Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 466
Filter
1.
Genome Biol Evol ; 16(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101574

ABSTRACT

From hydrothermal vents, to glaciers, to deserts, research in extreme environments has reshaped our understanding of how and where life can persist. Contained within the genomes of extremophilic organisms are the blueprints for a toolkit to tackle the multitude of challenges of survival in inhospitable environments. As new sequencing technologies have rapidly developed, so too has our understanding of the molecular and genomic mechanisms that have facilitated the success of extremophiles. Although eukaryotic extremophiles remain relatively understudied compared to bacteria and archaea, an increasing number of studies have begun to leverage 'omics tools to shed light on eukaryotic life in harsh conditions. In this perspective paper, we highlight a diverse breadth of research on extremophilic lineages across the eukaryotic tree of life, from microbes to macrobes, that are collectively reshaping our understanding of molecular innovations at life's extremes. These studies are not only advancing our understanding of evolution and biological processes but are also offering a valuable roadmap on how emerging technologies can be applied to identify cellular mechanisms of adaptation to cope with life in stressful conditions, including high and low temperatures, limited water availability, and heavy metal habitats. We shed light on patterns of molecular and organismal adaptation across the eukaryotic tree of life and discuss a few promising research directions, including investigations into the role of horizontal gene transfer in eukaryotic extremophiles and the importance of increasing phylogenetic diversity of model systems.


Subject(s)
Eukaryota , Extremophiles , Eukaryota/genetics , Extremophiles/genetics , Adaptation, Physiological/genetics , Genomics , Genome , Evolution, Molecular , Phylogeny
2.
ISME Commun ; 4(1): ycae100, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39101031

ABSTRACT

The accelerated decline in Arctic sea-ice cover and duration is enabling the opening of Arctic marine passages and improving access to natural resources. The increasing accessibility to navigation and resource exploration and production brings risks of accidental hydrocarbon releases into Arctic waters, posing a major threat to Arctic marine ecosystems where oil may persist for many years, especially in beach sediment. The composition and response of the microbial community to oil contamination on Arctic beaches remain poorly understood. To address this, we analyzed microbial community structure and identified hydrocarbon degradation genes among the Northwest Passage intertidal beach sediments and shoreline seawater from five high Arctic beaches. Our results from 16S/18S rRNA genes, long-read metagenomes, and metagenome-assembled genomes reveal the composition and metabolic capabilities of the hydrocarbon microbial degrader community, as well as tight cross-habitat and cross-kingdom interactions dominated by lineages that are common and often dominant in the polar coastal habitat, but distinct from petroleum hydrocarbon-contaminated sites. In the polar beach sediment habitats, Granulosicoccus sp. and Cyclocasticus sp. were major potential hydrocarbon-degraders, and our metagenomes revealed a small proportion of microalgae and algal viruses possessing key hydrocarbon biodegradative genes. This research demonstrates that Arctic beach sediment and marine microbial communities possess the ability for hydrocarbon natural attenuation. The findings provide new insights into the viral and microalgal communities possessing hydrocarbon degradation genes and might represent an important contribution to the removal of hydrocarbons under harsh environmental conditions in a pristine, cold, and oil-free environment that is threatened by oil spills.

3.
R Soc Open Sci ; 11(7): 240154, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39170929

ABSTRACT

Eukaryotes have evolved to dominate the biosphere today, accounting for most documented living species and the vast majority of the Earth's biomass. Consequently, understanding how these biologically complex organisms initially diversified in the Proterozoic Eon over 539 million years ago is a foundational question in evolutionary biology. Over the last 70 years, palaeontologists have sought to document the rise of eukaryotes with fossil evidence. However, the delicate and microscopic nature of their sub-cellular features affords early eukaryotes diminished preservation potential. Chemical biomarker signatures of eukaryotes and the genetics of living eukaryotes have emerged as complementary tools for reconstructing eukaryote ancestry. In this review, we argue that exceptionally preserved Proterozoic microfossils are critical to interpreting these complementary tools, providing crucial calibrations to molecular clocks and testing hypotheses of palaeoecology. We highlight recent research on their preservation and biomolecular composition that offers new ways to enhance their utility.

4.
Biosystems ; 244: 105308, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39159879

ABSTRACT

Since 1996, circular codes in genes have been identified thanks to the development of 6 statistical approaches: trinucleotide frequencies per frame (Arquès and Michel, 1996), correlation functions per frame (Arquès and Michel, 1997), frame permuted trinucleotide frequencies (Frey and Michel, 2003, 2006), advanced statistical functions at the gene population level (Michel, 2015) and at the gene level (Michel, 2017). All these 3-frame statistical methods analyse the trinucleotide information in the 3 frames of genes: the reading frame and the 2 shifted frames. Notably, codon usage does not allow for the identification of circular codes (Michel, 2020). This has been a long-standing problem since 1996, hindering biologists' access to circular code theory. By considering circular code conditions resulting from code theory, particularly the concept of permutation class, and building upon previous statistical work, a new statistical approach based solely on the codon usage, i.e. a 1-frame statistical method, surprisingly reveals the maximal C3 self-complementary trinucleotide circular code X in bacterial genes and in average (bacterial, archaeal, eukaryotic) genes, and almost in archaeal genes. Additionally, a new parameter definition indicates that bacterial and archaeal genes exhibit codon usage dispersion of the same order of magnitude, but significantly higher than that observed in eukaryotic genes. This statistical finding may explain the greater variability of codes in eukaryotic genes compared to bacterial and archaeal genes, an issue that has been open for many years. Finally, biologists can now search for new (variant) circular codes at both the genome level (across all genes in a given genome) and the gene level using only codon usage, without the need for analysing the shifted frames.

5.
Environ Int ; 190: 108901, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39079334

ABSTRACT

Upon entering the marine environment, plastics are colonized by a plethora of microorganisms to form a plastisphere, influencing the fate and transport of the plastic debris and the health of marine ecosystems. The assembly of marine plastisphere is generally believed to be dominated by stochastic processes. However, it remains elusive whether microbial interaction in the assembly of plastisphere microbial communities is conserved or not. We analyzed the plastisphere microbiomes of 137 plastic debris samples from intertidal zones at different geographical locations and habitats (seagrass, coral, mangrove, beach, and open ocean) and compared them with the surrounding sediment and seawater microbiomes. Microbial community structures of the plastisphere from different locations were more similar to each other but differed substantially from the surrounding sediment and water microbiomes, implying a common mechanism of plastisphere assembly. We used different machine learning algorithms (Multinomial Logistic Regression, Support Vector Machine, Decision Trees, Random Forest, and Artificial Neural Networks) to classify plastic debris samples with high sensitivity based on the microbiome composition. Eukaryotic and prokaryotic phototrophic organisms such as green algae, diatoms, and cyanobacteria, were found to be enriched on the plastic surfaces. Network analysis revealed the central role of the phototrophic organisms in the formation and sustenance of the plastispheres. We found that phototrophs served as core members interacting strongly with heterotrophic organisms in marine plastisphere, irrespective of the sampling location, habitats, and polymer types. This would explain the stochastic assembly of the plastisphere along with conserved properties driven by the phototrophs in the surrounding environment. Our results highlight the importance of phototrophic organisms in shaping the marine plastisphere microbial communities.

6.
Geobiology ; 22(4): e12612, 2024.
Article in English | MEDLINE | ID: mdl-38967402

ABSTRACT

Steroids are indispensable components of the eukaryotic cellular membrane and the acquisition of steroid biosynthesis was a key factor that enabled the evolution of eukaryotes. The polycyclic carbon structures of steroids can be preserved in sedimentary rocks as chemical fossils for billions of years and thus provide invaluable clues to trace eukaryotic evolution from the distant past. Steroid biosynthesis consists of (1) the production of protosteroids and (2) the subsequent modifications toward "modern-type" steroids such as cholesterol and stigmasterol. While protosteroid biosynthesis requires only two genes for the cyclization of squalene, complete modification of protosteroids involves ~10 additional genes. Eukaryotes universally possess at least some of those additional genes and thus produce modern-type steroids as major final products. The geological biomarker records suggest a prolonged period of solely protosteroid production in the mid-Proterozoic before the advent of modern-type steroids in the Neoproterozoic. It has been proposed that mid-Proterozoic protosteroids were produced by hypothetical stem-group eukaryotes that presumably possessed genes only for protosteroid production, even though in modern environments protosteroid production as a final product is found exclusively in bacteria. The host identity of mid-Proterozoic steroid producers is crucial for understanding the early evolution of eukaryotes. In this perspective, we discuss how geological biomarker data and genetic data complement each other and potentially provide a more coherent scenario for the evolution of steroids and associated early eukaryotes. We further discuss the potential impacts that steroids had on the evolution of aerobic metabolism in eukaryotes, which may have been an important factor for the eventual ecological dominance of eukaryotes in many modern environments.


Subject(s)
Eukaryota , Steroids , Steroids/biosynthesis , Steroids/metabolism , Eukaryota/metabolism , Eukaryota/genetics , Aerobiosis , Biological Evolution , Adaptation, Physiological
7.
Microbiol Mol Biol Rev ; : e0000624, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995044

ABSTRACT

SUMMARYCilia and the nucleus were two defining features of the last eukaryotic common ancestor. In early eukaryotic evolution, these structures evolved through the diversification of a common membrane-coating ancestor, the protocoatomer. While in cilia, the descendants of this protein complex evolved into parts of the intraflagellar transport complexes and BBSome, the nucleus gained its selectivity by recruiting protocoatomer-like proteins to the nuclear envelope to form the selective nuclear pore complexes. Recent studies show a growing number of proteins shared between the proteomes of the respective organelles, and it is currently unknown how ciliary transport proteins could acquire nuclear functions and vice versa. The nuclear functions of ciliary proteins are still observable today and remain relevant for the understanding of the disease mechanisms behind ciliopathies. In this work, we review the evolutionary history of cilia and nucleus and their respective defining proteins and integrate current knowledge into theories for early eukaryotic evolution. We postulate a scenario where both compartments co-evolved and that fits current models of eukaryotic evolution, explaining how ciliary proteins and nucleoporins acquired their dual functions.

8.
Front Microbiol ; 15: 1382075, 2024.
Article in English | MEDLINE | ID: mdl-38962117

ABSTRACT

Free-living amoebae (FLA) are prevalent in nature and man-made environments, and they can survive in harsh conditions by forming cysts. Studies have discovered that some FLA species are able to show pathogenicity to human health, leading to severe infections of central nervous systems, eyes, etc. with an extremely low rate of recovery. Therefore, it is imperative to establish a surveillance framework for FLA in environmental habitats. While many studies investigated the risks of independent FLA, interactions between FLA and surrounding microorganisms determined microbial communities in ecosystems and further largely influenced public health. Here we systematically discussed the interactions between FLA and different types of microorganisms and corresponding influences on behaviors and health risks of FLA in the environment. Specifically, bacteria, viruses, and eukaryotes can interact with FLA and cause either enhanced or inhibited effects on FLA infectivity, along with microorganism community changes. Therefore, considering the co-existence of FLA and other microorganisms in the environment is of great importance for reducing environmental health risks.

9.
Biology (Basel) ; 13(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39056664

ABSTRACT

Horizontal gene transfer (HGT) is a widely acknowledged phenomenon in prokaryotes for generating genetic diversity. However, the impact of this process in eukaryotes, particularly interdomain HGT, is a topic of debate. Although there have been observed biases in interdomain HGT detection, little exploration has been conducted on the effects of imbalanced databases. In our study, we conducted experiments to assess how different databases affect the detection of interdomain HGT using proteomes from the Pezizomycotina fungal subphylum as our focus group. Our objective was to simulate the database imbalance commonly found in public biological databases, where bacterial and eukaryotic sequences are unevenly represented, and demonstrate that an increase in uploaded eukaryotic sequences leads to a decrease in predicted HGTs. For our experiments, four databases with varying proportions of eukaryotic sequences but consistent proportions of bacterial sequences were utilized. We observed a significant reduction in detected interdomain HGT candidates as the proportion of eukaryotes increased within the database. Our data suggest that the imbalance in databases bias the interdomain HGT detection and highlights challenges associated with confirming the presence of interdomain HGT among Pezizomycotina fungi and potentially other groups within Eukarya.

10.
Cell Syst ; 15(7): 597-609.e4, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38971149

ABSTRACT

Here, we present a method for expressing multiple open reading frames (ORFs) from single transcripts using the leaky scanning model of translation initiation. In this approach termed "stoichiometric expression of mRNA polycistrons by eukaryotic ribosomes" (SEMPER), adjacent ORFs are translated from a single mRNA at tunable ratios determined by their order in the sequence and the strength of their translation initiation sites. We validate this approach by expressing up to three fluorescent proteins from one plasmid in two different cell lines. We then use it to encode a stoichiometrically tuned polycistronic construct encoding gas vesicle acoustic reporter genes that enables efficient formation of the multi-protein complex while minimizing cellular toxicity. We also demonstrate that SEMPER enables polycistronic expression of recombinant monoclonal antibodies from plasmid DNA and of two fluorescent proteins from single mRNAs made through in vitro transcription. Finally, we provide a probabilistic model to elucidate the mechanisms underlying SEMPER. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Open Reading Frames , RNA, Messenger , Ribosomes , RNA, Messenger/genetics , Ribosomes/metabolism , Ribosomes/genetics , Open Reading Frames/genetics , Humans , Protein Biosynthesis/genetics , Gene Expression/genetics , Plasmids/genetics , Animals , Genes, Reporter/genetics
11.
BMC Genomics ; 25(1): 649, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943073

ABSTRACT

Despite the fact that introns mean an energy and time burden for eukaryotic cells, they play an irreplaceable role in the diversification and regulation of protein production. As a common feature of eukaryotic genomes, it has been reported that in protein-coding genes, the longest intron is usually one of the first introns. The goal of our work was to find a possible difference in the biological function of genes that fulfill this common feature compared to genes that do not. Data on the lengths of all introns in genes were extracted from the genomes of six vertebrates (human, mouse, koala, chicken, zebrafish and fugu) and two other model organisms (nematode worm and arabidopsis). We showed that more than 40% of protein-coding genes have the relative position of the longest intron located in the second or third tertile of all introns. Genes divided according to the relative position of the longest intron were found to be significantly increased in different KEGG pathways. Genes with the longest intron in the first tertile predominate in a range of pathways for amino acid and lipid metabolism, various signaling, cell junctions or ABC transporters. Genes with the longest intron in the second or third tertile show increased representation in pathways associated with the formation and function of the spliceosome and ribosomes. In the two groups of genes defined in this way, we further demonstrated the difference in the length of the longest introns and the distribution of their absolute positions. We also pointed out other characteristics, namely the positive correlation between the length of the longest intron and the sum of the lengths of all other introns in the gene and the preservation of the exact same absolute and relative position of the longest intron between orthologous genes.


Subject(s)
Introns , Introns/genetics , Animals , Humans , Arabidopsis/genetics , Spliceosomes/genetics , Spliceosomes/metabolism
12.
Ecotoxicol Environ Saf ; 280: 116541, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38848637

ABSTRACT

Although accumulating evidence indicates that endangered animals suffer from plastic pollution, this has been largely overlooked. Here, we explored the bacteria and eukaryotes living in the plastics gathered from the natural habitat of the highly endangered crocodile lizard. The results demonstrated that the bacterial and eukaryotic communities on plastics formed a unique ecosystem that exhibited lower diversity than those in the surrounding water and soil. However, microbes displayed a more complex and stable network on plastic than that in water or soil, implying unique mechanisms of stabilization. These mechanisms enhanced their resilience and contributed to the provision of stable ecological services. Eukaryotes formed a simpler and smaller network than bacteria, indicating different survival strategies. The bacteria residing on the plastics played a significant role in carbon transformation and sequestration, which likely impacted carbon cycling in the habitat. Furthermore, microbial exchange between plastics and the crocodile lizard was observed, suggesting that plastisphere serves as a mobile gene bank for the exchange of information, including potentially harmful substances. Overall, microbes on plastic appear to significantly impact the crocodile lizard and its natural habitat via various pathways. These results provided novel insights into risks evaluation of plastic pollution and valuable guidance for government efforts in plastic pollutant control in nature reserves.


Subject(s)
Bacteria , Ecosystem , Endangered Species , Lizards , Plastics , Animals , Environmental Monitoring , Eukaryota , Phenotype , Soil Microbiology
13.
J Environ Manage ; 364: 121379, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870787

ABSTRACT

Chemical nutrient amendment by human activities can lead to environmental impacts contributing to global biodiversity loss. However, the comprehensive understanding of how below- and above-ground biodiversity shifts under fertilization regimes in natural ecosystems remains elusive. Here, we conducted a seven-year field experiment (2011-2017) and examined the effects of different fertilization on plant biodiversity and soil belowground (prokaryotic and eukaryotic) communities in the alpine meadow of the Tibetan Plateau, based on data collected in 2017. Our results indicate that nitrogen addition promoted total plant biomass but reduced the plant species richness. Conversely, phosphorus enrichment did not promote plant biomass and exhibited an unimodal pattern with plant richness. In the belowground realm, distinct responses of soil prokaryotic and eukaryotic communities were observed under fertilizer application. Specifically, soil prokaryotic diversity decreased with nitrogen enrichment, correlating with shifts in soil pH. Similarly, soil eukaryotic diversity decreased with increased phosphorous inputs, aligning with the equilibrium between soil available and total phosphorus. We also established connections between these soil organism communities with above-ground plant richness and biomass. Overall, our study contributes to a better understanding of the sustainable impacts of human-induced nutrient enrichment on the natural environment. Future research should delve deeper into the long-term effects of fertilization on soil health and ecosystem functioning, aiming to achieve a balance between agricultural productivity and environmental conservation.


Subject(s)
Biodiversity , Fertilizers , Soil , Tibet , Soil/chemistry , Ecosystem , Phosphorus/analysis , Soil Microbiology , Biomass , Nitrogen , Agriculture
14.
Arch Microbiol ; 206(7): 297, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861039

ABSTRACT

The microbe-mediated conversion of nitrate (NO3-) to ammonium (NH4+) in the nitrogen cycle has strong implications for soil health and crop productivity. The role of prokaryotes, eukaryotes and their phylogeny, physiology, and genetic regulations are essential for understanding the ecological significance of this empirical process. Several prokaryotes (bacteria and archaea), and a few eukaryotes (fungi and algae) are reported as NO3- reducers under certain conditions. This process involves enzymatic reactions which has been catalysed by nitrate reductases, nitrite reductases, and NH4+-assimilating enzymes. Earlier reports emphasised that single-cell prokaryotic or eukaryotic organisms are responsible for this process, which portrayed a prominent gap. Therefore, this study revisits the similarities and uniqueness of mechanism behind NO3- -reduction to NH4+ in both prokaryotes and eukaryotes. Moreover, phylogenetic, physiological, and genetic regulation also shed light on the evolutionary connections between two systems which could help us to better explain the NO3--reduction mechanisms over time. Reports also revealed that certain transcription factors like NtrC/NtrB and Nit2 have shown a major role in coordinating the expression of NO3- assimilation genes in response to NO3- availability. Overall, this review provides a comprehensive information about the complex fermentative and respiratory dissimilatory nitrate reduction to ammonium (DNRA) processes. Uncovering the complexity of this process across various organisms may further give insight into sustainable nitrogen management practices and might contribute to addressing global environmental challenges.


Subject(s)
Ammonium Compounds , Archaea , Bacteria , Nitrates , Oxidation-Reduction , Phylogeny , Nitrates/metabolism , Ammonium Compounds/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Archaea/genetics , Archaea/metabolism , Archaea/classification , Eukaryota/genetics , Eukaryota/metabolism , Prokaryotic Cells/metabolism , Fungi/genetics , Fungi/metabolism , Fungi/classification , Nitrogen Cycle/genetics , Nitrite Reductases/genetics , Nitrite Reductases/metabolism
15.
BMC Res Notes ; 17(1): 124, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693573

ABSTRACT

OBJECTIVE: The eukaryotic tree of life has been subject of numerous studies ever since the nineteenth century, with more supergroups and their sister relations being decoded in the last years. In this study, we reconstructed the phylogeny of eukaryotes using complete 18S rDNA sequences and their individual secondary structures simultaneously. After the sequence-structure data was encoded, it was automatically aligned and analyzed using sequence-only as well as sequence-structure approaches. We present overall neighbor-joining trees of 211 eukaryotes as well as the respective profile neighbor-joining trees, which helped to resolve the basal branching pattern. A manually chosen subset was further inspected using neighbor-joining, maximum parsimony, and maximum likelihood analyses. Additionally, the 75 and 100 percent consensus structures of the subset were predicted. RESULTS: All sequence-structure approaches show improvements compared to the respective sequence-only approaches: the average bootstrap support per node of the sequence-structure profile neighbor-joining analyses with 90.3, was higher than the average bootstrap support of the sequence-only profile neighbor-joining analysis with 73.9. Also, the subset analyses using sequence-structure data were better supported. Furthermore, more subgroups of the supergroups were recovered as monophyletic and sister group relations were much more comparable to results as obtained by multi-marker analyses.


Subject(s)
Eukaryota , Nucleic Acid Conformation , Phylogeny , RNA, Ribosomal, 18S , Eukaryota/genetics , Eukaryota/classification , RNA, Ribosomal, 18S/genetics , DNA, Ribosomal/genetics , Sequence Analysis, DNA/methods , Base Sequence
16.
Res Microbiol ; : 104211, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734157

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen that produces two types of siderophores, pyoverdine and pyochelin, that play pivotal roles in iron scavenging from the environment and host cells. P. aeruginosa siderophores can serve as virulence factors and perform various functions. Several bacterial and fungal species are likely to interact with P. aeruginosa due to its ubiquity in soil and water as well as its potential to cause infections in plants, animals, and humans. Siderophores produced by P. aeruginosa play critical roles in iron scavenging for prokaryotic species (bacteria) and eukaryotic hosts (fungi, animals, insects, invertebrates, and plants) as well. This review provides a comprehensive discussion of the role of P. aeruginosa siderophores in interaction with prokaryotes and eukaryotes as well as their underlying mechanisms of action. The evolutionary relationship between P. aeruginosa siderophore recognition receptors, such as FpvA, FpvB, and FptA, and those of other bacterial species has also been investigated.

17.
Prog Mol Biol Transl Sci ; 206: 389-434, 2024.
Article in English | MEDLINE | ID: mdl-38811086

ABSTRACT

While amyloid has traditionally been viewed as a harmful formation, emerging evidence suggests that amyloids may also play a functional role in cell biology, contributing to normal physiological processes that have been conserved throughout evolution. Functional amyloids have been discovered in several creatures, spanning from bacteria to mammals. These amyloids serve a multitude of purposes, including but not limited to, forming biofilms, melanin synthesis, storage, information transfer, and memory. The functional role of amyloids has been consistently validated by the discovery of more functional amyloids, indicating a conceptual convergence. The biology of amyloids is well-represented by non-pathogenic amyloids, given the numerous ones already identified and the ongoing rate of new discoveries. In this chapter, functional amyloids in microorganisms, animals, and plants are described.


Subject(s)
Amyloid , Amyloid/metabolism , Animals , Humans
18.
Comput Struct Biotechnol J ; 23: 1968-1977, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38765610

ABSTRACT

Intrinsic disorder predictors were evaluated in several studies including the two large CAID experiments. However, these studies are biased towards eukaryotic proteins and focus primarily on the residue-level predictions. We provide first-of-its-kind assessment that comprehensively covers the taxonomy and evaluates predictions at the residue and disordered region levels. We curate a benchmark dataset that uniformly covers eukaryotic, archaeal, bacterial, and viral proteins. We find that predictive performance differs substantially across taxonomy, where viruses are predicted most accurately, followed by protists and higher eukaryotes, while bacterial and archaeal proteins suffer lower levels of accuracy. These trends are consistent across predictors. We also find that current tools, except for flDPnn, struggle with reproducing native distributions of the numbers and sizes of the disordered regions. Moreover, analysis of two variants of disorder predictions derived from the AlphaFold2 predicted structures reveals that they produce accurate residue-level propensities for archaea, bacteria and protists. However, they underperform for higher eukaryotes and generally struggle to accurately identify disordered regions. Our results motivate development of new predictors that target bacteria and archaea and which produce accurate results at both residue and region levels. We also stress the need to include the region-level assessments in future assessments.

19.
Genome Biol Evol ; 16(6)2024 06 04.
Article in English | MEDLINE | ID: mdl-38813885

ABSTRACT

Life on Earth comprises prokaryotes and a broad assemblage of endosymbioses. The pages of Molecular Biology and Evolution and Genome Biology and Evolution have provided an essential window into how these endosymbiotic interactions have evolved and shaped biological diversity. Here, we provide a current perspective on this knowledge by drawing on decades of revelatory research published in Molecular Biology and Evolution and Genome Biology and Evolution, and insights from the field at large. The accumulated work illustrates how endosymbioses provide hosts with novel phenotypes that allow them to transition between adaptive landscapes to access environmental resources. Such endosymbiotic relationships have shaped and reshaped life on Earth. The early serial establishment of mitochondria and chloroplasts through endosymbioses permitted massive upscaling of cellular energetics, multicellularity, and terrestrial planetary greening. These endosymbioses are also the foundation upon which all later ones are built, including everything from land-plant endosymbioses with fungi and bacteria to nutritional endosymbioses found in invertebrate animals. Common evolutionary mechanisms have shaped this broad range of interactions. Endosymbionts generally experience adaptive and stochastic genome streamlining, the extent of which depends on several key factors (e.g. mode of transmission). Hosts, in contrast, adapt complex mechanisms of resource exchange, cellular integration and regulation, and genetic support mechanisms to prop up degraded symbionts. However, there are significant differences between endosymbiotic interactions not only in how partners have evolved with each other but also in the scope of their influence on biological diversity. These differences are important considerations for predicting how endosymbioses will persist and adapt to a changing planet.


Subject(s)
Biological Evolution , Symbiosis , Animals , Bacteria/genetics , Biodiversity , Evolution, Molecular
20.
Microbiol Spectr ; 12(5): e0404823, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38606959

ABSTRACT

Phytoplankton are important drivers of aquatic ecosystem function and environmental health. Their community compositions and distributions are directly impacted by environmental processes and human activities, including in the largest estuary in North America, the Chesapeake Bay. It is crucial to uncover how planktonic eukaryotes play fundamental roles as primary producers and trophic links and sustain estuarine ecosystems. In this study, we investigated the detailed community structure and spatiotemporal variations of planktonic eukaryotes in the Chesapeake Bay across space and time for three consecutive years. A clear seasonal and spatial shift of total, abundant, and rare planktonic eukaryotes was evident, and the pattern recurred interannually. Multiple harmful algal species have been identified in the Bay with varied distribution patterns, such as Karlodinium, Heterosigma akashiwo, Protoperidinium sp., etc. Compared to abundant taxa, rare subcommunities were more sensitive to environmental disturbance in terms of richness, diversity, and distribution. The combined effects of temporal variation (13.3%), nutrient availability (10.0%), and spatial gradients (8.8%) structured the distribution of eukaryotic microbial communities in the Bay. Similar spatiotemporal patterns between planktonic prokaryotes and eukaryotes suggest common mechanisms of adjustment, replacement, and species interaction for planktonic microbiomes under strong estuarine gradients. To our best knowledge, this work represents the first systematic study on planktonic eukaryotes in the Bay. A comprehensive view of the distribution of planktonic microbiomes and their interactions with environmental processes is critical in understanding the underlying microbial mechanisms involved in maintaining the stability, function, and environmental health of estuarine ecosystems. IMPORTANCE: Deep sequencing analysis of planktonic eukaryotes in the Chesapeake Bay reveals high community diversity with many newly recognized phytoplankton taxa. The Chesapeake Bay planktonic eukaryotes show distinct seasonal and spatial variability, with recurring annual patterns of total, abundant, and rare groups. Rare taxa mainly contribute to eukaryotic diversity compared to abundant groups, and they are more sensitive to spatiotemporal variations and environmental filtering. Temporal variations, nutrient availability, and spatial gradients significantly affect the distribution of eukaryotic microbial communities. Similar spatiotemporal patterns in prokaryotes and eukaryotes suggest common mechanisms of adjustment, substitution, and species interactions in planktonic microbiomes under strong estuarine gradients. Interannually recurring patterns demonstrate that diverse eukaryotic taxa have well adapted to the estuarine environment with a long residence time. Further investigations of how human activities impact estuarine planktonic eukaryotes are critical in understanding their essential ecosystem roles and in maintaining environmental safety and public health.


Subject(s)
Bays , Estuaries , Eukaryota , Phytoplankton , Bays/microbiology , Eukaryota/classification , Eukaryota/genetics , Phytoplankton/classification , Phytoplankton/genetics , Plankton/classification , Plankton/genetics , Ecosystem , Biodiversity , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL