Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 208
Filter
1.
Comput Biol Chem ; 113: 108211, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39299050

ABSTRACT

Amyotrophic lateral sclerosis (ALS), commonly known as Lou Gehrig's disease, is a debilitating neurodegenerative disorder characterized by the progressive degeneration of nerve cells in the brain and spinal cord. Despite extensive research, its precise etiology remains elusive, and early diagnosis is challenging due to the absence of specific tests. This study aimed to identify potential blood-based biomarkers for early ALS detection and monitoring using datasets from whole blood samples (GSE112680) and oligodendrocytes, astrocytes, and fibroblasts (GSE87385) obtained from the NCBI-GEO repository. Through bioinformatics analysis, including protein-protein interactions and molecular pathway analyses, we identified differentially expressed genes (DEGs) associated with ALS. Notably, ALS2, ADH7, ALDH8A1, ALDH3B1, ABHD2, ABHD17B, ABHD12, ABHD13, PGAM2, AURKB, ANAPC11, VAPA, UNC45B, and TNNT2 emerged as top-ranked DEGs, implicated in drug metabolism, protein depalmytilation, and the AKT/mTOR signaling pathways. Among these, AurKB established as a potential therapeutic biomarker with relevance to various neurological conditions. Consequently, AurKB was selected for identifying potential therapeutic molecules and utilized for in silico structural characterization studies. Exploration of the IMPATT database led to the discovery of a lead compound similar to Fostamatinib, currently used for AurKB. Initial molecular docking and MMGBSA-based binding energy analysis were followed by molecular dynamics simulation (MDS) and free energy landscape (FEL) analysis to validate the ligand's binding efficacy and understand dynamic processes within the biological system. The identified potential biomarkers and lead molecule provide novel insights into the correlation between blood cell transcripts and ALS pathology, paving the way for blood-based diagnostic tools for early ALS detection and ongoing disease monitoring.

2.
Front Allergy ; 5: 1417879, 2024.
Article in English | MEDLINE | ID: mdl-39076462

ABSTRACT

In the United States, 19 allergen extracts of different specificities are standardized, which means that their potencies are determined in comparison to a US reference standard. For cat allergen extracts, potency is determined by measuring Fel d 1 content expressed in in Fel d 1 units, and with a unitage that correlates with skin test reactions (bioequivalent allergy units or BAU). Currently, Fel d 1 content is measured with a radial immunodiffusion (RID) assay that uses polyclonal sheep antisera to detect the allergenic protein by producing a white precipitin line in agar gel. However, the RID is considered cumbersome, and the polyclonal sera may qualitatively vary among animals and may recognize epitopes irrelevant to human allergic disease. In this report, we describe a quantitative two-site immunoenzymetric assay (IEMA) for Fel d 1 that uses immobilized capture and soluble biotin-labeled detection Fel d 1-specific human IgE monoclonal antibodies (mAb) that have been class-switched to IgG4. Together, they sandwich Fel d 1 molecules from extracts. Using purified natural Fel d 1 as a calibrator, the historically reported ∼4 micrograms Fel d 1/Fel d 1 unit assignment was directly measured in this mAb-based IEMA at 3.12 ± 0.24 micrograms of Fel d 1 per Fel d 1 unit. This IEMA appears to be equivalent to RID in the measurement of biological potencies of commercial cat hair and cat pelt extracts marketed in the United States.

3.
Molecules ; 29(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38999096

ABSTRACT

BACKGROUND: As one of the four most valuable animal medicines, Fel Ursi, named Xiong Dan (XD) in China, has the effect of clearing heat, calming the liver, and brightening the eyes. However, due to the special source of XD and its high price, other animals' bile is often sold as XD or mixed with XD on the market, seriously affecting its clinical efficacy and consumers' rights and interests. In order to realize identification and adulteration analysis of XD, UHPLC-QTOF-MSE and multivariate statistical analysis were used to explore the differences in XD and six other animals' bile. METHODS: XD, pig gall (Zhu Dan, ZD), cow gall (Niu Dan, ND), rabbit gallbladder (Tu Dan, TD), duck gall (Yan Dan, YD), sheep gall (Yang Dan, YND), and chicken gall (Ji Dan, JD) were analyzed by UHPLC-QTOF-MSE, and the MS data, combined with multivariate analysis methods, were used to distinguish between them. Meanwhile, the potential chemical composition markers that contribute to their differences were further explored. RESULTS: The results showed that XD and six other animals' bile can be distinguished from each other obviously, with 27 ions with VIP > 1.0. We preliminarily identified 10 different bile acid-like components in XD and the other animals' bile with significant differences (p < 0.01) and VIP > 1.0, such as tauroursodeoxycholic acid, Glycohyodeoxycholic acid, and Glycodeoxycholic acid. CONCLUSIONS: The developed method was efficient and rapid in accurately distinguishing between XD and six other animals' bile. Based on the obtained chemical composition markers, it is beneficial to strengthen quality control for bile medicines.


Subject(s)
Drug Contamination , Animals , Chromatography, High Pressure Liquid/methods , Bile/chemistry , Chemometrics/methods , Rabbits , Cattle , China , Swine , Multivariate Analysis
4.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000328

ABSTRACT

Allergy to fur animals is becoming an increasingly common clinical problem in everyday medical practice. Depending on the route of exposure to the allergen, patients present with many, often non-specific symptoms. The most common illnesses among people with allergies to the above-mentioned allergens are as follows: allergic rhinitis, allergic conjunctivitis, atopic bronchial asthma, food allergy, allergic contact dermatitis, and sometimes anaphylactic shock. In recent years, there has been a change in the holistic approach to the treatment of allergy patients. The method of treatment should be tailored to a specific patient, taking into account his or her predispositions, economic possibilities, and therapeutic goals. The article describes the main methods of treating allergies, focusing primarily on allergies to fur animals. Allergy treatment always requires great care, and qualification for specific types of therapy should be preceded by a thorough and accurate diagnosis.


Subject(s)
Hypersensitivity , Animals , Humans , Hypersensitivity/therapy , Hypersensitivity/immunology , Allergens/immunology , Animal Fur/immunology , Food Hypersensitivity/therapy , Food Hypersensitivity/immunology , Cats
5.
Saudi J Biol Sci ; 31(8): 104035, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38934013

ABSTRACT

Interleukin-8 (IL-8) is a chemokine, a type of signaling molecule that has a role in immunological responses and inflammation. In recent years, IL-8 is additionally related to cancer growth and recurrence. Breast cancer growth, progression, and metastatic development are all linked to IL-8. Breast cancer cells are known to develop faster when IL-8 stimulates their proliferation and survival. It can also cause angiogenesis, or the creation of new blood vessels, which is necessary for tumor nutrition and growth. IL-8 and curcumin have been subjects of interest in drug design, particularly in the context of inflammation-related disorders and cancer. This study aims to give an overview of the role of IL-8. Inhibitor-based treatment approaches were being used to target IL-8 with curcumin. Molecular docking method was employed to find a potential interaction to supress competitive inhibition of IL-8 with curcumin. PASS analysis and ADMET characteristics were also being carried out. In the end, IL-8 complexed with curcumin is chosen for MD simulations. Overall, our results showed that during the simulation, the complex stayed comparatively stable. It is also possible to investigate curcumin further as a possible treatment option. The combined results imply that IL-8 and their genetic alterations can be studied in precision cancer therapeutic treatments, utilizing target-driven therapy and early diagnosis.

6.
Comput Biol Med ; 176: 108573, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723396

ABSTRACT

In this work we investigated the Pks13-TE domain, which plays a critical role in the viability of the mycobacteria. In this report, we have used a series of AI and Physics-based tools to identify Pks13-TE inhibitors. The Reinvent 4, pKCSM, KDeep, and SwissADME are AI-ML-based tools. AutoDock Vina, PLANTS, MDS, and MM-GBSA are physics-based methods. A combination of these methods yields powerful support in the drug discovery cycle. Known inhibitors of Pks13-TE were collected, curated, and used as input for the AI-based tools, and Mol2Mol molecular optimisation methods generated novel inhibitors. These ligands were filtered based on physics-based methods like molecular docking and molecular dynamics using multiple tools for consensus generation. Rigorous analysis was performed on the selected compounds to reduce the chemical space while retaining the most promising compounds. The molecule interactions, stability of the protein-ligand complexes and the comparable binding energies with the native ligand were essential factors for narrowing the ligands set. The filtered ligands from docking, MDS, and binding energy colocations were further tested for their ADMET properties since they are among the essential criteria for this series of molecules. It was found that ligands Mt1 to Mt6 have excellent predicted pharmacokinetic, pharmacodynamic and toxicity profiles and good synthesisability.


Subject(s)
Molecular Docking Simulation , Mycobacterium tuberculosis , Polyketide Synthases , Polyketide Synthases/metabolism , Polyketide Synthases/chemistry , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/drug effects , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Artificial Intelligence , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/pharmacokinetics , Molecular Dynamics Simulation , Ligands , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Drug Discovery
7.
Clin Transl Allergy ; 14(5): e12353, 2024 May.
Article in English | MEDLINE | ID: mdl-38676659

ABSTRACT

BACKGROUND: An innovation to better manage cat-allergic patients utilises anti-Fel d 1 IgY antibodies to neutralise Fel d 1 after its production by the cat. However, there is no published study showing its clinical efficacy in humans in a home setting. A longitudinal, open-label, proof-of-concept study was carried out to approach clinical efficacy of the cat food in cat-allergic patients. METHODS: After a baseline evaluation, the cats ate only the cat food for the following 4 months. Daily evaluation of efficacy was performed for 2 weeks at baseline and after 1, 2 and 3 months of intervention for periods of 2 weeks. The MASK-air app was used daily to assess symptoms, work productivity and medications. RESULTS: Of the 49 patients screened, 42 were followed up and 33 (78.5%) reported MASK-air data at all 3 evaluation periods. The primary end point (visual analogue scale [VAS] for global allergy symptoms) was significantly improved (p < 0.0001). All symptoms (VAS nose, eye, and asthma), VAS work and the combined symptom-medication score significantly improved after 1 month. The percentage of uncontrolled days (VAS>20/100) decreased from 64% at baseline to 35% at 1 month (p < 0.0001) and 14% at 3 months. A sensitivity analysis in patients with uncontrolled disease at baseline found similar results. DISCUSSION: A cat diet containing anti-Fel d 1 antibodies was able to (i) show decreased allergic symptoms and related outcomes, (ii) inform the design and feasibility of future studies with a control arm and (iii) estimate the sample size of the study. STUDY REGISTRATION NUMBER: clinicaltrials.gov: NCT05656482.

8.
Comput Biol Chem ; 110: 108065, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615420

ABSTRACT

Due to its emerging resistance to first-line anti-TB medications, tuberculosis (TB) is one of the most contagious illness in the world. According to reports, the effectiveness of treating TB is severely impacted by drug resistance, notably resistance caused by mutations in the pncA gene-encoded pyrazinamidase (PZase) to the front-line drug pyrazinamide (PZA). The present study focused on investigating the resistance mechanism caused by the mutations D12N, T47A, and H137R to better understand the structural and molecular events responsible for the resistance acquired by the pncA gene of Mycobacterium tuberculosis (MTB) at the structural level. Bioinformatics analysis predicted that all three mutations were deleterious and located near the active centre of the pncA, affecting its functional activity. Furthermore, molecular dynamics simulation (MDS) results established that mutations significantly reduced the structural stability and caused the rearrangement of FE2+ in the active centre of pncA. Moreover, essential dynamics analysis, including principal component analysis (PCA) and free energy landscape (FEL), concluded variations in the protein motion and decreased conformational space in the mutants. Additionally, the mutations potentially impacted the network topologies and altered the residual communications in the network. The complex simulation study results established the significant movement of the flap region from the active centre of mutant complexes, further supporting the flap region's significance in developing resistance to the PZA drug. This study advances our knowledge of the primary cause of the mechanism of PZA resistance and the structural dynamics of pncA mutants, which will help us to design new and potent chemical scaffolds to treat drug-resistant TB (DR-TB).


Subject(s)
Amidohydrolases , Antitubercular Agents , Molecular Dynamics Simulation , Mutation , Mycobacterium tuberculosis , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Amidohydrolases/genetics , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Protein Conformation , Drug Resistance, Bacterial/genetics , Drug Resistance, Bacterial/drug effects
9.
Front Vet Sci ; 11: 1355390, 2024.
Article in English | MEDLINE | ID: mdl-38505000

ABSTRACT

Introduction: The domestic cat (Felis catus) is one of the most common pets. Worldwide, approximately one in five adults are sensitive to cat allergens. The major cat allergen is the secretoglobulin Fel d 1, which is primarily produced in the salivary and sebaceous glands. Chickens produce IgY antibodies, which are similar in structure to mammalian IgG. When chickens are exposed to Fel d 1, anti-Fel d 1-specific IgY (AFD1) is produced and is naturally concentrated in egg yolk. The aim of this study was to evaluate the tolerability, effects on growth and food consumption, and potential adverse effects of a chicken egg product ingredient containing AFD1 in kittens. Methods: This was a blinded, controlled study. Twenty-seven (27) eight-week old kittens were randomly assigned to three feeding groups containing 0 ppm AFD1 (Group 0), 8 ppm AFD1 (Group 1), and 16 ppm AFD1 (Group 2) for 84 days. Veterinary exams and bloodwork were performed on Day 42 and Day 84, and body weight and body condition score (BCS) were monitored weekly. Results: Throughout the study, there were no signs of nutritional deficiency or adverse clinical events in any of the subjects. Administration of a chicken egg product ingredient containing AFD1 in the diet (whether in coating or combination of coating and top dress) had no significant effect on body weight nor food consumption, and all subjects maintained a healthy Body Condition Score (BCS) throughout the study. Moreover, there were no biologically significant differences in the mean clinical chemistry and hematology parameters. Discussion: This study demonstrated that a diet formulated to contain up to 16 ppm AFD1, included in the coating and the top-dress of dry kitten food, was well tolerated, promoted adequate growth, and exhibited no adverse effects.

10.
Sci Rep ; 14(1): 6319, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491040

ABSTRACT

In a linac driven Free Electron Laser (FEL), the shot-to-shot and non-invasive monitoring of the electron bunch length is normally ensured by Bunch Compressor Monitors (BCMs). The bunch-length dependent signal of a BCM results from the detection and integration-over a given frequency band-of the temporal coherent enhancement of the radiation spectral energy emitted by the electron beam while experiencing a longitudinal compression. In this work, we present a method that permits to express the relative variation of the bunch length as a function of the relative statistical fluctuations of the BCM and charge signals. Furthermore, in the case of a BCM equipped with two detectors simultaneously operating in two distinct wavelength bands, the method permits an absolute determination of the electron bunch length. The proposed method is beneficial to a FEL. Thanks to it, the machine compression feedback can be tuned against the absolute measurement of the bunch length rather than a bunch-length dependent signal. In a CW-superconducting-linac driven FEL, it can offer the precious opportunity to implement a fully non-invasive and absolute diagnostics of the bunch length.

11.
Small Methods ; 8(8): e2301328, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38441281

ABSTRACT

A new method for time-resolved X-ray absorption near edge structure (XANES) spectroscopy that enables faster data acquisition and requires smaller sample quantities for high-quality data, thus allowing the analysis of more samples in a shorter time is introduced. The method uses large bandwidth free electron laser pulses to measure laser-excited XANES spectra in transmission mode. A beam-splitting grating configuration allows simultaneous measurements of the spectra of the incoming X-ray Free Electron Laser (XFEL) pulses and transmission XANES, which is crucial for compensating the pulse-dependent intensity and spectrum fluctuations due to the self-amplified spontaneous emission operation. The implementation of this new methodology is applied on a liquid solution of ammonium iron(III) oxalate jet and is compared to previous results, showing great improvements in the speed of acquisition and spectral resolution, and the ability to measure a large 2-D spectral-time map quickly.

12.
J Synchrotron Radiat ; 31(Pt 2): 282-294, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38386564

ABSTRACT

Superconducting undulators (SCUs) can offer a much higher on-axis undulator field than state-of-the-art cryogenic permanent-magnet undulators with the same period and vacuum gap. The development of shorter-period and high-field SCUs would allow the free-electron laser and synchrotron radiation source community to reduce both the length of undulators and the dimensions of the accelerator. Magnetic measurements are essential for characterizing the magnetic field quality of undulators for operation in a modern light source. Hall probe scanning is so far the most mature technique for local field characterization of undulators. This article focuses on the systematic error caused by thermal contraction that influences Hall probe measurements carried out in a liquid helium cryostat. A novel procedure, based on the redundant measurement of the magnetic field using multiple Hall probes at known relative distance, is introduced for the correction of such systematic error.

13.
Sci Rep ; 14(1): 4987, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424152

ABSTRACT

Allergens from domestic cats (Felis catus) cause allergy-related health problems worldwide. Fel d 1 is a major allergen that causes severe allergic reactions in humans, including rhinitis, conjunctivitis, and life-threatening asthma. Therefore, patients with cat allergies anticipate hypoallergenic cats. We successfully generated Fel d 1 chain 2 (CH2) genome-edited cats using the CRISPR-Cas9 system in this study. T7 endonuclease 1 assay and Sanger sequencing were used to confirm the mutation in CH2 genome-edited cats. Fel d 1 level in CH2 genome-edited cats were assessed by enzyme-linked immunosorbent assay (ELISA). Remarkably, ELISA showed that the level of Fel d 1 in the CH2 homozygous genome-edited cat (Name: Alsik) was extremely low compared with that in wild type domestic cats and could be hypoallergenic cats. Additionally, we successfully cloned the CH2 homozygous genome-edited cat using cytoplasm injection clone technology. The cloned CH2 homozygous genome-edited cat was verified using microsatellite analysis. Creating hypoallergenic cats using the CRISPR-Cas9 system is a significant step forward because these cats can safely approach allergic patients.


Subject(s)
Asthma , Hypersensitivity , Cats , Animals , Humans , CRISPR-Cas Systems , Hypersensitivity/complications , Allergens/analysis , Asthma/etiology , Enzyme-Linked Immunosorbent Assay
14.
Int Immunopharmacol ; 128: 111488, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38185034

ABSTRACT

BACKGROUND: Cat-derived allergens are considered as one of the most common causes of allergic diseases worldwide. Fel d 1 is a major cat allergen and plays an important role in immunoglobulin E (IgE)-reaction diagnosis. However, the two separate chains of Fel d 1 exhibited lower IgE-reactivity than its complete molecule of an assembled form, which makes it difficult to efficiently prepare and limits the application of Fel d 1 in molecular diagnosis of cat allergy. METHODS: We first applied artificial intelligence (AI) based tool AlphaFold2 to build the 3-dimensional structures of Fel d 1 with different connection modes between two chains, which were evaluated by ERRAT program and were expressed in Escherichia coli. We then calculated the expression ratios of soluble form/inclusion bodies form of optimized Fel d 1. The Circular Dichroism (CD), High Performance Liquid Chromatography-Size Exclusion Chromatography (HPLC-SEC) and reducing/non-reducing SDS-PAGE were performed to characterize the folding status and dimerization of the optimized fusion Fel d 1. The improvement of specific-IgE reactivity to optimized fusion Fel d 1 was investigated by enzyme linked immunosorbent assay (ELISA). RESULTS: Among several linkers, 2 × GGGGS got the highest scores, with an overall quality factor of 100. The error value of the residues around the junction of 2 × GGGGS was lower than others. It exhibited highest proportion of soluble protein than other Fel d 1 constructs with ERRAT (GGGGS, KK as well as direct fusion Fel d 1). The results of CD and HPLC-SEC showed the consistent folding and dimerization of two fused subunits between the optimized fusion Fel d 1 and previously well-defined direct fusion Fel d 1. The overall IgE-binding absorbance of optimized fusion Fel d 1 tested by ELISA was improved compared with that of the direct fusion Fel d 1. CONCLUSION: We firstly provided an AI-design strategy to optimize the Fel d 1, which could spontaneously fold into its native-like structure without additional refolding process or eukaryotic folding factors. The improved IgE-binding activity and simplified preparation method could greatly facilitate it to be a robust allergen material for molecular diagnosis of cat allergy.


Subject(s)
Hypersensitivity , Immunoglobulin E , Humans , Immunoglobulin E/metabolism , Amino Acid Sequence , Artificial Intelligence , Allergens/chemistry
15.
J Biomol Struct Dyn ; 42(3): 1181-1190, 2024.
Article in English | MEDLINE | ID: mdl-37144757

ABSTRACT

Despite advanced diagnosis and detection technologies, prostate cancer (PCa) is the most prevalent neoplasms in males. Dysregulation of the androgen receptor (AR) is centrally involved in the tumorigenesis of PCa cells. Acquisition of drug resistance due to modifications in AR leads to therapeutic failure and relapse in PCa. An overhaul of comprehensive catalogues of cancer-causing mutations and their juxta positioning on 3D protein can help in guiding the exploration of small drug molecules. Among several well-studied PCa-specific mutations, T877A, T877S and H874Y are the most common substitutions in the ligand-binding domain (LBD) of the AR. In this study, we combined structure as well as dynamics-based in silico approaches to infer the mechanistic effect of amino acid substitutions on the structural stability of LBD. Molecular dynamics simulations allowed us to unveil a possible drug resistance mechanism that acts through structural alteration and changes in the molecular motions of LBD. Our findings suggest that the resistance to bicalutamide is partially due to increased flexibility in the H12 helix, which disturbs the compactness, thereby reducing the affinity for bicalutamide. In conclusion, the current study helps in understanding the structural changes caused by mutations and could assist in the drug development process.Communicated by Ramaswamy H. Sarma.


Subject(s)
Nitriles , Prostatic Neoplasms , Receptors, Androgen , Tosyl Compounds , Male , Humans , Receptors, Androgen/chemistry , Anilides/pharmacology , Anilides/therapeutic use , Anilides/chemistry , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Mutation
16.
Front Immunol ; 14: 1290740, 2023.
Article in English | MEDLINE | ID: mdl-37954580

ABSTRACT

Introduction: Obesity can complicate IgE-mediated allergic diseases. In the present study, we aimed to investigate the ability of obesity-related concentrations of leptin to modulate the in vitro effector and regulatory Fel d1-specific CD4+ T-cell subsets in patients allergic to cat, considered the third most common cause of respiratory allergy in humans. Methods: For this study, plasma and peripheral blood mononuclear cells (PBMC) from 30 cat-allergic patients with mild, moderate and severe respiratory symptoms were obtained. The PBMC cultures were stimulated with Fel d1 antigen (10 µg/mL) in the presence or absence of obesity-related leptin dose (50 ηg/mL). After 6 days, the levels of cytokines and IgE in the supernatants were evaluated by multiplex and ELISA, respectively. The frequency of different non-follicular (CXCR5-) and follicular (CXCR5+) Fel d1-specific CD4+ T cell subsets was determined by flow cytometry. The plasma levels of leptin and IgE anti-cat titers were evaluated by ELISA and ImmunoCAP, respectively. Results and conclusions: Fel d1 induced both IgE production and release of cytokines related to Th2, Th9 and Th17 cell phenotypes. Feld1 was more efficient in increasing the frequency of TFHIL-21- cells positive for IL-4, IL-5 and IL-13 than TFHIL-21+ cell subsets. Leptin favored the expansion Th2-like and Th9-like cells and TFHIL-21- cells positive for IL-4, IL-5 and IL-13, but reduced the proportion of conventional (Treg/Tr-1) and follicular (TFR) regulatory CD4+ T-cell subsets expressing or not CD39 marker. Finally, many of the imbalances between Fel d1-specific CD4+ T-cells were also correlated with plasma leptin and anti-Fel d1 IgE titers. In summary, hyperleptinemia should negatively impact on the severity of cat allergies by favoring the expansion of pathogenic Fel d1-specific CD4+ T-cell phenotypes and damaging the functional status of regulatory CD4+ T-cell subsets.


Subject(s)
Hypersensitivity , Leukocytes, Mononuclear , Humans , CD4-Positive T-Lymphocytes , Cytokines , Immunoglobulin E , Interleukin-13 , Interleukin-4 , Interleukin-5 , Leptin , Obesity
18.
J Biomol Struct Dyn ; : 1-12, 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37837425

ABSTRACT

Pyrazinamide (PZA) is one of the first-line antituberculosis therapy, active against non-replicating Mycobacterium tuberculosis (Mtb). The conversion of PZA into pyrazinoic acid (POA), the active form, required the activity of pncA gene product pyrazinamidase (PZase) activity. Mutations occurred in pncA are the primary cause behind the PZA resistance. However, the resistance mechanism is important to explore using high throughput computational approaches. Here we aimed to explore the mechanism of PZA resistance behind novel P62T, L120R, and V130M mutations in PZase using 200 ns molecular dynamics (MD) simulations. MD simulations were performed to observe the structural changes for these three mutants (MTs) compared to the wild types (WT). Root means square fluctuation, the radius of gyration, free energy landscape, root means square deviation, dynamic cross-correlation motion, and pocket volume were found in variation between WT and MTs, revealing the effects of P62T, L120R, and V130M. The free energy conformational landscape of MTs differs significantly from the WT system, lowering the binding of PZA. The geometric shape complementarity of the drug (PZA) and target protein (PZase) further confirmed that P62T, L120R, and V130M affect the protein structure. These effects on PZase may cause vulnerability to convert PZA into POA.Communicated by Ramaswamy H. Sarma.

19.
Mini Rev Med Chem ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37680156

ABSTRACT

Drug discovery, vaccine design, and protein interaction studies are rapidly moving toward the routine use of molecular dynamics simulations (MDS) and related methods. As a result of MDS, it is possible to gain insights into the dynamics and function of identified drug targets, antibody-antigen interactions, potential vaccine candidates, intrinsically disordered proteins, and essential proteins. The MDS appears to be used in all possible ways in combating diseases such as cancer, however, it has not been well documented as to how effectively it is applied to infectious diseases such as Leishmaniasis. As a result, this systematic review aims to survey the application of MDS in combating leishmaniasis. We have systematically collected articles that illustrate the implementation of MDS in drug discovery, vaccine development, and structural studies related to Leishmaniasis. Of all the articles reviewed, we identified that only a limited number of studies focused on the development of vaccines against Leishmaniasis through MDS. Also, the PCA and FEL studies were not carried out in most of the studies. These two were globally accepted utilities to understand the conformational changes and hence it is recommended that this analysis should be taken up in similar approaches in the future.

20.
J Biomol Struct Dyn ; : 1-14, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37592887

ABSTRACT

Millettia pinnata is an important medicinal plant that has been used as a treatment of various diseases due to presence of wide range of pharmacological properties. The plant contains quercetin, kaempferol, karanjin, pongaglabrone, kanjone, kanugin, gammatin, pongaglabol, and other bioflavonoids. Kaempferol is a natural flavonol that shows many pharmacological properties including anti-inflammatory, antioxidant, anticancer, and antidiabetic activities etc. The enzyme flavonol synthase (FLS, EC 1.14.20.6) catalyses the conversion of dihydroflavonols to flavonols, i.e. biosynthesis of kaempferol from dihydrokaempferol. The current work examined the binding affinity-based approach to improve the enzyme catalytic activity using computational methods. Sequential site-directed mutagenesis was used to create four mutants with the goal to increase hydrogen bonds and further improving the ligand (dihydrokaempferol) binding efficiency. Simulations were done to monitor the stability of the mutants followed by molecular docking to confirm interactions with ligand. For structure validation, various dynamic analysis like RMSD, RMSF, ROG, SASA, H-bond, PCA, DCCM, and FEL were performed, which predicts the stability of wild-type (WT) proteins and mutants. The Mutant_2 and Mutant_3 showed maximum H-bonding and better stability than other mutants and WT that proved higher affinity suggesting improved catalysis. Mutant_2 and Mutant_3 exhibited binding affinities of -7.6 and -8.2 kcal/mol, respectively for the ligand. The outcome of present study will provide significant improvement in synthesis of kaempferol and other plant-based flavonoids.Communicated by Ramaswamy H. Sarma.

SELECTION OF CITATIONS
SEARCH DETAIL