Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Exp Physiol ; 109(6): 899-914, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554124

ABSTRACT

Chronic mountain sickness is a maladaptive syndrome that affects individuals living permanently at high altitude and is characterized primarily by excessive erythrocytosis (EE). Recent results concerning the impact of EE in Andean highlanders on clotting and the possible promotion of hypercoagulability, which can lead to thrombosis, were contradictory. We assessed the coagulation profiles of Andeans highlanders with and without excessive erythrocytosis (EE+ and EE-). Blood samples were collected from 30 EE+ and 15 EE- in La Rinconada (Peru, 5100-5300 m a.s.l.), with special attention given to the sampling pre-analytical variables. Rotational thromboelastometry tests were performed at both native and normalized (40%) haematocrit using autologous platelet-poor plasma. Thrombin generation, dosages of clotting factors and inhibitors were measured in plasma samples. Data were compared between groups and with measurements performed at native haematocrit in 10 lowlanders (LL) at sea level. At native haematocrit, in all rotational thromboelastometry assays, EE+ exhibited hypocoagulable profiles (prolonged clotting time and weaker clot strength) compared with EE- and LL (all P < 0.01). At normalized haematocrit, clotting times were normalized in most individuals. Conversely, maximal clot firmness was normalized only in FIBTEM and not in EXTEM/INTEM assays, suggesting abnormal platelet activity. Thrombin generation, levels of plasma clotting factors and inhibitors, and standard coagulation assays were mostly normal in all groups. No highlanders reported a history of venous thromboembolism based on the dedicated survey. Collectively, these results indicate that EE+ do not present a hypercoagulable profile potentially favouring thrombosis.


Subject(s)
Altitude , Blood Coagulation , Polycythemia , Thrombelastography , Thrombophilia , Humans , Polycythemia/blood , Blood Coagulation/physiology , Adult , Thrombophilia/blood , Male , Thrombelastography/methods , Female , Hematocrit/methods , Peru , Middle Aged , Altitude Sickness/blood , Altitude Sickness/physiopathology , Thrombin/metabolism
2.
Exp Physiol ; 106(6): 1335-1342, 2021 06.
Article in English | MEDLINE | ID: mdl-33745204

ABSTRACT

NEW FINDINGS: What is the central question of this study? Are coagulation and fibrinolytic factors disrupted in Andean highlanders with excessive erythrocytosis? What is the main finding and its importance? Excessive erythrocytosis is not associated with prothombotic disruptions in coagulation or the fibrinolytic system in Andean highlanders. Impairments in coagulation and fibrinolysis may not contribute to the increased vascular risk associated with excessive erythrocytosis. ABSTRACT: Increased coagulation and reduced fibrinolysis are central factors underlying thrombotic risk and events. High altitude-induced excessive erythrocytosis (EE) is prevalent in Andean highlanders, contributing to increased cardiovascular risk. Disruption in the coagulation-fibrinolytic axis resulting in uncontrolled fibrin deposition might underlie the increased thrombotic risk associated with high-altitude EE. The experimental aim of this study was to determine whether EE is associated with a prothrombotic blood coagulation and fibrinolytic profile in Andean highlanders. Plasma coagulation factors (von Willebrand factor and factors VII, VIII and X), fibrinolytic factors [tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1)] and D-dimer levels were determined in 26 male residents of Cerro de Pasco, Peru (4340 m a.s.l.): 12 without EE (age, 40 ± 13 years; haemoglobin, 17.4 ± 1.9 g/dl) and 14 with EE (age, 43 ± 15 years; haemoglobin, 24.4 ± 1.6 g/dl). There were no significant differences in von Willebrand factor (40.5 ± 24.8 vs. 45.5 ± 22.4%), factor VII (77.0 ± 14.5 vs. 72.5 ± 8.9%), factor VIII (55.6 ± 19.8 vs. 60.7 ± 26.8%) and factor X (73.9 ± 8.3 vs. 67.3 ± 10.9%) between the Andean highlanders without or with EE. The t-PA antigen (8.5 ± 3.6 vs. 9.6 ± 5.4 ng/ml), t-PA activity (5.5 ± 2.4 vs. 5.8 ± 1.6 IU/ml), PAI antigen (45.0 ± 33.8 vs. 40.5 ± 15.8 ng/ml), PAI-1 activity (0.24 ± 0.09 vs. 0.25 ± 0.11 IU/ml) and the molar concentration ratio of active t-PA to active PAI-1 (1:0.051 ± 0.034 vs. 1:0.046 ± 0.021 mmol/l) were also similar between the groups, as were D-dimer levels (235.0 ± 126.4 vs. 268.4 ± 173.7 ng/ml). Collectively, the results of the present study indicate that EE is not associated with a hypercoagulable, hypofibrinolytic state in Andean highlanders.


