Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters











Publication year range
1.
J Hazard Mater ; 471: 134302, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38640664

ABSTRACT

Antimony (Sb) and arsenic (As) lead to soil pollution and structural degradation at Sb smelting sites. However, most sites focus solely on Sb/As immobilization, neglecting the restoration of soil functionality. Here, we investigated the effectiveness of Fe/H2O2 modified biochar (Fe@H2O2-BC) and Sb-oxidizing bacteria (Bacillus sp. S3) in immobilizing Sb/As and enhancing soil functional resilience at an Sb smelting site. Over a twelve-month period, the leaching toxicity of As and Sb was reduced to 0.05 and 0.005 mg L-1 (GB3838-2002) respectively, with 1% (w/w) Fe@H2O2-BC and 2% (v/v) Bacillus sp. S3 solution. Compared to CK, the combination of Fe@H2O2-BC and Bacillus sp. S3 significantly reduced the bioavailable As/Sb by 98.00%/93.52%, whilst increasing residual As and reducible Sb fractions by 210.31% and 96.51%, respectively. The combined application generally improved soil aggregate structure, pore characteristics, and water-holding capacity. Fe@H2O2-BC served as a pH buffer and long-term reservoir of organic carbon, changing the availability of carbon substrates to bacteria. The inoculation of Bacillus sp. S3 facilitated the transformation of Sb(III)/As(III) to Sb(V)/As(V) and differentiated the composition and functional roles of bacterial communities in soils. The combination increased the abundance of soil saprotrophs by 164.20%, whilst improving the relative abundance of N- and S-cycling bacteria according to FUNGuild and FAPROTAX analysis. These results revealed that the integrated application was instrumental in As/Sb detoxification/immobilization and soil function restoration, which demonstrating a promising microbially-driven ecological restoration strategy at Sb smelting sites.


Subject(s)
Antimony , Arsenic , Bacillus , Charcoal , Hydrogen Peroxide , Soil Microbiology , Soil Pollutants , Antimony/chemistry , Charcoal/chemistry , Arsenic/metabolism , Arsenic/chemistry , Soil Pollutants/metabolism , Bacillus/metabolism , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Environmental Restoration and Remediation/methods , Oxidation-Reduction , Soil/chemistry , Iron/chemistry , Iron/metabolism , Biodegradation, Environmental
2.
Curr Issues Mol Biol ; 45(8): 6634-6650, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37623238

ABSTRACT

Fructan 1-exohydrolase (1-FEH) is one of the major enzymes in water-soluble carbohydrate (WSC) remobilisation for grains in wheat. We investigated the functional role of 1-FEH w1, w2, and w3 isoforms in WSC remobilisation under post-anthesis water deficit using mutation lines derived from the Australian wheat variety Chara. F1 seeds, developed by backcrossing the 1-FEH w1, w2, and w3 mutation lines with Chara, were genotyped using the Infinium 90K SNP iSelect platform to characterise the mutated region. Putative deletions were identified in FEH mutation lines encompassing the FEH genomic regions. Mapping analysis demonstrated that mutations affected significantly longer regions than the target FEH gene regions. Functional roles of the non-target genes were carried out utilising bioinformatics and confirmed that the non-target genes were unlikely to confound the effects considered to be due to the influence of 1-FEH gene functions. Glasshouse experiments revealed that the 1-FEH w3 mutation line had a slower degradation and remobilisation of fructans than the 1-FEH w2 and w1 mutation lines and Chara, which reduced grain filling and grain yield. Thus, 1-FEH w3 plays a vital role in reducing yield loss under drought. This insight into the distinct role of the 1-FEH isoforms provides new gene targets for water-deficit-tolerant wheat breeding.

3.
J Mol Model ; 29(2): 59, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36719460

ABSTRACT

We report on structural properties, elastic constants, mechanical and dynamical stabilities, electronic band structure, and hydrogen storage applications of Mg2FeH6 at zero and high-pressure effects. The work has been realized within the full-potential linearized augmented plane wave method. At zero pressure, the material under study is stable and has a ductile nature. The electronic structure of the material of interest is determined to be X-X wide direct band gap semiconductor with an energy of 1.88 eV. The hydrogen storage capacity wt (%) and the hydrogen desorption temperature are reported as 5.473 and 625.47 K respectively. The Debye temperature Ï´D is recorded as 698 K using the elastic constants and about 775 K using the Gibbs calculations. Under high-pressure effect up to 80 GPa, the semiconductor still be an X-X semiconductor with an energy gap of 3.91 eV. The Debye temperature Ï´D increases monotonically up to about 1120 K at 80 GPa when using the calculated elastic constants whereas the desorption temperature decreases from 650 to 0 K by increasing pressure from 0 to about 87 GPa.

4.
Sensors (Basel) ; 22(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36560381

ABSTRACT

In this paper, a novel nanocrystalline composite material of hydroxyapatite (HA)/polyvinyltrimethoxysilane (PVTMS)/iron(II)chloride tetrahydrate (Cl2FeH8-O4) with hexagonal structure is proposed for the fabrication of a gas/temperature sensor. Taking into account the sensitivity of HA to high temperatures, to prevent the collapse and breakdown of bonds and the leakage of volatiles without damaging the composite structure, a freeze-drying machine is designed and fabricated. X-ray diffraction, FTIR, SEM, EDAX, TEM, absorption and photoluminescence analyses of composite are studied. XRD is used to confirm the material structure and the crystallite size of the composite is calculated by the Monshi-Scherrer method, and a value of 81.60 ± 0.06 nm is obtained. The influence of the oxygen environment on the absorption and photoluminescence measurements of the composite and the influence of vaporized ethanol, N2 and CO on the SiO2/composite/Ag sensor device are investigated. The sensor with a 30 nm-thick layer of composite shows the highest response to vaporized ethanol, N2 and ambient CO. Overall, the composite and sensor exhibit a good selectivity to oxygen, vaporized ethanol, N2 and CO environments.


Subject(s)
Durapatite , Nanocomposites , Durapatite/chemistry , Temperature , Silicon Dioxide/chemistry , Nanocomposites/chemistry , Oxygen , Ethanol
5.
Molecules ; 27(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36080178

ABSTRACT

Silk protein products have been used for a wide range of applications. This review focuses on the studies conducted relative to cognitive functions with silk fibroin enzyme hydrolysates (FEH) in humans and animals. All known studies reported in PubMed and Google Scholar have been included. Studies have been conducted on children, high school and college students, adults and seniors, ranging in ages from 7-92 years. Doses of 200-600 mg silk FEH per day for three weeks to 16 weeks have been used. Based on these studies, it can be concluded that silk FEH exhibit beneficial cognitive effects with respect to memory and learning, attention, mental focus, accuracy, memory recall, and overall memory and concentration. These conclusions are supported by studies in rats and mice. Mechanistic studies that have been conducted in animals and cell culture systems are also reviewed. These studies indicate that silk FEH exerts its positive effects on memory and learning by providing neuroprotection via a complex mechanism involving its potent antioxidant and inflammation-inhibiting activities. Acetylcholine (ACh) is secreted by cholinergic neurons, and plays a role in encoding new information. Silk FEH were shown to decrease the levels of the pro-oxidant and pro-inflammatory mediators interlukin-1 (IL-1ß), IL-6 and tumor necrosis factor-alpha (TNF-α), protecting the cholinergic system from oxidative stress, thus enhancing ACh levels in the brain, which is known to promote cognitive functions. In addition, the expression of brain-derived neurotrophic factor (BNDF), which is involved in the survival of neurons, is enhanced, and an increase in the expression of the phosphorylated cAMP response element-binding protein (p-CREB) occurs, which is known to play a positive role in cognitive functions. No adverse effects have been reported in association with the use of silk FEH.


Subject(s)
Fibroins , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Child , Cognition , Fibroins/pharmacology , Humans , Learning , Memory , Mice , Middle Aged , Rats , Silk/pharmacology , Young Adult
6.
Viruses ; 13(8)2021 08 02.
Article in English | MEDLINE | ID: mdl-34452393

ABSTRACT

Focal epithelial hyperplasia (FEH) or Heck's disease is a rare, benign, oral condition that is associated with infection by human papillomavirus type 13, 32 or both. The whiteish to mucosal-colored, soft, papular or nodular elevated lesions in the oral cavity are normally asymptomatic but can grow to a size or at a location where treatment is needed. The diagnosis is often based on clinical presentation and histopathology, and the HPV genotype can be determined using PCR utilizing specific primers or DNA sequencing. While FEH was reported to often affect several members of the same family and exist primarily among indigenous populations around the world, the number of reported cases within the European region is increasing. This contemporary review summarizes the main findings in relation to HPV genotypes, impact of superinfection exclusion and vaccination, transmission, diagnosis, geographical and ethnical distribution, comorbidities and treatment of FEH with an emphasis on including the most recent case reports within the field. Furthermore, we describe for the first time a FEH lesion infected with the low-risk HPV90.


Subject(s)
Alphapapillomavirus/genetics , Alphapapillomavirus/pathogenicity , Focal Epithelial Hyperplasia , Papillomavirus Infections/complications , Alphapapillomavirus/classification , Genotype , Humans , Papillomavirus Infections/prevention & control , Papillomavirus Infections/transmission , Risk Factors
7.
Materials (Basel) ; 13(18)2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32916910

ABSTRACT

Magnesium hydride and selected magnesium-based ternary hydride (Mg2FeH6, Mg2NiH4, and Mg2CoH5) syntheses and modification methods, as well as the properties of the obtained materials, which are modified mostly by mechanical synthesis or milling, are reviewed in this work. The roles of selected additives (oxides, halides, and intermetallics), nanostructurization, polymorphic transformations, and cyclic stability are described. Despite the many years of investigations related to these hydrides and the significant number of different additives used, there are still many unknown factors that affect their hydrogen storage properties, reaction yield, and stability. The described compounds seem to be extremely interesting from a theoretical point of view. However, their practical application still remains debatable.

8.
Int J Biol Macromol ; 108: 9-17, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29157907

ABSTRACT

Inulinases from microorganisms have been extensively studied for their role in the production of fructose from fructan. Fructan can also be hydrolyzed by plant fructan exohydrolases (FEHs), but these enzymes have not been used to produce fructose commercially. Two Ht1-FEHs (Ht1-FEH I and Ht1-FEH II) were recently characterized in Jerusalem artichoke. In this study, we cloned the third member of the Ht1-FEH family in Jerusalem artichoke (i.e., Ht1-FEH III). When heterologously expressed in Pichia pastoris X-33, Ht1-FEH III not only demonstrated hydrolysis activity towards ß (2, 1)-linked fructans and ß (2, 6)-linked levan, but also towards sucrose. To explore the potential industrial applications, we heterologously expressed and purified six plant 1-FEHs from two typical fructan plants (i.e., chicory and Jerusalem artichoke) and showed that chicory Ci1-FEH IIa had the highest hydrolysis capacity to fructan in vitro. Furthermore, we immobilized Ci1-FEH IIa on resin and optimized the immobilization conditions. We found that inulin-type fructan or the tuber extract from Jerusalem artichoke could be rapidly degraded into fructose and sucrose by immobilized Ci1-FEH IIa. The capacity of Ci1-FEH IIa to release fructose from fructans was comparable to that of some inulinases from microorganisms. Thus, plant FEHs have potential applications in fructose production.


Subject(s)
Fructans/metabolism , Fructose/biosynthesis , Helianthus/enzymology , Hydrolases/genetics , Hydrolases/metabolism , Amino Acid Sequence , Biocatalysis , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/genetics , Enzymes, Immobilized/isolation & purification , Enzymes, Immobilized/metabolism , Gene Expression , Helianthus/genetics , Helianthus/metabolism , Hydrolases/chemistry , Hydrolases/isolation & purification , Hydrolysis , Phylogeny
9.
Angew Chem Int Ed Engl ; 56(30): 8716-8720, 2017 07 17.
Article in English | MEDLINE | ID: mdl-28556376

ABSTRACT

Lithium hydride (LiH) has a strong effect on iron leading to an approximately 3 orders of magnitude increase in catalytic ammonia synthesis. The existence of lithium-iron ternary hydride species at the surface/interface of the catalyst were identified and characterized for the first time by gas-phase optical spectroscopy coupled with mass spectrometry and quantum chemical calculations. The ternary hydride species may serve as centers that readily activate and hydrogenate dinitrogen, forming Fe-(NH2 )-Li and LiNH2 moieties-possibly through a redox reaction of dinitrogen and hydridic hydrogen (LiH) that is mediated by iron-showing distinct differences from ammonia formation mediated by conventional iron or ruthenium-based catalysts. Hydrogen-associated activation and conversion of dinitrogen are discussed.

10.
Front Plant Sci ; 6: 681, 2015.
Article in English | MEDLINE | ID: mdl-26442003

ABSTRACT

Chrysolaena obovata (Less.) Dematt., previously named Vernonia herbacea, is an Asteraceae native to the Cerrado which accumulates about 80% of the rhizophore dry mass as inulin-type fructans. Considering its high inulin production and the wide application of fructans, a protocol for C. obovata in vitro culture was recently established. Carbohydrates are essential for in vitro growth and development of plants and can also act as signaling molecules involved in cellular adjustments and metabolic regulation. This work aimed to evaluate the effect of different sources of carbohydrate on fructan metabolism in plants grown in vitro. For this purpose, C. obovata plants cultivated in vitro were submitted to carbon deprivation and transferred to MS medium supplemented with sucrose, glucose or fructose. Following, their fructan composition and activity and expression of genes encoding enzymes for fructan synthesis (1-SST and 1-FFT) and degradation (1-FEH) were evaluated. For qRT-PCR analysis partial cDNA sequences corresponding to two different C. obovata genes, 1-SST and 1-FFT, were isolated. As expected, C. obovata sequences showed highest sequence identity to other Asteraceae 1-SST and 1-FFT, than to Poaceae related proteins. A carbon deficit treatment stimulated the transcription of the gene 1-FEH and inhibited 1-SST and 1-FFT and carbohydrate supplementation promoted reversal of the expression profile of these genes. With the exception of 1-FFT, a positive correlation between enzyme activity and gene expression was observed. The overall results indicate that sucrose, fructose and glucose act similarly on fructan metabolism and that 1-FEH and 1-SST are transcriptionally regulated by sugar in this species. Cultivation of plants in increasing sucrose concentrations stimulated synthesis and inhibited fructan mobilization, and induced a distinct pattern of enzyme activity for 1-SST and 1-FFT, indicating the existence of a mechanism for differential regulation between them.

11.
Front Plant Sci ; 6: 624, 2015.
Article in English | MEDLINE | ID: mdl-26322065

ABSTRACT

In wheat, stem water soluble carbohydrates (WSC), composed mainly of fructans, are the major carbon sources for grain filling during periods of decreasing photosynthesis or under drought stress after anthesis. Here, in a field drought experiment, WSC levels and associated enzyme activities were followed in different stem segments (peduncle, penultimate internode, lower parts of stem, and sheath) during grain filling. The focus was on two double haploid (DH) lines, DH 307 and DH 338, derived from a Westonia/Kauz cross, two drought-tolerant wheat varieties that follow different drought adaptation strategies during grain filling. The results showed that in irrigated plants, in the period between 20 and 30 days after anthesis (DAA), 70-80% of WSC were fructans. Before and after this period, the fructan proportion varied from 10 to 60%, depending on the location along the stem. Under drought, the fructan proportion changed, depending on genotype, and developmental stages. After anthesis, stem fructans accumulation occurred mainly in the peduncle and penultimate internode until 14 DAA in both DH lines, with clear genotypic variation in subsequent fructan degradation under drought. In DH 307 a significant reduction of fructans with a concomitant increase in fructose levels occurred earlier in the lower parts of the stem and the sheath, as compared to DH 338 or other stem segments in both lines. This was associated with an earlier increase of grain weight and thousand grain weight in DH 307. Spatiotemporal analysis of fructan dynamics and enzymatic activities in fructan metabolism revealed that several types of FEHs are involved in fructan remobilization to the grain under drought.

12.
Front Plant Sci ; 6: 455, 2015.
Article in English | MEDLINE | ID: mdl-26157446

ABSTRACT

Key Message: The loss of mini-exon 2 in the 1-FEH IIb glycosyl-hydrolase results in a putative non-functional allele. This loss of function has a strong impact on the susceptibility to post-harvest inulin depolymerization. Significant variation of copy number was identified in its close paralog 1-FEH IIa, but no quantitative effect of copy number on carbohydrates-related phenotypes was detected. Inulin polyfructan is the second most abundant storage carbohydrate in flowering plants. After harvest, it is depolymerized by fructan exohydrolases (FEHs) as an adaptive response to end-season cold temperatures. In chicory, the intensity of this depolymerization differs between cultivars but also between individuals within a cultivar. Regarding this phenotypic variability, we recently identified statistically significant associations between inulin degradation and genetic polymorphisms located in three FEHs. We present here new results of a systematic analysis of copy number variation (CNV) in five key members of the chicory (Cichorium intybus) GH32 multigenic family, including three FEH genes and the two inulin biosynthesis genes: 1-SST and 1-FFT. qPCR analysis identified a significant variability of relative copy number only in the 1-FEH IIa gene. However, this CNV had no quantitative effect. Instead, cloning of the full length gDNA of a close paralogous sequence (1-FEH IIb) identified a 1028 bp deletion in lines less susceptible to post-harvest inulin depolymerization. This region comprises a 9 bp mini-exon containing one of the three conserved residues of the active site. This results in a putative non-functional 1-FEH IIb allele and an observed lower inulin depolymerization. Extensive genotyping confirmed that the loss of mini-exon 2 in 1-FEH IIb and the previously identified 47 bp duplication located in the 3'UTR of 1-FEH IIa belong to a single haplotype, both being statistically associated with reduced susceptibility to post-harvest inulin depolymerization. Emergence of these haplotypes is discussed.

13.
Front Plant Sci ; 6: 1154, 2015.
Article in English | MEDLINE | ID: mdl-26734049

ABSTRACT

Despite the fact that fructans are the main constituent of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates, little knowledge is available on the regulation of the enzymes involved in fructan metabolism. The analysis of enzyme activities involved in this process has been hampered by the low affinity of the fructan enzymes for sucrose and fructans used as fructosyl donor. Further, the analysis of fructan composition and enzyme activities is restricted to specialized labs with access to suited HPLC equipment and appropriate fructan standards. The degradation of fructan polymers with high degree of polymerization (DP) by fructan exohydrolases (FEHs) to fructosyloligomers is important to liberate energy in the form of fructan, but also under conditions where the generation of low DP polymers is required. Based on published protocols employing enzyme coupled endpoint reactions in single cuvettes, we developed a simple and fast kinetic 1-FEH assay. This assay can be performed in multi-well plate format using plate readers to determine the activity of 1-FEH against 1-kestotriose, resulting in a significant time reduction. Kinetic assays allow an optimal and more precise determination of enzyme activities compared to endpoint assays, and enable to check the quality of any reaction with respect to linearity of the assay. The enzyme coupled kinetic 1-FEH assay was validated in a case study showing the expected increase in 1-FEH activity during cold treatment. This assay is cost effective and could be performed by any lab with access to a plate reader suited for kinetic measurements and readings at 340 nm, and is highly suited to assess temporal changes and relative differences in 1-FEH activities. Thus, this enzyme coupled kinetic 1-FEH assay is of high importance both to the field of basic fructan research and plant breeding.

14.
J Plant Physiol ; 171(2): 109-18, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24331425

ABSTRACT

An increase in mean and extreme summer temperatures is expected as a consequence of climate changes and this might have an impact on plant development in numerous species. Root chicory (Cichorium intybus L.) is a major crop in northern Europe, and it is cultivated as a source of inulin. This polysaccharide is stored in the tap root during the first growing season when the plant grows as a leafy rosette, whereas bolting and flowering occur in the second year after winter vernalisation. The impact of heat stress on plant phenology, water status, photosynthesis-related parameters, and inulin content was studied in the field and under controlled phytotron conditions. In the field, plants of the Crescendo cultivar were cultivated under a closed plastic-panelled greenhouse to investigate heat-stress conditions, while the control plants were shielded with a similar, but open, structure. In the phytotrons, the Crescendo and Fredonia cultivars were exposed to high temperatures (35°C day/28°C night) and compared to control conditions (17°C) over 10 weeks. In the field, heat reduced the root weight, the inulin content of the root and its degree of polymerisation in non-bolting plants. Flowering was observed in 12% of the heat stressed plants during the first growing season in the field. In the phytotron, the heat stress increased the total number of leaves per plant, but reduced the mean leaf area. Photosynthesis efficiency was increased in these plants, whereas osmotic potential was decreased. High temperature was also found to induced flowering of up to 50% of these plants, especially for the Fredonia cultivar. In conclusion, high temperatures induced a reduction in the growth of root chicory, although photosynthesis is not affected. Flowering was also induced, which indicates that high temperatures can partly substitute for the vernalisation requirement for the flowering of root chicory.


Subject(s)
Carbohydrate Metabolism , Cichorium intybus/growth & development , Flowers/growth & development , Hot Temperature , Photosynthesis , Water/physiology
15.
J Adv Prosthodont ; 6(6): 555-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25558348

ABSTRACT

Focal epithelial hyperplasia (FEH) is a human papillomavirus (HPV)-induced alteration of the oral mucosa that presents with a clinically distinct appearance. While other HPV-infected lesions such as squamous papilloma, verruca vulgaris, and condyloma acuminatum involve the skin, oral mucosa, and genital mucosa, FEH occurs only in the oral mucosa. The affected oral mucosa exhibits multiple papules and nodules with each papule/nodule being flat-topped or sessile. The affected region resembles the normal color of oral mucosa rather than appearing as a white color since the epithelial surface is not hyperkeratinized. Almost all cases present with multiple sites of occurrence. This rare, benign epithelial proliferation is related to low-risk HPV, especially HPV-13 and -32, and is not transformed into carcinoma. We report a case of FEH that arose on the attached gingiva of an East Asian male adult related to prosthesis without detection of any HPV subtype in HPV DNA chip and sequencing.

16.
Article in English | WPRIM (Western Pacific) | ID: wpr-149993

ABSTRACT

Focal epithelial hyperplasia (FEH) is a human papillomavirus (HPV)-induced alteration of the oral mucosa that presents with a clinically distinct appearance. While other HPV-infected lesions such as squamous papilloma, verruca vulgaris, and condyloma acuminatum involve the skin, oral mucosa, and genital mucosa, FEH occurs only in the oral mucosa. The affected oral mucosa exhibits multiple papules and nodules with each papule/nodule being flat-topped or sessile. The affected region resembles the normal color of oral mucosa rather than appearing as a white color since the epithelial surface is not hyperkeratinized. Almost all cases present with multiple sites of occurrence. This rare, benign epithelial proliferation is related to low-risk HPV, especially HPV-13 and -32, and is not transformed into carcinoma. We report a case of FEH that arose on the attached gingiva of an East Asian male adult related to prosthesis without detection of any HPV subtype in HPV DNA chip and sequencing.


Subject(s)
Adult , Humans , Male , Asian People , Dental Prosthesis , Focal Epithelial Hyperplasia , Gingiva , Mouth Mucosa , Mucous Membrane , Oligonucleotide Array Sequence Analysis , Papilloma , Prostheses and Implants , Skin , Warts
17.
Int J Mol Sci ; 10(1): 325-344, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19333448

ABSTRACT

For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 degrees C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.


Subject(s)
Hot Temperature , Magnesium Compounds/chemistry , Solar Energy/statistics & numerical data , Power Plants/instrumentation
18.
New Phytol ; 123(3): 453-469, 1993 Mar.
Article in English | MEDLINE | ID: mdl-33874127

ABSTRACT

In grasses, fructan reserves are mobilized from vegetative plant parts during seasonal growth, after defoliation during grazing and from stems during seed filling. Well-illuminated leaves show a diurnal pattern of fructan accumulation during the light and mobilization during the dark. In expanding leaves, fructans are accumulated in cells of the elongation zone and when mobilized are considered to contribute assimilate for synthetic processes. Even in leaves which do not contain high fructan concentrations, high rates of fructan turnover occur. The process of fructan mobilization appears to be regulated in relation to ontogenic events, demand for assimilate during growth and in response to environmental stress. Hydrolysis of fructans in bacteria is catalyzed by both endo- and exohydrolases. However, in higher plants only fructan exohydrolases (FEH) (EC 3.2.1.80) have been reported. FEH has been extracted from only a limited number of grass species. The pH optimum of FEH activities varies between pH 45-5-5, the temperature optimum ranges from 25-40 °C and FEH is considered to be entirely localized in vacuoles. Estimates of the Km for FEH assayed using high molecular weight fructan substrates vary widely and should be considered carefully because most substrates are ill-defined. Many studies indicate that crude and partially-purified FEH activity is highest when assayed using a fructan substrate extracted from the species that was the source of the enzyme activity. Inulin extracted from members of the Asteraceae is generally less readily hydrolyzed and levans from bacteria are relatively poor substrates for FEH from grasses. Glycosidic-linkage-specific hydrolysis has been demonstrated for an FEH activity extracted from barley. This FEH activity hydrolyzed ß-2,1-glycosidic linkages more rapidly than ß-2,6-linkages. Most other studies are less conclusive because ill-defined fructan substrates were used. Two isoforms of FEH are reported in leaves of Lolium spp., but the roles of isoforms and their kinetic characteristics are not known. FEH activity in different tissues may be regulated by metabolic concentrations, sucrose (5-10 mw) being a strong inhibitor in vitro of FEH from some species. Results of experiments with Dactylis glomerata indicate control of expression of FEH activity at the gene level. In stem bases, FEH activity increased after defoliation. The increase was abolished by applications of inhibitors of protein synthesis and was apparently repressed by application of various sugars. Although the rates of fructan hydrolysis measured in vitro are sufficient to explain the in vivo rates of fructan hydrolysis, it is yet to be shown whether fructan hydrolysis in vivo is due to the activity of FEH exclusively, or FEH and invertase-like activities. The overriding conclusion is that the various studies of FEH from grasses present a confusing and incomplete picture of the function, activity and kinetics of this enzyme. This is due in part to the lack of defined, commercially-available substrates. The chromatographic techniques available to most laboratories do not permit purification of sufficient quantities of high molecular weight fructans of specific degree of polymerization, or fructan oligosaccharides with glycosidic linkages which differ from that of the inulin series for enzyme characterization. It is recommended that a few well-defined oligosaccharides be adopted as substrate standards for future research.

SELECTION OF CITATIONS
SEARCH DETAIL