Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 274
Filter
1.
Cell Rep ; 43(7): 114417, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38980795

ABSTRACT

The ability to sense and respond to osmotic fluctuations is critical for the maintenance of cellular integrity. We used gene co-essentiality analysis to identify an unappreciated relationship between TSC22D2, WNK1, and NRBP1 in regulating cell volume homeostasis. All of these genes have paralogs and are functionally buffered for osmo-sensing and cell volume control. Within seconds of hyperosmotic stress, TSC22D, WNK, and NRBP family members physically associate into biomolecular condensates, a process that is dependent on intrinsically disordered regions (IDRs). A close examination of these protein families across metazoans revealed that TSC22D genes evolved alongside a domain in NRBPs that specifically binds to TSC22D proteins, which we have termed NbrT (NRBP binding region with TSC22D), and this co-evolution is accompanied by rapid IDR length expansion in WNK-family kinases. Our study reveals that TSC22D, WNK, and NRBP genes evolved in metazoans to co-regulate rapid cell volume changes in response to osmolarity.

2.
Methods Mol Biol ; 2829: 127-156, 2024.
Article in English | MEDLINE | ID: mdl-38951331

ABSTRACT

The baculovirus expression vector system (BEVS) has now found acceptance in both research laboratories and industry, which can be attributed to many of its key features including the limited host range of the vectors, their non-pathogenicity to humans, and the mammalian-like post-translational modification (PTMs) that can be achieved in insect cells. In fact, this system acts as a middle ground between prokaryotes and higher eukaryotes to produce complex biologics. Still, industrial use of the BEVS lags compared to other platforms. We have postulated that one reason for this has been a lack of genetic tools that can complement the study of baculovirus vectors, while a second reason is the co-production of the baculovirus vector with the desired product. While some genetic enhancements have been made to improve the BEVS as a production platform, the genome remains under-scrutinized. This chapter outlines the methodology for a CRISPR-Cas9-based transfection-infection assay to probe the baculovirus genome for essential/nonessential genes that can potentially maximize foreign gene expression under a promoter of choice.


Subject(s)
Baculoviridae , CRISPR-Cas Systems , Genetic Vectors , Baculoviridae/genetics , Genetic Vectors/genetics , Animals , Genes, Essential , Gene Expression , Transfection/methods , Gene Editing/methods , Sf9 Cells , Humans
3.
Heliyon ; 10(11): e31713, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38832264

ABSTRACT

Humans benefit from a vast community of microorganisms in their gastrointestinal tract, known as the gut microbiota, numbering in the tens of trillions. An imbalance in the gut microbiota known as dysbiosis, can lead to changes in the metabolite profile, elevating the levels of toxins like Bacteroides fragilis toxin (BFT), colibactin, and cytolethal distending toxin. These toxins are implicated in the process of oncogenesis. However, a significant portion of the Bacteroides fragilis genome consists of functionally uncharacterized and hypothetical proteins. This study delves into the functional characterization of hypothetical proteins (HPs) encoded by the Bacteroides fragilis genome, employing a systematic in silico approach. A total of 379 HPs were subjected to a BlastP homology search against the NCBI non-redundant protein sequence database, resulting in 162 HPs devoid of identity to known proteins. CDD-Blast identified 106 HPs with functional domains, which were then annotated using Pfam, InterPro, SUPERFAMILY, SCANPROSITE, SMART, and CATH. Physicochemical properties, such as molecular weight, isoelectric point, and stability indices, were assessed for 60 HPs whose functional domains were identified by at least three of the aforementioned bioinformatic tools. Subsequently, subcellular localization analysis was examined and the gene ontology analysis revealed diverse biological processes, cellular components, and molecular functions. Remarkably, E1WPR3 was identified as a virulent and essential gene among the HPs. This study presents a comprehensive exploration of B. fragilis HPs, shedding light on their potential roles and contributing to a deeper understanding of this organism's functional landscape.

4.
Appl Environ Microbiol ; : e0068724, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864628

ABSTRACT

Mycoplasma bovis is an important emerging pathogen of cattle and bison, but our understanding of the genetic basis of its interactions with its host is limited. The aim of this study was to identify genes of M. bovis required for interaction and survival in association with host cells. One hundred transposon-induced mutants of the type strain PG45 were assessed for their capacity to survive and proliferate in Madin-Darby bovine kidney cell cultures. The growth of 19 mutants was completely abrogated, and 47 mutants had a prolonged doubling time compared to the parent strain. All these mutants had a similar growth pattern to the parent strain PG45 in the axenic media. Thirteen genes previously classified as dispensable for the axenic growth of M. bovis were found to be essential for the growth of M. bovis in association with host cells. In most of the mutants with a growth-deficient phenotype, the transposon was inserted into a gene involved in transportation or metabolism. This included genes coding for ABC transporters, proteins related to carbohydrate, nucleotide and protein metabolism, and membrane proteins essential for attachment. It is likely that these genes are essential not only in vitro but also for the survival of M. bovis in infected animals. IMPORTANCE: Mycoplasma bovis causes chronic bronchopneumonia, mastitis, arthritis, keratoconjunctivitis, and reproductive tract disease in cattle around the globe and is an emerging pathogen in bison. Control of mycoplasma infections is difficult in the absence of appropriate antimicrobial treatment or effective vaccines. A comprehensive understanding of host-pathogen interactions and virulence factors is important to implement more effective control methods against M. bovis. Recent studies of other mycoplasmas with in vitro cell culture models have identified essential virulence genes of mycoplasmas. Our study has identified genes of M. bovis required for survival in association with host cells, which will pave the way to a better understanding of host-pathogen interactions and the role of specific genes in the pathogenesis of disease caused by M. bovis.

5.
Imeta ; 3(1): e157, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38868518

ABSTRACT

Over the past few decades, there has been a significant interest in the study of essential genes, which are crucial for the survival of an organism under specific environmental conditions and thus have practical applications in the fields of synthetic biology and medicine. An increasing amount of experimental data on essential genes has been obtained with the continuous development of technological methods. Meanwhile, various computational prediction methods, related databases and web servers have emerged accordingly. To facilitate the study of essential genes, we have established a database of essential genes (DEG), which has become popular with continuous updates to facilitate essential gene feature analysis and prediction, drug and vaccine development, as well as artificial genome design and construction. In this article, we summarized the studies of essential genes, overviewed the relevant databases, and discussed their practical applications. Furthermore, we provided an overview of the main applications of DEG and conducted comprehensive analyses based on its latest version. However, it should be noted that the essential gene is a dynamic concept instead of a binary one, which presents both opportunities and challenges for their future development.

6.
Genet Med ; 26(7): 101141, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38629401

ABSTRACT

PURPOSE: Existing resources that characterize the essentiality status of genes are based on either proliferation assessment in human cell lines, viability evaluation in mouse knockouts, or constraint metrics derived from human population sequencing studies. Several repositories document phenotypic annotations for rare disorders; however, there is a lack of comprehensive reporting on lethal phenotypes. METHODS: We queried Online Mendelian Inheritance in Man for terms related to lethality and classified all Mendelian genes according to the earliest age of death recorded for the associated disorders, from prenatal death to no reports of premature death. We characterized the genes across these lethality categories, examined the evidence on viability from mouse models and explored how this information could be used for novel gene discovery. RESULTS: We developed the Lethal Phenotypes Portal to showcase this curated catalog of human essential genes. Differences in the mode of inheritance, physiological systems affected, and disease class were found for genes in different lethality categories, as well as discrepancies between the lethal phenotypes observed in mouse and human. CONCLUSION: We anticipate that this resource will aid clinicians in the diagnosis of early lethal conditions and assist researchers in investigating the properties that make these genes essential for human development.


Subject(s)
Genes, Lethal , Genetic Diseases, Inborn , Phenotype , Humans , Animals , Mice , Genetic Diseases, Inborn/genetics , Databases, Genetic , Disease Models, Animal , Genes, Essential/genetics
7.
Front Bioeng Biotechnol ; 12: 1377334, 2024.
Article in English | MEDLINE | ID: mdl-38590605

ABSTRACT

Sinorhizobium fredii CCBAU45436 is an excellent rhizobium that plays an important role in agricultural production. However, there still needs more comprehensive understanding of the metabolic system of S. fredii CCBAU45436, which hinders its application in agriculture. Therefore, based on the first-generation metabolic model iCC541 we developed a new genome-scale metabolic model iAQY970, which contains 970 genes, 1,052 reactions, 942 metabolites and is scored 89% in the MEMOTE test. Cell growth phenotype predicted by iAQY970 is 81.7% consistent with the experimental data. The results of mapping the proteome data under free-living and symbiosis conditions to the model showed that the biomass production rate in the logarithmic phase was faster than that in the stable phase, and the nitrogen fixation efficiency of rhizobia parasitized in cultivated soybean was higher than that in wild-type soybean, which was consistent with the actual situation. In the symbiotic condition, there are 184 genes that would affect growth, of which 94 are essential; In the free-living condition, there are 143 genes that influence growth, of which 78 are essential. Among them, 86 of the 94 essential genes in the symbiotic condition were consistent with the prediction of iCC541, and 44 essential genes were confirmed by literature information; meanwhile, 30 genes were identified by DEG and 33 genes were identified by Geptop. In addition, we extracted four key nitrogen fixation modules from the model and predicted that sulfite reductase (EC 1.8.7.1) and nitrogenase (EC 1.18.6.1) as the target enzymes to enhance nitrogen fixation by MOMA, which provided a potential focus for strain optimization. Through the comprehensive metabolic model, we can better understand the metabolic capabilities of S. fredii CCBAU45436 and make full use of it in the future.

8.
mSphere ; 9(4): e0064223, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38511958

ABSTRACT

The spread of multi-drug-resistant (MDR) pathogens has rapidly outpaced the development of effective treatments. Diverse resistance mechanisms further limit the effectiveness of our best treatments, including multi-drug regimens and last line-of-defense antimicrobials. Biofilm formation is a powerful component of microbial pathogenesis, providing a scaffold for efficient colonization and shielding against anti-microbials, which further complicates drug resistance studies. Early genetic knockout tools didn't allow the study of essential genes, but clustered regularly interspaced palindromic repeat inference (CRISPRi) technologies have overcome this challenge via genetic silencing. These tools rapidly evolved to meet new demands and exploit native CRISPR systems. Modern tools range from the creation of massive CRISPRi libraries to tunable modulation of gene expression with CRISPR activation (CRISPRa). This review discusses the rapid expansion of CRISPRi/a-based technologies, their use in investigating MDR and biofilm formation, and how this drives further development of a potent tool to comprehensively examine multi-drug resistance.

9.
Cancer ; 130(S8): 1435-1448, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38358781

ABSTRACT

BACKGROUND: Patients with triple-positive breast cancer (TPBC) have a higher risk of recurrence and lower survival rates than patients with other luminal breast cancers. However, there are few studies on the predictive biomarkers of prognosis and treatment responses in TPBC. METHODS: Proliferation essential genes (PEGs) were acquired from clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) technology, and cohorts of patients with TPBC were obtained from public databases and our cohort. To develop a TPBC-PEG signature, Cox regression and least absolute shrinkage and selection operator regression analyses were applied. Functional analyses were performed with gene set enrichment analysis. The relationship between candidate genes and neoadjuvant chemotherapy (NACT) sensitivity was explored via real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) on the basis of clinical samples. RESULTS: Among 900 TPBC-PEGs, 437 showed significant differential expression between TPBC and normal tissues. Three prognostic PEGs (actin-like 6A [ACTL6A], chaperonin containing TCP1 subunit 2 [CCT2], and threonyl-TRNA synthetase [TARS]) were identified and used to construct the PEG signature. Patients with high PEG signature scores exhibited a worse overall survival and lower sensitivity to NACT than patients with low PEG signature scores. RT-qPCR results indicated that ACTL6A and CCT2 expression were significantly upregulated in patients who lacked sensitivity to NACT. IHC results showed that the ACTL6A protein was highly expressed in patients with NACT resistance and nonpathological complete responses. CONCLUSIONS: This efficient PEG signature prognostic model can predict the outcomes of TPBC. Furthermore, ACTL6A expression level was associated with the response to NACT, and could serve as an important factor in predicting prognosis and drug sensitivity of patients with TPBC.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Actins/genetics , Genes, Essential , Neoadjuvant Therapy/methods , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/therapeutic use , DNA-Binding Proteins/genetics
10.
Cell Syst ; 15(2): 134-148.e7, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38340730

ABSTRACT

Quantifying and predicting growth rate phenotype given variation in gene expression and environment is complicated by epistatic interactions and the vast combinatorial space of possible perturbations. We developed an approach for mapping expression-growth rate landscapes that integrates sparsely sampled experimental measurements with an interpretable machine learning model. We used mismatch CRISPRi across pairs and triples of genes to create over 8,000 titrated changes in E. coli gene expression under varied environmental contexts, exploring epistasis in up to 22 distinct environments. Our results show that a pairwise model previously used to describe drug interactions well-described these data. The model yielded interpretable parameters related to pathway architecture and generalized to predict the combined effect of up to four perturbations when trained solely on pairwise perturbation data. We anticipate this approach will be broadly applicable in optimizing bacterial growth conditions, generating pharmacogenomic models, and understanding the fundamental constraints on bacterial gene expression. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Epistasis, Genetic , Escherichia coli , Epistasis, Genetic/genetics , Escherichia coli/genetics , Bacteria/genetics , Gene Expression
11.
Biomolecules ; 14(1)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38254687

ABSTRACT

Prostate cancer (PCa) is characterised by androgen dependency. Unfortunately, under anti-androgen treatment pressure, castration-resistant prostate cancer (CRPC) emerges, characterised by heterogeneous cell populations that, over time, lead to the development of different androgen-dependent or -independent phenotypes. Despite important advances in therapeutic strategies, CRPC remains incurable. Context-specific essential genes represent valuable candidates for targeted anti-cancer therapies. Through the investigation of gene and protein annotations and the integration of published transcriptomic data, we identified two consensus lists to stratify PCa patients' risk and discriminate CRPC phenotypes based on androgen receptor activity. ROC and Kaplan-Meier survival analyses were used for gene set validation in independent datasets. We further evaluated these genes for their association with cancer dependency. The deregulated expression of the PCa-related genes was associated with overall and disease-specific survival, metastasis and/or high recurrence risk, while the CRPC-related genes clearly discriminated between adeno and neuroendocrine phenotypes. Some of the genes showed context-specific essentiality. We further identified candidate drugs through a computational repositioning approach for targeting these genes and treating lethal variants of PCa. This work provides a proof-of-concept for the use of an integrative approach to identify candidate biomarkers involved in PCa progression and CRPC pathogenesis within the goal of precision medicine.


Subject(s)
Androgens , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/genetics , Biomarkers , Phenotype , Computational Biology
12.
mBio ; 15(2): e0309223, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38189270

ABSTRACT

The identification of microbial genes essential for survival as those with lethal knockout phenotype (LKP) is a common strategy for functional interrogation of genomes. However, interpretation of the LKP is complicated because a substantial fraction of the genes with this phenotype remains poorly functionally characterized. Furthermore, many genes can exhibit LKP not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes (conditionally essential genes). We analyzed the sets of LKP genes for two archaea, Methanococcus maripaludis and Sulfolobus islandicus, using a variety of computational approaches aiming to differentiate between essential and conditionally essential genes and to predict at least a general function for as many of the proteins encoded by these genes as possible. This analysis allowed us to predict the functions of several LKP genes including previously uncharacterized subunit of the GINS protein complex with an essential function in genome replication and of the KEOPS complex that is responsible for an essential tRNA modification as well as GRP protease implicated in protein quality control. Additionally, several novel antitoxins (conditionally essential genes) were predicted, and this prediction was experimentally validated by showing that the deletion of these genes together with the adjacent genes apparently encoding the cognate toxins caused no growth defect. We applied principal component analysis based on sequence and comparative genomic features showing that this approach can separate essential genes from conditionally essential ones and used it to predict essential genes in other archaeal genomes.IMPORTANCEOnly a relatively small fraction of the genes in any bacterium or archaeon is essential for survival as demonstrated by the lethal effect of their disruption. The identification of essential genes and their functions is crucial for understanding fundamental cell biology. However, many of the genes with a lethal knockout phenotype remain poorly functionally characterized, and furthermore, many genes can exhibit this phenotype not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes. We applied state-of-the-art computational methods to predict the functions of a number of uncharacterized genes with the lethal knockout phenotype in two archaeal species and developed a computational approach to predict genes involved in essential functions. These findings advance the current understanding of key functionalities of archaeal cells.


Subject(s)
Archaea , Archaeal Proteins , Archaea/genetics , Archaea/metabolism , Genes, Essential , Genome, Archaeal , Genomics , Phenotype , Archaeal Proteins/genetics , Archaeal Proteins/metabolism
13.
mSphere ; 9(2): e0070323, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38251906

ABSTRACT

Promoter shutoff of essential genes in the diploid Candida albicans has often been insufficient to create tight, conditional null alleles due to leaky expression and has been a stumbling block in pathogenesis research. Moreover, homozygous deletion of non-essential genes has often been problematic due to the frequent aneuploidy in the mutant strains. Rapid, conditional depletion of essential genes by the anchor-away strategy has been successfully employed in Saccharomyces cerevisiae and other model organisms. Here, rapamycin mediates the dimerization of human FK506-binding protein (FKBP12) and FKBP12-rapamycin-binding (FRB) domain-containing target protein, resulting in relocalization to altered sub-cellular locations. In this work, we used the ribosomal protein Rpl13 as the anchor and took two nuclear proteins as targets to construct a set of mutants in a proof-of-principle approach. We first constructed a rapamycin-resistant C. albicans strain by introducing a dominant mutation in the CaTOR1 gene and a homozygous deletion of RBP1, the ortholog of FKBP12, a primary target of rapamycin. The FKBP12 and the FRB coding sequences were then CUG codon-adapted for C. albicans by site-directed mutagenesis. Anchor-away strains expressing the essential TBP1 gene or the non-essential SPT8 gene as FRB fusions were constructed. We found that rapamycin caused rapid cessation of growth of the TBP-AA strain within 15 minutes and the SPT8-AA strain phenocopied the constitutive filamentous phenotype of the spt8Δ/spt8Δ mutant. Thus, the anchor-away toolbox for C. albicans developed here can be employed for genome-wide analysis to identify gene function in a rapid and reliable manner, further accelerating anti-fungal drug development in C. albicans. IMPORTANCE: Molecular genetic studies thus far have identified ~27% open-reading frames as being essential for the vegetative growth of Candida albicans in rich medium out of a total 6,198 haploid set of open reading frames. However, a major limitation has been to construct rapid conditional alleles of essential C. albicans genes with near quantitative depletion of encoded proteins. Here, we have developed a toolbox for rapid and conditional depletion of genes that would aid studies of gene function of both essential and non-essential genes.


Subject(s)
Candida albicans , Tacrolimus Binding Protein 1A , Humans , Candida albicans/genetics , Tacrolimus Binding Protein 1A/genetics , Homozygote , Sequence Deletion , Sirolimus , Saccharomyces cerevisiae/genetics , Codon
14.
BMC Genomics ; 25(1): 47, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200437

ABSTRACT

BACKGROUND: Essential genes encode functions that play a vital role in the life activities of organisms, encompassing growth, development, immune system functioning, and cell structure maintenance. Conventional experimental techniques for identifying essential genes are resource-intensive and time-consuming, and the accuracy of current machine learning models needs further enhancement. Therefore, it is crucial to develop a robust computational model to accurately predict essential genes. RESULTS: In this study, we introduce GCNN-SFM, a computational model for identifying essential genes in organisms, based on graph convolutional neural networks (GCNN). GCNN-SFM integrates a graph convolutional layer, a convolutional layer, and a fully connected layer to model and extract features from gene sequences of essential genes. Initially, the gene sequence is transformed into a feature map using coding techniques. Subsequently, a multi-layer GCN is employed to perform graph convolution operations, effectively capturing both local and global features of the gene sequence. Further feature extraction is performed, followed by integrating convolution and fully-connected layers to generate prediction results for essential genes. The gradient descent algorithm is utilized to iteratively update the cross-entropy loss function, thereby enhancing the accuracy of the prediction results. Meanwhile, model parameters are tuned to determine the optimal parameter combination that yields the best prediction performance during training. CONCLUSIONS: Experimental evaluation demonstrates that GCNN-SFM surpasses various advanced essential gene prediction models and achieves an average accuracy of 94.53%. This study presents a novel and effective approach for identifying essential genes, which has significant implications for biology and genomics research.


Subject(s)
Genes, Essential , Neural Networks, Computer , Algorithms , Entropy , Genomics
15.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38279653

ABSTRACT

Cluster analysis is one of the most widely used exploratory methods for visualization and grouping of gene expression patterns across multiple samples or treatment groups. Although several existing online tools can annotate clusters with functional terms, there is no all-in-one webserver to effectively prioritize genes/clusters using gene essentiality as well as congruency of mRNA-protein expression. Hence, we developed CAP-RNAseq that makes possible (1) upload and clustering of bulk RNA-seq data followed by identification, annotation and network visualization of all or selected clusters; and (2) prioritization using DepMap gene essentiality and/or dependency scores as well as the degree of correlation between mRNA and protein levels of genes within an expression cluster. In addition, CAP-RNAseq has an integrated primer design tool for the prioritized genes. Herein, we showed using comparisons with the existing tools and multiple case studies that CAP-RNAseq can uniquely aid in the discovery of co-expression clusters enriched with essential genes and prioritization of novel biomarker genes that exhibit high correlations between their mRNA and protein expression levels. CAP-RNAseq is applicable to RNA-seq data from different contexts including cancer and available at http://konulabapps.bilkent.edu.tr:3838/CAPRNAseq/ and the docker image is downloadable from https://hub.docker.com/r/konulab/caprnaseq.


Subject(s)
Proteomics , Sequence Analysis, RNA/methods , RNA-Seq , RNA, Messenger/genetics
16.
Microbiol Spectr ; 12(1): e0314923, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38054713

ABSTRACT

IMPORTANCE: The construction of arrayed mutant libraries has advanced the field of bacterial genetics by allowing researchers to more efficiently study the exact function and importance of encoded genes. In this study, we constructed an arrayed clustered regularly interspaced short palindromic repeats interference (CRISPRi) library, known as S treptococcus mutans arrayed CRISPRi (SNAP), as a resource to study >250 essential and growth-supporting genes in Streptococcus mutans. SNAP will be made available to the research community, and we anticipate that its distribution will lead to high-quality, high-throughput, and reproducible studies of essential genes.


Subject(s)
Genes, Essential , Streptococcus mutans , Streptococcus mutans/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Library , CRISPR-Cas Systems
17.
mBio ; 15(1): e0277323, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38054745

ABSTRACT

IMPORTANCE: Staphylococcus aureus is an important clinical pathogen that causes a high number of antibiotic-resistant infections. The study of S. aureus biology, and particularly of the function of essential proteins, is of particular importance to develop new approaches to combat this pathogen. We have optimized a clustered regularly interspaced short palindromic repeat interference (CRISPRi) system that allows efficient targeting of essential S. aureus genes. Furthermore, we have used that system to construct a library comprising 261 strains, which allows the depletion of essential proteins encoded by 200 genes/operons. This library, which we have named Lisbon CRISPRi Mutant Library, should facilitate the study of S. aureus pathogenesis and biology.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Staphylococcus aureus , Staphylococcus aureus/genetics , Gene Library
18.
mBio ; 15(2): e0302523, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38126782

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR) are prokaryotic adaptive immune systems regularly utilized as DNA-editing tools. While Neisseria gonorrhoeae does not have an endogenous CRISPR, the commensal species Neisseria lactamica encodes a functional Type I-C CRISPR-Cas system. We have established an isopropyl ß-d-1-thiogalactopyranoside added (IPTG)-inducible, CRISPR interference (CRISPRi) platform based on the N. lactamica Type I-C CRISPR missing the Cas3 nuclease to allow locus-specific transcriptional repression. As proof of principle, we targeted a non-phase-variable version of the opaD gene. We show that CRISPRi can downregulate opaD gene and protein expression, resulting in bacterial inability to stimulate neutrophil oxidative responses and to bind to an N-terminal fragment of CEACAM1. Importantly, we used CRISPRi to effectively knockdown all the transcripts of all 11 opa genes using a five-spacer CRISPR array, allowing control of the entire phase-variable opa family in strain FA1090. We also report that repression is reversible following IPTG removal. Finally, we showed that the Type I-C CRISPRi system can conditionally reduce the expression of two essential genes. This CRISPRi system will allow the interrogation of every Gc gene, essential and non-essential, to study physiology and pathogenesis and aid in antimicrobial development.IMPORTANCEClustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems have proven instrumental in genetically manipulating many eukaryotic and prokaryotic organisms. Despite its usefulness, a CRISPR system had yet to be developed for use in Neisseria gonorrhoeae (Gc), a bacterium that is the main etiological agent of gonorrhea infection. Here, we developed a programmable and IPTG-inducible Type I-C CRISPR interference (CRISPRi) system derived from the commensal species Neisseria lactamica as a gene repression system in Gc. As opposed to generating genetic knockouts, the Type I-C CRISPRi system allows us to block transcription of specific genes without generating deletions in the DNA. We explored the properties of this system and found that a minimal spacer array is sufficient for gene repression while also facilitating efficient spacer reprogramming. Importantly, we also show that we can use CRISPRi to knockdown genes that are essential to Gc that cannot normally be knocked out under laboratory settings. Gc encodes ~800 essential genes, many of which have no predicted function. We predict that this Type I-C CRISPRi system can be used to help categorize gene functions and perhaps contribute to the development of novel therapeutics for gonorrhea.


Subject(s)
CRISPR-Cas Systems , Gonorrhea , Humans , Neisseria gonorrhoeae/genetics , Isopropyl Thiogalactoside , DNA
19.
ACS Infect Dis ; 9(12): 2494-2503, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-37955405

ABSTRACT

The emergence of virulent, resistant, and rapidly evolving fungal pathogens poses a significant threat to public health, agriculture, and the environment. Targeting cellular processes with standard small-molecule intervention may be effective but requires long development times and is prone to antibiotic resistance. To overcome the current limitations of antibiotic development and treatment, this study harnesses CRISPR-Cas systems as antifungals by capitalizing on their adaptability, specificity, and efficiency in target design. The conventional design of CRISPR-Cas antimicrobials, based on induction of DNA double-strand breaks (DSBs), is potentially less effective in fungi due to robust eukaryotic DNA repair machinery. Here, we report a novel design principle to formulate more effective CRISPR-Cas antifungals by cotargeting essential genes with DNA repair defensive genes that remove the fungi's ability to repair the DSB sites of essential genes. By evaluating this design on the model fungus Saccharomyces cerevisiae, we demonstrated that essential and defensive gene cotargeting is more effective than either essential or defensive gene targeting alone. The top-performing CRISPR-Cas antifungals performed as effectively as the antibiotic Geneticin. A gene cotargeting interaction analysis revealed that cotargeting essential genes with RAD52 involved in homologous recombination (HR) was the most synergistic combination. Fast growth kinetics of S. cerevisiae induced resistance to CRISPR-Cas antifungals, where genetic mutations mostly occurred in defensive genes and guide RNA sequences.


Subject(s)
Antifungal Agents , CRISPR-Cas Systems , Antifungal Agents/pharmacology , Saccharomyces cerevisiae/genetics , RNA, Guide, CRISPR-Cas Systems , DNA Repair , Anti-Bacterial Agents
20.
J Agric Food Chem ; 71(49): 19302-19311, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38018120

ABSTRACT

As resistance to chemical fungicides continues to increase inFusarium graminearum, there is a growing need to develop novel disease control strategies. To discover essential genes that could serve as new disease control targets, we selected essential gene candidates that had failed to be deleted in previous studies. Thirteen genes were confirmed to be essential, either by constructing conditional promoter replacement mutants or by employing a clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated editing strategy. We synthesized double-stranded RNAs (dsRNAs) targeting these essential genes and analyzed their protective effects in plants using a spray-induced gene silencing (SIGS) method. When dsRNAs targeting Fg10360, Fg13150, and Fg06123 were applied to detached barley leaves prior to fungal inoculation, disease lesions were greatly reduced. Our findings provide evidence of the potential of essential genes identified by a SIGS method to be effective targets for the control of fungal diseases.


Subject(s)
Fusarium , Genes, Essential , Gene Silencing , Fusarium/genetics , RNA, Double-Stranded , Plant Diseases/prevention & control , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...