Subject(s)
Blood Coagulation , Fibrinolysis , Polycythemia , Adult , Altitude , Heart , Hemoglobins , Humans , Male , Middle Aged , South America
3.
Respir Physiol Neurobiol ; 282: 103535, 2020 11.
Article in English | MEDLINE | ID: mdl-32871284

ABSTRACT

Little is known about hemostasis modifications induced by chronic hypoxic exposure in high-altitude residents, especially in those who develop excessive erythrocytosis (EE, i.e. hemoglobin concentration ≥ 21 g·dL-1 in male and ≥ 19 g·dL-1 in female). The aim of this preliminary study was to assess coagulation alterations in highlanders with or without EE using simple hemostatic tests such as bleeding (BT) and clotting (CT) times. Eighty-one male (43 ± 7 years), permanent residents from La Rinconada (Peru), the highest city in the world (5,100-5,300 m), were evaluated. Thirty-six subjects (44 %) presented with EE. EE subjects compared to non-EE subjects had lower BT (3.6 ± 1.2 vs. 7.0 ± 1.9 min, p < 0.001) and CT (11.7 ± 1.7 vs. 15.1 ± 2.3 min, p < 0.001). These results support the notion that highlanders with EE are in a state of hypercoagulability and call for further hemostasis investigations in this population using more detailed hemostatic methods.


Subject(s)
Altitude Sickness/blood , Altitude , Blood Coagulation/physiology , Hemostasis/physiology , Polycythemia/blood , Adult , Humans , Male , Middle Aged , Peru
4.
Am J Physiol Regul Integr Comp Physiol ; 318(1): R49-R56, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31617751

ABSTRACT

Excessive erythrocytosis (EE) is the main sign of chronic mountain sickness (CMS), a maladaptive clinical syndrome prevalent in Andean and other high-altitude populations worldwide. The pathophysiological mechanism of EE is still controversial, as physiological variability of systemic respiratory, cardiovascular, and hormonal responses to chronic hypoxemia complicates the identification of underlying causes. Induced pluripotent stem cells derived from CMS highlanders showed increased expression of genes relevant to the regulation of erythropoiesis, angiogenesis, cardiovascular, and steroid-hormone function that appear to explain the exaggerated erythropoietic response. However, the cellular response to hypoxia in native CMS cells is yet unknown. This study had three related aims: to determine the hypoxic proliferation of native erythroid progenitor burst-forming unit-erythroid (BFU-E) cells derived from CMS and non-CMS peripheral blood mononuclear cells; to examine their sentrin-specific protease 1 (SENP1), GATA-binding factor 1 (GATA1), erythropoietin (EPO), and EPO receptor (EPOR) expression; and to investigate the functional upstream role of SENP1 in native progenitor differentiation into erythroid precursors. Native CMS BFU-E colonies showed increased proliferation under hypoxic conditions compared with non-CMS cells, together with an upregulated expression of SENP1, GATA1, EPOR; and no difference in EPO expression. Knock-down of the SENP1 gene abolished the augmented proliferative response. Thus, we demonstrate that native CMS progenitor cells produce a larger proportion of erythroid precursors under hypoxia and that SENP1 is essential for proliferation. Our findings suggest a significant intrinsic component for developing EE in CMS highlanders at the cellular and gene expression level that could be further enhanced by systemic factors such as alterations in respiratory control, or differential hormonal patterns.


Subject(s)
Altitude Sickness/epidemiology , Altitude , Erythroid Precursor Cells/metabolism , Oxygen/metabolism , Oxygen/pharmacology , Chronic Disease , Erythropoietin/blood , Gene Expression Regulation/drug effects , Genetic Predisposition to Disease , Homeostasis , Humans , Hypoxia , Iron/metabolism , Leukocytes, Mononuclear , Transcriptome
5.
High Alt Med Biol ; 19(3): 221-231, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29782186

ABSTRACT

Corante, Noemí, Cecilia Anza-Ramírez, Rómulo Figueroa-Mujíca, José Luis Macarlupú, Gustavo Vizcardo-Galindo, Grzegorz Bilo, Gianfranco Parati, Jorge L. Gamboa, Fabiola León-Velarde, and Francisco C. Villafuerte. Excessive erythrocytosis and cardiovascular risk in Andean highlanders. High Alt Med Biol. 19:221-231, 2018.-Cardiovascular diseases are the main cause of death worldwide. Life under high-altitude (HA) hypoxic conditions is believed to provide highlanders with a natural protection against cardiovascular and metabolic diseases compared with sea-level inhabitants. However, some HA dwellers become intolerant to chronic hypoxia and develop a progressive incapacitating syndrome known as chronic mountain sickness (CMS), characterized by excessive erythrocytosis (EE; Hb ≥21 g/dL in men, Hb ≥19 g/dL in women). Evidence from HA studies suggests that, in addition to CMS typical signs and symptoms, these highlanders may also suffer from metabolic and cardiovascular disorders. Thus, we hypothesize that this syndrome is also associated to the loss of the cardiometabolic protection observed in healthy highlanders (HH), and therefore to a higher cardiovascular risk (CVR). The aim of the present work was to evaluate the association between EE and CVR calculated using the Framingham General CVR Score and between EE and CVR factors in male highlanders. This cross-sectional study included 342 males from Cerro de Pasco, Peru at 4340 m (HH = 209, CMS = 133). Associations were assessed by multiple logistic regressions adjusted for potential confounders (BMI, pulse oxygen saturation and age). The adjusted models show that the odds of high CVR (>20%) in highlanders with EE was 3.63 times the odds in HH (CI 95%:1.22-10.78; p = 0.020), and that EE is associated to hypertension, elevated fasting serum glucose, insulin resistance, and elevated fasting serum triglycerides. Our results suggest that individuals who suffer from EE are at increased risk of developing cardiovascular events compared with their healthy counterparts.


Subject(s)
Altitude , Blood Pressure , Cardiovascular Diseases/epidemiology , Polycythemia/epidemiology , Adolescent , Adult , Aged , Blood Glucose/metabolism , Cardiovascular Diseases/physiopathology , Cross-Sectional Studies , Humans , Hypertension/epidemiology , Hypertension/physiopathology , Insulin Resistance , Male , Middle Aged , Peru/epidemiology , Polycythemia/physiopathology , Risk Factors , Triglycerides/blood , Young Adult
6.
J Appl Physiol (1985) ; 121(1): 53-8, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27125843

ABSTRACT

Excessive erythrocytosis (EE) is the main sign of Chronic Mountain Sickness (CMS), a highly prevalent syndrome in Andean highlanders. Low pulse O2 saturation (SpO2) during sleep and serum androgens have been suggested to contribute to EE in CMS patients. However, whether these factors have a significant impact on the erythropoietin (Epo) system leading to EE is still unclear. We have recently shown that morning soluble Epo receptor (sEpoR), an endogenous Epo antagonist, is decreased in CMS patients suggesting increased Epo availability (increased Epo/sEpoR). The present study aimed to characterize the nocturnal concentration profile of sEpoR and Epo and their relationship with SpO2, Hct, and serum testosterone in healthy highlanders (HH) and CMS patients. Epo and sEpoR concentrations were evaluated every 4 h (6 PM to 6 AM) and nighttime SpO2 was continuously monitored (10 PM to 6 AM) in 39 male participants (CMS, n = 23; HH, n = 16) aged 21-65 yr from Cerro de Pasco, Peru (4,340 m). CMS patients showed higher serum Epo concentrations throughout the night and lower sEpoR from 10 PM to 6 AM. Consequently, Epo/sEpoR was significantly higher in the CMS group at every time point. Mean sleep-time SpO2 was lower in CMS patients compared with HH, while the percentage of sleep time spent with SpO2 < 80% was higher. Multiple-regression analysis showed mean sleep-time SpO2 and Epo/sEpoR as significant predictors of hematocrit corrected for potential confounders (age, body mass index, and testosterone). Testosterone levels were associated neither with Hct nor with erythropoietic factors. In conclusion, our results show sustained erythropoietic stimulus driven by the Epo system in CMS patients, further enhanced by a continuous exposure to accentuated nocturnal hypoxemia.


Subject(s)
Altitude Sickness/blood , Altitude Sickness/metabolism , Receptors, Erythropoietin/blood , Receptors, Erythropoietin/metabolism , Sleep/physiology , Adult , Aged , Altitude , Altitude Sickness/physiopathology , Androgens/blood , Chronic Disease , Hematocrit/methods , Humans , Hypoxia/blood , Hypoxia/metabolism , Hypoxia/physiopathology , Male , Middle Aged , Oxygen/metabolism , Peru , Polycythemia/metabolism , Polycythemia/physiopathology , Testosterone/blood , Young Adult
7.
J Appl Physiol (1985) ; 119(12): 1481-6, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26272318

ABSTRACT

In the last few years, genetic and functional studies have provided important insight on the pathophysiology of excessive erythrocytosis (EE), the main sign of Chronic Mountain Sickness (CMS). The recent finding of the association of the CMS phenotype with a single-nucleotide polymorphism (SNP) in the Sentrin-specific Protease 1 (SENP1) gene, and its differential expression pattern in Andean highlanders with and without CMS, has triggered large interest in high-altitude studies because of the potential role of its gene product in the control of erythropoiesis. The SENP1 gene encodes for a protease that regulates the function of hypoxia-relevant transcription factors such as Hypoxia-Inducible Factor (HIF) and GATA, and thus might have an erythropoietic regulatory role in CMS through the modulation of the expression of erythropoietin (Epo) or Epo receptors. The different physiological patterns in the Epo-EpoR system found among Andeans, even among highlanders with CMS, together with their different degrees of erythropoietic response, might indicate specific underlying genetic backgrounds, which in turn might reflect different levels of adaptation to lifelong high-altitude hypoxia. This minireview discusses recent genetic findings potentially underlying EE and CMS, and their possible physiological mechanisms in Andean highlanders.


Subject(s)
Altitude Sickness/blood , Altitude Sickness/genetics , Polycythemia/blood , Polycythemia/genetics , Altitude , Altitude Sickness/complications , Altitude Sickness/physiopathology , Chronic Disease , Humans , Polycythemia/complications , Polycythemia/physiopathology , South America
8.
High Alt Med Biol ; 16(2): 162-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25973777

ABSTRACT

Vyas, Kaetan J., David Danz, Robert H. Gilman, Robert A. Wise, Fabiola León-Velarde, J. Jaime Miranda, and William Checkley. Noninvasive assessment of excessive erythrocytosis as a screening method for chronic mountain sickness at high altitude. High Alt Med Biol 16:162-168, 2015.--Globally, over 140 million people are at risk of developing chronic mountain sickness, a common maladaptation to life at high altitude (>2500 meters above sea level). The diagnosis is contingent upon the identification of excessive erythrocytosis (EE). Current best practices to identify EE require a venous blood draw, which is cumbersome for large-scale surveillance. We evaluated two point-of-care biomarkers to screen for EE: noninvasive spot-check tests of total hemoglobin and oxyhemoglobin saturation (Pronto-7, Masimo Corporation). We conducted paired evaluations of total serum hemoglobin from a venous blood draw and noninvasive, spot-check testing of total hemoglobin and oxyhemoglobin saturation with the Pronto-7 in 382 adults aged ≥35 years living in Puno, Peru (3825 meters above sea level). We used the Bland-Altman method to measure agreement between the noninvasive hemoglobin assessment and the gold standard lab hemoglobin analyzer. Mean age was 58.8 years and 47% were male. The Pronto-7 test was unsuccessful in 21 (5%) participants. Limits of agreement between total hemoglobin measured via venous blood draw and the noninvasive, spot-check test ranged from -2.8 g/dL (95% CI -3.0 to -2.5) to 2.5 g/dL (95% CI 2.2 to 2.7), with a bias of -0.2 g/dL (95% CI -0.3 to -0.02) for the difference between total hemoglobin and noninvasive hemoglobin concentrations. Overall, the noninvasive spot-check test of total hemoglobin had a better area under the receiver operating characteristic curve compared to oxyhemoglobin saturation for the identification of EE as measured by a gold standard laboratory hemoglobin analyzer (0.96 vs. 0.82; p<0.001). Best cut-off values to screen for EE with the Pronto 7 were ≥19.9 g/dL in males and ≥17.5 g/dL in females. At these cut-points, sensitivity and specificity were both 92% and 89% for males and females, respectively. A noninvasive, spot-check test of total hemoglobin had low bias and high discrimination for the detection of EE in high altitude Peru, and may be a useful point-of-care tool for large-scale surveillance in high-altitude settings.


Subject(s)
Altitude Sickness/diagnosis , Altitude , Hematologic Tests/instrumentation , Point-of-Care Systems/statistics & numerical data , Polycythemia/blood , Adult , Aged , Altitude Sickness/blood , Chronic Disease , Female , Hematologic Tests/statistics & numerical data , Hemoglobins/analysis , Humans , Male , Middle Aged , Peru , Reproducibility of Results , Sensitivity and Specificity
9.
J Appl Physiol (1985) ; 117(11): 1356-62, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25324511

ABSTRACT

Excessive erythrocytosis (EE) is the hallmark of chronic mountain sickness (CMS), a prevalent syndrome in high-altitude Andean populations. Although hypoxemia represents its underlying stimulus, why some individuals develop EE despite having altitude-normal blood erythropoietin (Epo) concentration is still unclear. A soluble form of the Epo receptor (sEpoR) has been identified in human blood and competes directly for Epo with its membrane counterpart (mEpoR). Thus, reduced levels of circulating sEpoR could lead to higher Epo availability and ultimately to EE. We characterized the relationship between Epo and sEpoR, with hematocrit and hemoglobin concentration in healthy highlanders and CMS patients at 4,340 m in Cerro de Pasco, Peru. Our results show that EE patients show decreased plasma sEpoR levels and can be subdivided into two subgroups of normal and high plasma Epo concentration for the altitude of residence, with hemoglobin concentration rising exponentially with an increasing Epo-to-sEpoR ratio (Epo/sEpoR). Also, we showed that the latter varies as an inverse exponential function of arterial pulse O2 saturation. Our findings suggests that EE is strongly associated with higher Epo/sEpoR values, leading to elevated plasma Epo availability to bind mEpoR, and thereby a stronger stimulus for augmented erythropoiesis. Differences in the altitude normal and high Epo CMS patients with a progressively higher Epo/sEpoR supports the hypothesis of the existence of two genetically different subgroups suffering from EE and possibly different degrees of adaptation to chronic high-altitude hypoxia.


Subject(s)
Altitude Sickness/blood , Erythropoietin/blood , Hemoglobins/metabolism , Polycythemia/blood , Adult , Case-Control Studies , Chronic Disease , Female , Humans , Male , Middle Aged , Peru , Regression Analysis
10.
Respir Physiol Neurobiol ; 188(2): 152-60, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23770310

ABSTRACT

Chronic mountain sickness (CMS) or lack of adaptation to live in high altitudes is related to environmental hypoxia and excessive erythrocytosis (EE) (hemoglobin >21 and >19 g/dL for men and women, respectively). Diagnosis of CMS ("Qinghai CMS Score") is based on seven signs/symptoms (breathlessness and/or palpitations, sleep disturbance, cyanosis, dilatation of veins, paresthesia, headache, tinnitus) and the score for EE. The present study was designed to determine the association between hemoglobin, Qinghai CMS score, CMS clinical score (7 signs/symptoms) and Health Status using a health survey composed of 20 items. The rate of CMS (32.6%) was higher than the rate of EE (9.7%; P<0.002). A significant inverse relationship was observed between CMS clinical score and health status score (r=-0.56 for men, and r=-0.55 for women, P<0.01). However, CMS clinical score was not different in groups with different Hb levels. Health status score was significantly higher in subjects without CMS. In conclusion, elevated hemoglobin levels were not associated with elevated CMS clinical score.


Subject(s)
Adaptation, Physiological/physiology , Altitude Sickness/complications , Altitude Sickness/metabolism , Altitude , Health Status , Hemoglobins/metabolism , Severity of Illness Index , Adult , Aged , Analysis of Variance , Blood Pressure , Chronic Disease , Cross-Sectional Studies , Female , Humans , Linear Models , Male , Middle Aged , Oxygen Consumption , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL