Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Med Chem ; 31(15): 2119-2132, 2024.
Article in English | MEDLINE | ID: mdl-37287288

ABSTRACT

INTRODUCTION: Sepsis-induced acute kidney injury is related to an increased mortality rate by modulating ferroptosis through ginsenoside Rg1. In this study, we explored the specific mechanism of it. METHODS: Human renal tubular epithelial cells (HK-2) were transfected with oe-ferroptosis suppressor protein 1 and treated with lipopolysaccharide for ferroptosis induction, and they were then treated with ginsenoside Rg1 and ferroptosis suppressor protein 1 inhibitor. Ferroptosis suppressor protein 1, CoQ10, CoQ10H2, and intracellular NADH levels in HK-2 cells were assessed by Western blot, ELISA kit, and NAD/NADH kit. NAD+/NADH ratio was also calculated, and 4-Hydroxynonal fluorescence intensity was assessed by immunofluorescence. HK-2 cell viability and death were assessed by CCK-8 and propidium iodide staining. Ferroptosis, lipid peroxidation, and reactive oxygen species accumulation were assessed by Western blot, kits, flow cytometry, and C11 BODIPY 581/591 molecular probe. Sepsis rat models were established by cecal ligation and perforation to investigate whether ginsenoside Rg1 regulated the ferroptosis suppressor protein 1-CoQ10-NAD(P)H pathway in vivo. RESULTS: LPS treatment diminished ferroptosis suppressor protein 1, CoQ10, CoQ10H2, and NADH contents in HK-2 cells, while facilitating NAD+/NADH ratio and relative 4- Hydroxynonal fluorescence intensity. FSP1 overexpression inhibited lipopolysaccharideinduced lipid peroxidation in HK-2 cells via the ferroptosis suppressor protein 1-CoQ10- NAD(P)H pathway. The ferroptosis suppressor protein 1-CoQ10-NAD(P)H pathway suppressed lipopolysaccharide-induced ferroptosis in HK-2 cells. Ginsenoside Rg1 alleviated ferroptosis in HK-2 cells by regulating the ferroptosis suppressor protein 1-CoQ10- NAD(P)H pathway. Moreover, ginsenoside Rg1 regulated the ferroptosis suppressor protein 1-CoQ10-NAD(P)H pathway in vivo. CONCLUSION: Ginsenoside Rg1 alleviated sepsis-induced acute kidney injury by blocking renal tubular epithelial cell ferroptosis via the ferroptosis suppressor protein 1-CoQ10- NAD(P)H pathway.


Subject(s)
Acute Kidney Injury , Ferroptosis , Ginsenosides , Sepsis , Rats , Humans , Animals , NAD , Lipopolysaccharides , Epithelial Cells , Sepsis/complications , Sepsis/drug therapy , Acute Kidney Injury/drug therapy
2.
Front Oncol ; 13: 1251561, 2023.
Article in English | MEDLINE | ID: mdl-37736551

ABSTRACT

The ability of cancer stem cells (CSCs) to self-renew, differentiate, and generate new tumors is a significant contributor to drug resistance, relapse, and metastasis. Therefore, the targeting of CSCs for treatment is particularly important. Recent studies have demonstrated that CSCs are more susceptible to ferroptosis than non-CSCs, indicating that this could be an effective strategy for treating tumors. Ferroptosis is a type of programmed cell death that results from the accumulation of lipid peroxides caused by intracellular iron-mediated processes. CSCs exhibit different molecular characteristics related to iron and lipid metabolism. This study reviews the alterations in iron metabolism, lipid peroxidation, and lipid peroxide scavenging in CSCs, their impact on ferroptosis, and the regulatory mechanisms underlying iron metabolism and ferroptosis. Potential treatment strategies and novel compounds targeting CSC by inducing ferroptosis are also discussed.

3.
Front Mol Biosci ; 9: 966007, 2022.
Article in English | MEDLINE | ID: mdl-36090052

ABSTRACT

Tumors are the leading cause of death all over the world, among which ovarian cancer ranks the third in gynecological malignancies. The current treatment for ovarian cancer is liable to develop chemotherapy resistance and high recurrence rate, in which a new strategy is demanded. Ferroptosis, a newly discovered manner of regulatory cell death, is shown to be induced by massive iron-dependent accumulation of lipid reactive oxygen species. With the in-depth study of ferroptosis, its associated mechanism with various tumors is gradually elucidated, including ovarian tumor, which probably promotes the application of ferroptosis in treating ovarian cancer. To this end, this review will focus on the history and current research progress of ferroptosis, especially its regulation mechanism, and its potential application as a novel treatment strategy for ovarian cancer.

4.
ACS Nano ; 16(2): 2381-2398, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35041395

ABSTRACT

Ferroptosis is a recently discovered route of regulated cell death that offers the opportunities for the treatment of chemotherapy-resistant tumor indications, but its efficacy can be affected by the glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1) antioxidant mechanisms, posing significant challenges for its clinical translation. In this study, we report a Cu-tetra(4-carboxyphenyl)porphyrin chloride(Fe(III)) (Cu-TCPP(Fe)) metal organic framework (MOF)-based nanosystem for the efficient incorporation of Au nanoparticles (NPs) and RSL3, which can demonstrate enzyme-like activities to universally suppress the antiferroptotic pathways in tumor cells for amplifying ferroptotic damage. Herein, Cu-TCPP(Fe) MOF nanosheets were integrated with Au NPs via in situ nucleation and loaded with RSL3 via π-π stacking, which were eventually modified with polyethylene glycol (PEG) and iRGD for tumor-targeted drug delivery. Specifically, the Au NPs can demonstrate glucose oxidase-like activities for efficient glucose depletion, thus disrupting the pentose phosphate pathway to impede reduced glutathione (GSH) biosynthesis and prevent the recycling of coenzyme Q10 (CoQ10) to CoQ10H2, while Cu species can oxidize GSH into oxidized glutathione (GSSG). These nanocatalytic activities can lead to the simultaneous inhibition of the GPX4/GSH and FSP1/CoQ10H2 pathways and cooperate with the GPX4-deactivating function of RSL3 to cause pronounced ferroptotic damage, thereby providing a strong rationale for the application of ferroptosis therapy in the clinic.


Subject(s)
Ferroptosis , Metal Nanoparticles , Triple Negative Breast Neoplasms , Ferric Compounds , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Gold/pharmacology , Humans , Phospholipid Hydroperoxide Glutathione Peroxidase , Triple Negative Breast Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL