Bronchi/cytology , Halogenated Diphenyl Ethers/toxicity , Lung Diseases/chemically induced , A549 Cells , Aged , Electric Impedance , Epithelial Cells/drug effects , Flame Retardants/toxicity , Humans , Interleukin-8/genetics , Interleukin-8/metabolism , Lung Diseases/physiopathology , Mucin 5AC/genetics , Mucin 5AC/metabolism , Mucin-5B/genetics , Mucin-5B/metabolism , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Oxidative Stress/drug effects , Tight Junctions/drug effects , Tight Junctions/physiology
19.
J Leukoc Biol ; 104(1): 109-122, 2018 07.
Article in English | MEDLINE | ID: mdl-29345370

ABSTRACT

Prevalence of food allergies in the United States is on the rise. Eosinophils are recruited to the intestinal mucosa in substantial numbers in food allergen-driven gastrointestinal (GI) inflammation. Soluble epoxide hydrolase (sEH) is known to play a pro-inflammatory role during inflammation by metabolizing anti-inflammatory epoxyeicosatrienoic acids (EETs) to pro-inflammatory diols. We investigated the role of sEH in a murine model of food allergy and evaluated the potential therapeutic effect of a highly selective sEH inhibitor (trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido]-cyclohexyloxy}-benzoic acid [t-TUCB]). Oral exposure of mice on a soy-free diet to soy protein isolate (SPI) induced expression of intestinal sEH, increased circulating total and antigen-specific IgE levels, and caused significant weight loss. Administration of t-TUCB to SPI-challenged mice inhibited IgE levels and prevented SPI-induced weight loss. Additionally, SPI-induced GI inflammation characterized by increased recruitment of eosinophils and mast cells, elevated eotaxin 1 levels, mucus hypersecretion, and decreased epithelial junction protein expression. In t-TUCB-treated mice, eosinophilia, mast cell recruitment, and mucus secretion were significantly lower than in untreated mice and SPI-induced loss of junction protein expression was prevented to variable levels. sEH expression in eosinophils was induced by inflammatory mediators TNF-α and eotaxin-1. Treatment of eosinophils with t-TUCB significantly inhibited eosinophil migration, an effect that was mirrored by treatment with 11,12-EET, by inhibiting intracellular signaling events such as ERK (1/2) activation and eotaxin-1-induced calcium flux. These studies suggest that sEH induced by soy proteins promotes allergic responses and GI inflammation including eosinophilia and that inhibition of sEH can attenuate these responses.


Subject(s)
Eosinophils/immunology , Epoxide Hydrolases/antagonists & inhibitors , Food Hypersensitivity/enzymology , Gastroenteritis/enzymology , Animals , Benzoates/pharmacology , Chemotaxis, Leukocyte/immunology , Enzyme Inhibitors/pharmacology , Female , Male , Mice , Mice, Inbred BALB C , Phenylurea Compounds/pharmacology
20.
FASEB J ; 32(1): 230-242, 2018 01.
Article in English | MEDLINE | ID: mdl-28874458

ABSTRACT

The tumor necrosis factor receptor-associated factor 2 (TRAF2) is a second messenger adaptor protein that plays an essential role in propagating TNF-α-mediated signaling pathways. Modulation of TRAF2 activity by ubiquitination is well studied; however, the deubiquitinating enzyme (DUB), which regulates TRAF2 stability, has not been identified. Here we reveal USP48 as the first identified DUB to deubiquitinate and stabilize TRAF2 in epithelial cells. Down-regulation of USP48 increases K48-linked polyubiquitination of TRAF2 and reduces TRAF2 protein levels. Interestingly, USP48 only targets the TRAF2 related to JNK pathway, not the TRAF2 related to NF-κB and p38 pathways. USP48 is serine phosphorylated in response to TNF-α. The phosphorylation is catalyzed by glycogen synthase kinase 3ß (GSK3ß), ultimately resulting in increases in USP48 DUB activity. Furthermore, we reveal a new biologic function of TRAF2 that contributes to epithelial barrier dysfunction, which is attenuated by knockdown of USP48. Inhibition of TRAF2/JNK pathway increases E (epithelial)-cadherin expression and enhances epithelial barrier integrity, while knockdown of USP48 attenuates TNF-α/JNK pathway and increases E-cadherin expression and cell-cell junction in epithelial cells. These data, taken together, indicate that USP48 stabilizes TRAF2, which is promoted by GSK3ß-mediated phosphorylation. Further, down-regulation of USP48 increases E-cadherin expression and epithelial barrier integrity through reducing TRAF2 stability.-Li, S., Wang, D., Zhao, J., Weathington, N. M., Shang, D., Zhao, Y. The deubiquitinating enzyme USP48 stabilizes TRAF2 and reduces E-cadherin-mediated adherens junctions.


Subject(s)
Adherens Junctions/metabolism , Cadherins/metabolism , TNF Receptor-Associated Factor 2/metabolism , Ubiquitin-Specific Proteases/metabolism , A549 Cells , Animals , Antigens, CD , Cell Line , Epithelial Cells/metabolism , Gene Knockdown Techniques , Glycogen Synthase Kinase 3 beta/metabolism , HEK293 Cells , Humans , MAP Kinase Signaling System , Mice , Phosphorylation , Protein Stability , TNF Receptor-Associated Factor 2/chemistry , Tumor Necrosis Factor-alpha/metabolism , Ubiquitin-Specific Proteases/antagonists & inhibitors , Ubiquitin-Specific Proteases/genetics , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL