Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
1.
Sci Rep ; 14(1): 15221, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956104

ABSTRACT

Municipal wastewater treatment systems use the chemical oxygen demand test (COD) to identify organic contaminants in industrial effluents that impede treatment due to their high concentration. This study reduced the COD levels in tannery wastewater using a multistage treatment process that included Fenton oxidation, chemical coagulation, and nanotechnology based on a synthetic soluble COD standard solution. At an acidic pH of 5, Fenton oxidation reduces the COD concentration by approximately 79%. It achieves this by combining 10 mL/L of H2O2 and 0.1 g/L of FeCl2. Furthermore, the author selected the FeCl3 coagulant for the coagulation process based on the best results of comparisons between different coagulants. At pH 8.5, the coagulation dose of 0.15 g/L achieved the maximum COD removal efficiency of approximately 56.7%. Finally, nano bimetallic Fe/Cu was used to complete the degradation and adsorption of the remaining organic pollutants. The XRD, SEM, and EDX analyses proved the formation of Fe/Cu nanoparticles. A dose of 0.09 g/L Fe/Cu NPs, 30 min of contact time, and a stirring rate of 200 rpm achieve a maximum removal efficiency of about 93% of COD at pH 7.5. The kinetics studies were analyzed using pseudo-first-order P.F.O., pseudo-second-order P.S.O., and intraparticle diffusion models. The P.S.O. showed the best fit among the kinetic models, with an R2 of 0.998. Finally, the authors recommended that technique for highly contaminated industrial effluents treatment for agriculture or industrial purposes.

2.
Materials (Basel) ; 17(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38893879

ABSTRACT

The continuous discharge of organic dyes into freshwater resources poses a long-term hazard to aquatic life. The advanced oxidation Fenton process is a combo of adsorption and degradation of pollutants to detoxify toxic effluents, such as anti-bacterial drugs, antibiotics, and organic dyes. In this work, an activated attapulgite clay-loaded iron-oxide (A-ATP@Fe3O4) was produced using a two-step reaction, in which attapulgite serves as an enrichment matrix and Fe3O4 functions as the active degrading component. The maximum adsorption capacity (qt) was determined by assessing the effect of temperature, pH H2O2, and adsorbent. The results showed that the A-ATP@Fe3O4 achieves the highest removal rate of 99.6% under optimum conditions: 40 °C, pH = 3, H2O2 25 mM, and 0.1 g dosage of the composite. The dye removal procedure achieved adsorption and degradation equilibrium in 120 and 30 min, respectively, by following the same processes as the advanced oxidation approach. Catalytic activity, kinetics, and specified surface characteristics suggest that A-ATP@Fe3O4 is one of the most promising candidates for advanced oxidation-enrooted removal of organic dyes.

3.
J Environ Manage ; 362: 121347, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838534

ABSTRACT

The traditional homogenous and heterogenous Fenton reactions have frequently been restrained by the lower production of Fe2+ ions, which significantly obstructs the generation of hydroxyl radicals from the decomposition of H2O2. Thus, we introduce novel photo-Fenton-assisted plasmonic heterojunctions by immobilizing Fe3O4 and Bi nanoparticles onto 3D Sb2O3 via co-precipitation and solvothermal approaches. The ternary Sb2O3/Fe3O4/Bi composites offered boosted photo-Fenton behavior with a metronidazole (MNZ) oxidation efficiency of 92% within 60 min. Among all composites, the Sb2O3/Fe3O4/Bi-5% hybrid exhibited an optimum photo-Fenton MNZ reaction constant of 0.03682 min- 1, which is 5.03 and 2.39 times higher than pure Sb2O3 and Sb2O3/Fe3O4, respectively. The upgraded oxidation activity was connected to the complementary outcomes between the photo-Fenton behavior of Sb2O3/Fe3O4 and the plasmonic effect of Bi NPs. The regular assembly of Fe3O4 and Bi NPs enhances the surface area and stability of Sb2O3/Fe3O4/Bi. Moreover, the limited absorption spectra of Sb2O3 were extended into solar radiation by the Fe3+ defect of Fe3O4 NPs and the surface plasmon resonance (SPR) effect of Bi NPs. The photo-Fenton mechanism suggests that the co-existence of Fe3O4/Bi NPs acts as electron acceptor/donor, respectively, which reduces recombination losses, prolongs the lifetime of photocarriers, and produces more reactive species, stimulating the overall photo-Fenton reactions. On the other hand, the photo-Fenton activity of MNZ antibiotics was optimized under different experimental conditions, including catalyst loading, solution pH, initial MNZ concentrations, anions, and real water environments. Besides, the trapping outcomes verified the vital participation of •OH, h+, and •O2- in the MNZ destruction over Sb2O3/Fe3O4/Bi-5%. In summary, this work excites novel perspectives in developing boosted photosystems through integrating the photocatalysis power with both Fenton reactions and the SPR effects of plasmonic materials.


Subject(s)
Hydrogen Peroxide , Metronidazole , Oxidation-Reduction , Metronidazole/chemistry , Hydrogen Peroxide/chemistry , Surface Plasmon Resonance , Iron/chemistry , Water Pollutants, Chemical/chemistry , Antimony/chemistry , Water/chemistry
4.
Environ Sci Pollut Res Int ; 31(24): 35824-35834, 2024 May.
Article in English | MEDLINE | ID: mdl-38744762

ABSTRACT

This study aims to evaluate the feasibility of an innovative reusable adsorbent through adsorption-degradation sequence for antibiotic removal from water. The magnetite/mesoporous carbon adsorbent was prepared using a two-step method of (i) in situ impregnation of magnetite precursor during resorcinol formaldehyde polymerization and (ii) pyrolysis at elevated temperature (800 °C). XRD spectra confirmed that magnetite (Fe3O4) was the only iron oxide species present in the adsorbent, and thermogravimetric analysis revealed that its content was 10 wt%. Nitrogen sorption analysis showed that Fe3O4/carbon features a high fraction of mesopores (> 80 vol.%) and a remarkable specific surface area value (246 m2 g-1), outstanding properties for water treatment. The performance of the adsorbent was examined in the uptake of three relevant antibiotics. The maximum adsorption uptakes were ca. 76 mg g-1, ca. 70 mg g-1, and ca. 44 mg g-1 for metronidazole, sulfamethoxazole, and ciprofloxacin, respectively. All adsorption curves were successfully fitted with Langmuir equilibrium model. The regeneration of adsorbent was carried out using Fenton oxidation under ambient conditions. After three consecutive runs of adsorption-regeneration, Fe3O4/carbon maintained its performance almost unchanged (up to 95% of its adsorption capacity), which highlights the high reusability of the adsorbent.


Subject(s)
Anti-Bacterial Agents , Carbon , Ferrosoferric Oxide , Water Pollutants, Chemical , Water Purification , Adsorption , Anti-Bacterial Agents/chemistry , Carbon/chemistry , Ferrosoferric Oxide/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Porosity
5.
Small ; : e2402525, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801302

ABSTRACT

Persistent organic pollutants (POPs), including xenoestrogens and polyfluoroalkyl substances (PFAS), demand urgent global intervention. Fenton oxidation, catalyzed by iron ions, offers a cost-effective means to degrade POPs. However, numerous challenges like acid dependency, catalyst loss, and toxic waste generation hinder practical application. Efforts to create long-lasting heterogeneous Fenton catalysts, capable of simultaneously eliminating acid requirements, sustaining rapid kinetics, and retaining iron efficiently, have been unsuccessful. This study introduces an innovative heterogeneous zwitterionic hydrogel-based Fenton catalyst, surmounting these challenges in a cost-effective and scalable manner. The hydrogel, hosting individually complexed iron ions in a porous scaffold, exhibits substantial effective surface area and kinetics akin to homogeneous Fenton reactions. Complexed ions within the hydrogel can initiate Fenton degradation at neutral pH, eliminating acid additions. Simultaneously, the zwitterionic hydrogel scaffold, chosen for its resistance to Fenton oxidation, forms strong bonds with iron ions, enabling prolonged reuse. Diverging from existing designs, the catalyst proves compatible with UV-Fenton processes and achieves rapid self-regeneration during operation, offering a promising solution for the efficient and scalable degradation of POPs. The study underscores the efficacy of the approach by demonstrating the swift degradation of three significant contaminants-xenoestrogens, pesticides, and PFAS-across multiple cycles at trace concentrations.

6.
Scand J Immunol ; : e13389, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816907

ABSTRACT

Non-enzymatic glycation and oxidation of self-proteins, causing formation and accumulation of advanced glycation end products (AGEs), have been reported in an array of pathologies, including systemic lupus erythematosus (SLE). Such modifications may generate neo-epitopes, break immunological tolerance, and induce antibody response. In this study, we have first analysed the structural modifications of whole histone in the presence of deoxyribose followed by oxidation with hydroxyl radicals. Changes in the secondary and tertiary structure of the whole histone were determined by spectroscopic techniques and biochemical assays. Fluorescence spectroscopy and UPLC-MS showed the generation of AGEs such as carboxymethyl lysine and pentosidine, while DLS and TEM indicated the presence of amorphous AGE-aggregates. Moreover, rabbits immunized with these histone-AGEs exhibited enhanced immunogenicity and ELISA and western immunoblot of IgG antibodies from SLE patients' sera showed a significantly higher specificity towards modified histone-AGEs than the native histone.

7.
Sci Total Environ ; 930: 172511, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38641106

ABSTRACT

The co-occurrence of nanoplastics (NPs) and antibiotics in the environment is a growing concern for ecological safety. As NPs age in natural environments, their surface properties and morphology may change, potentially affecting their interactions with co-contaminants such as antibiotics. It is crucial to understand the effect of aging on NPs adsorption of antibiotics, but detailed studies on this topic are still scarce. The study utilized the photo-Fenton-like reaction to hasten the aging of polystyrene nanoplastics (PS-NPs). The impact of aging on the adsorption behavior of norfloxacin (NOR) was then systematically examined. The results showed a time-dependent rise in surface oxygen content and functional groups in aged PS-NPs. These modifications led to noticeable physical changes, including increased surface roughness, decreased particle size, and improved specific surface area. The physicochemical changes significantly increased the adsorption capacity of aged PS-NPs for norfloxacin. Aged PS-NPs showed 5.03 times higher adsorption compared to virgin PS-NPs. The adsorption mechanism analysis revealed that in addition to the electrostatic interactions, van der Waals force, hydrogen bonding, π-π* interactions and hydrophobic interactions observed with virgin PS-NPs, aged PS-NPs played a significant role in polar interactions and pore-filling mechanisms. The study highlights the potential for aging to worsen antibiotic risk in contaminated environments. This study not only enhances the comprehension of the environmental behavior of aged NPs but also provides a valuable basis for developing risk management strategies for contaminated areas.


Subject(s)
Norfloxacin , Polystyrenes , Norfloxacin/chemistry , Adsorption , Polystyrenes/chemistry , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Photochemical Processes , Models, Chemical
8.
Environ Res ; 252(Pt 1): 118786, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38537743

ABSTRACT

Industrial wastewater contains a wide range of pollutants that, if released directly into natural ecosystems, have the potential to pose serious risks to the environment.This study aims to investigate sustainable and efficient approaches for treating tannery wastewater, employing a combination of hyphenated Fenton oxidation and adsorption processes. Rigorous analyses were conducted on wastewater samples, evaluating parameters like COD, sulphide, NH3-N, PO43-, NO3-, and Cr(VI). The performance of this adsorbent material was gauged through column adsorption experiments. A comprehensive characterization of the adsorbent was undertaken using techniques such as SEM, EDX, BET, FTIR, XRD, and LIBS. The study delved into varying operational parameters like bed depth (ranging from 3.5 to 9.5 cm) diameter (2.5 cm) and influent flow rate (ranging from 5 to 15mLmin-1). The experimental outcomes revealed that increasing the bed depth and decreasing the influent flow rate significantly bolstered the adsorption column's effectiveness. Breakthrough curves obtained were fitted with different models, including the Thomas and Yoon-Nelson models. The most optimal column performance was achieved with a bed height of 10.5 cm and a flow rate of 5mLmin-1. The combined process achieved removal efficiencies of 94.5% for COD, 97.4% for sulphide, 96.2% for NH3-N, 83.1% for NO3-, 79.3% for PO43-, and 96.9% for Cr(VI) in tannery effluent. This research presents a notable stride toward the development of sustainable and efficient strategies for tannery wastewater treatment.


Subject(s)
Charcoal , Industrial Waste , Tanning , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Charcoal/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Industrial Waste/analysis , Waste Disposal, Fluid/methods , Wastewater/chemistry , Wastewater/analysis , Wood/chemistry , Iron/chemistry , Hydrogen Peroxide/chemistry
9.
Water Res ; 254: 121392, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38430757

ABSTRACT

Antibiotic resistance genes (ARGs) and bacteria (ARBs) in the effluent of wastewater treatment plants (WWTPs) are of utmost importance for the dissemination of ARGs in natural aquatic environments. Therefore, there is an urgent need for effective technologies to eliminate WWTP ARGs/ARBs and mitigate the associated risks posed by the discharged ARG in aquatic environments. To test the effective technology for eliminating ARGs/ARBs, we compared the removal of ARGs and ARBs by three different tertiary treatments, namely ultra-violet (UV) disinfection, chlorination disinfection, and Fenton oxidation. Then, the treated wastewater was co-cultured with Chlorella vulgaris (representative of aquatic biota) to investigate the fate of discharged ARGs into the aquatic environment. The results demonstrated that chlorination (at a chlorine concentration of 15 mg/L) and Fenton (at pH 2.73, with 0.005 mol/L Fe2+ and 0.0025 mol/L H2O2) treatment showed higher efficacy in ARG removal (1.8 - 4.17 logs) than UV treatment (15 min) (1.29 - 3.87 logs). Moreover, chlorine at 15 mg/L and Fenton treatment effectively suppressed ARB regeneration while UV treatment for 15 min could not. Regardless of treatments tested in this study, the input of treated wastewater to the Chlorella system increased the number of ARGs and mobile genetic elements (MGEs), indicating the potential risk of ARG dissemination associated with WWTP discharge. Among the wastewater-Chlorella co-culture systems, chlorination resulted in less of an increase in the number of ARGs and MGEs compared to Fenton and UV treatment. When comparing the wastewater systems to the co-culture systems, it was observed that Chlorella vulgaris reduced the number of ARGs and MGEs in chlorination and UV-treated wastewater; however, Chlorella vulgaris promoted ARG survival in Fenton-treated water, suggesting that aquatic microalgae might act as a barrier to ARG dissemination. Overall, chlorination treatment not only effectively removes ARGs and inhibits ARB regeneration but also shows a lower risk of ARG dissemination. Therefore, chlorination is recommended for practical application in controlling the spread of discharged ARGs from WWTP effluent in natural aquatic environments.


Subject(s)
Chlorella vulgaris , Microalgae , Water Purification , Wastewater , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Angiotensin Receptor Antagonists/pharmacology , Microalgae/genetics , Halogenation , Hydrogen Peroxide , Chlorine/pharmacology , Chlorella vulgaris/genetics , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Drug Resistance, Microbial/genetics , Water Purification/methods
10.
Environ Sci Pollut Res Int ; 31(19): 28443-28453, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38546920

ABSTRACT

This study investigated the applicability of industrial waste. The high affinity of Fe-based products is widely used for industrial effluents because of their capability to oxidize contaminants. Waste foundry dust (WFD) is an Fe oxide that has been investigated as a potential reactive material that causes the generation of reactive oxidants. We aimed to investigate the physicochemical properties of WFD and the feasibility in the Fenton oxidation process. The WFD was used as a catalyst for removing Congo red (CR), to evaluate the generation of •OH and dissolution of Fe during the oxidation process. The linkage of •OH generation by WFD with eluted Fe(II) through the Fe dissolution was found. The Fenton oxidation reaction, CR degradation was affected by H2O2 concentration, initial pH, WFD dosage, initial CR concentration, and coexisting anions. The CR degradation efficiency increased with an increase in H2O2 concentration and WFD dosage. In addition, chloride and sulfate in solution promoted CR degradation, whereas carbonate had a negative effect on the Fenton oxidation process. The elution of Fe promotes CR degradation, over three reuse cycles, the degradation performance of the CR decreased from 100 to 81.1%. For the Fenton oxidation process, •OH generation is linked to Fe redox cycling, the surface passivation and Fe complexes interrupted the release of reactive oxidants, which resulted in the degradation of the CR decreased. This study proposed that WFD can serve as catalysts for the removal of CR.


Subject(s)
Congo Red , Dust , Hydrogen Peroxide , Iron , Minerals , Oxidation-Reduction , Congo Red/chemistry , Iron/chemistry , Minerals/chemistry , Hydrogen Peroxide/chemistry , Industrial Waste , Coloring Agents/chemistry , Water Pollutants, Chemical/chemistry
11.
J Environ Manage ; 354: 120383, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38382434

ABSTRACT

The research presented herein explores the development of a novel iron-carbon composite, designed specifically for the improved treatment of high-concentration antibiotic wastewater. Employing a nitrogen-shielded thermal calcination approach, the investigation utilizes a blend of reductive iron powder, activated carbon, bentonite, copper powder, manganese dioxide, and ferric oxide to formulate an efficient iron-carbon composite. The oxygen exclusion process in iron-carbon particles results in distinctive electrochemical cells formation, markedly enhancing wastewater degradation efficiency. Iron-carbon micro-electrolysis not only boosts the biochemical degradability of concentrated antibiotic wastewater but also mitigates acute biological toxicity. In response to the increased Fe2+ levels found in micro-electrolysis wastewater, this research incorporates Fenton oxidation for advanced treatment of the micro-electrolysis byproducts. Through the synergistic application of iron-carbon micro-electrolysis and Fenton oxidation, this research accomplishes a significant decrease in the initial COD levels of high-concentration antibiotic wastewater, reducing them from 90,000 mg/L to about 30,000 mg/L, thus achieving an impressive removal efficiency of 66.9%. This integrated methodology effectively reduces the pollutant load, and the recycling of Fe2+ in the Fenton process additionally contributes to the reduction in both the volume and cost associated with solid waste treatment. This research underscores the considerable potential of the iron-carbon composite material in efficiently managing high-concentration antibiotic wastewater, thereby making a notable contribution to the field of environmental science.


Subject(s)
Water Pollutants, Chemical , Water Purification , Wastewater , Iron , Waste Disposal, Fluid/methods , Anti-Bacterial Agents , Powders , Electrolysis/methods , Oxidation-Reduction , Hydrogen Peroxide
12.
Front Bioeng Biotechnol ; 12: 1344964, 2024.
Article in English | MEDLINE | ID: mdl-38344290

ABSTRACT

Bamboo is considered a renewable energy bioresource for solving the energy crisis and climate change. Dendrocalamus branddisii (DB) was first subjected to sulfomethylation reaction at 95°C for 3 h, followed by Fenton oxidation pretreatment at 22°C for 24 h. The synergistic effect of combined pretreatment dramatically improved enzymatic digestibility efficiency, with maximum yield of glucose and ethanol content of 71.11% and 16.47 g/L, respectively, increased by 4.7 and 6.11 time comparing with the single Fenton oxidation pretreatment. It was found that the hydrophobicity of substrate, content of surface lignin, degree of polymerization, and specific surface area have significant effects on the increase of enzymatic saccharification efficiency. It also revealed that sulfomethylation pre-extraction can improve the hydrophilicity of lignin, leading to the lignin dissolution, which was beneficial for subsequent Fenton pretreatment of bamboo biomass. This work provides some reference for Fenton oxidation pretreatment of bamboo biomass, which can not only promote the utilization of bamboo in southwest China, but also enhances the Fenton reaction in the bamboo biorefinery.

13.
J Colloid Interface Sci ; 660: 692-702, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38271805

ABSTRACT

Tetracycline (TC) antibiotics have been widely used over the past decades, and their massive discharge led to serious water pollution. Photo-Fenton process has gained ever-increasing attention for its excellent oxidizing ability and friendly solar energy utilization ability in TC polluted water treatment. This work introduced coordinative Fe into oxygen-enriched graphite carbon nitride (OCN) to form FeOCN composites for efficient photo-Fenton process. Hemin was chosen as the source to provide the source of coordinative Fe-Nx groups. The degradation efficiency of TC reached 82.1 % within 40 min of irradiation, and remained 76.9 % after five runs of reaction. The degradation intermediates of TC were detected and the possible degradation pathways were gained. It was found that h+, OH, and O2- played major roles in TC degradation. Notably, the photo-Fenton performance of FeOCN was stable in highly saline water or strong acid/base environment (pH 3.0-9.0). Besides, H2O2 can be generated in-situ in this photo-Fenton process, which is favorable for practical application. It can be anticipated that the coordinative FeOCN composites will promote the application of photo-Fenton oxidation process in TC polluted water treatment.

14.
Sci Total Environ ; 915: 169937, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38199367

ABSTRACT

Papermaking wastewater contained various of toxic and hazardous pollutants that pose significant threats to both the ecosystem and human health. Despite these risks, limited research has addressed the detoxification efficiency and mechanism involved in the typical process treatment of papermaking wastewater. In this study, the acute toxicity of papermaking wastewater after different treatment processes was assessed using luminousbacteria, zebrafish and Daphnia magna (D. magna). Meanwhile, the pollution parament of the corresponding wastewater were measured, and the transformation of organic pollutant in the wastewater was identified by three-dimensional fluorescence and other techniques. Finally, the possible mechanism of toxicity variation in different treatment processes were explored in combination with correlation analyses. The results showed that raw papermaking wastewater displayed high acute toxicity to luminousbacteria, and exhibited slight acute toxicity and acute toxicity effect to zebrafish and D. magna, respectively. After physical and biochemical processes, not only the toxicity of the wastewater to zebrafish and D. magna was completely eliminated, but also the inhibitory effect on luminousbacteria was significantly reduced (TU value decreased from 11.07 to 1.66). Among them, the order of detoxification efficiency on luminousbacteria was air flotation > hydrolysis acidification > IC > aerobic process. Correlation analyses revealed a direct link between the reduced of Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD) and the detoxification efficiency of the different processes on the wastewater. In particular, the removal of benzene-containing aromatic pollutant correlated positively with decreased toxicity. However, the Fenton process, despite lowering TOC and COD, increased of the acute toxicity of the luminousbacteria (TU value increased from 1.66 to 2.33). This may result from the transformation generation of organic pollutant and oxidant residues during the Fenton process. Hence, oxidation technologies such as the Fenton process, as a deep treatment process, should be more concerned about the ecological risks that may be caused while focusing on their effectiveness in removing pollutant.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Animals , Humans , Wastewater , Zebrafish , Environmental Pollutants/analysis , Ecosystem , Water Pollutants, Chemical/analysis , Oxidation-Reduction , Waste Disposal, Fluid/methods , Hydrogen Peroxide/analysis
15.
Bioresour Technol ; 395: 130401, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286170

ABSTRACT

An innovative two-step process with p-toluenesulfonic acid (p-TsOH) and oxidation treatment was proposed for the efficient preparation of carboxylated nanocellulose from hybrid Pennisetum. Approximately 90 % of lignin was dissolved by p-TsOH acid under the optimal condition (80 °C, 20 min). Near-complete delignification (down to 0.5 %) and introduction of carboxylate groups (up to 1.48 mmol/g) could be achieved simultaneously during cellulose oxidation treatments without the requirement for bleaching. However, different oxidation methods expressed different efficiency and sustainability. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) oxidation has higher selectivity for the carboxylation reaction but with detriment to the aquatic environment. Fenton oxidation is more energy-consuming due to the lower carboxylate contents of products (maximum 188 µmol/g), with the carboxylic groups present as carboxylic acids, but competitive in terms of environmental sustainability, especially when renewable energy sources are available. The nanocelluloses obtained by the two oxidation methods differ in morphology and have different application prospects.


Subject(s)
Benzenesulfonates , Pennisetum , Cyclic N-Oxides , Cellulose , Carboxylic Acids
16.
J Hazard Mater ; 463: 132908, 2024 02 05.
Article in English | MEDLINE | ID: mdl-37924703

ABSTRACT

The widely used 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) has gained growing attention in advanced oxidation processes (AOPs), whereas there was limited knowledge regarding the feasibility of ABTS in enhancing heterogeneous Fenton oxidation so far. Hereof, ABTS was introduced into the chalcopyrite (CuFeS2)- catalyzed heterogeneous Fenton oxidation process to degrade diclofenac (DCF), and the degradation efficiency was enhanced by 25.5% compared with CuFeS2/H2O2 process. The available reactive oxygen species (ROS) and the enhanced mechanism were elaborated. Experimental results uncovered that •OH was the dominant reactive species responsible for the DCF degradation in the CuFeS2/H2O2/ABTS process, and ABTS•+ was derived from both •OH and Fe(IV). The presence of ABTS contributed significantly to the redox cycle of surface Fe of CuFeS2, and the roles of reductive sulfur species and surface Cu(I) in promoting surface Fe cycling also could not be neglected. In addition, the effects of several influencing factors were considered, and the potential practicability of this oxidation process was examined. The results demonstrate that the CuFeS2/H2O2/ABTS process would be a promising approach for water purification. This study will contribute to the development of enhancing strategies using ABTS as a redox mediator for heterogeneous Fenton oxidation of pharmaceuticals.


Subject(s)
Hydrogen Peroxide , Water Pollutants, Chemical , Diclofenac , Oxidation-Reduction , Catalysis
17.
Water Res ; 250: 121072, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38150858

ABSTRACT

Sewage sludge (SS) pyrolysis to produce biochar is a vital approach for treating and utilizing SS, while reducing the carbon footprint of SS disposal. However, the high inorganic content in SS results in low carbon content and underdeveloped pore structure of biochar prepared under inert atmospheres. There is a significant risk of secondary pollutant emissions, including CO2, SO2, and NOx. In this study, we propose an innovative approach that utilizes excess molten salts, specifically a Li-Na-K molten carbonate (MC) and a Li-Na-K molten chloride (MCH), to create a medium-temperature liquid phase reaction environment (500 °C) for SS pyrolysis. This environment promotes the functional enhancement of biochar (SSB-MC and SSB-MCH) and in-situ absorption of secondary pollutants. The pore structure of SSB-MC and SSB-MCH are greatly optimized. Thanks to the dissolution of calcium-silicon-aluminum-based minerals by molten salt, the carbon content is also significantly increased. The increased specific surface area and surface-enriched functional groups (O, N, P, etc.) of SSB-MC result in greatly enhanced adsorption performance for Rhodamine B (27.9 to 89.1 mg g-1). SSB-MCH, due to the increased iron and phosphorus doping, also exhibits enhanced Fenton oxidation capability. Life cycle assessments demonstrate that the molten salt processes effectively reduce the carbon footprint, energy consumption, and environmental impact.


Subject(s)
Environmental Pollutants , Sewage , Sewage/chemistry , Wastewater , Carbon Footprint , Charcoal/chemistry , Carbon , Sodium Chloride , Carbonates
18.
Int J Biol Macromol ; 253(Pt 5): 126995, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37802432

ABSTRACT

Starch is a highly attractive carbohydrate in the production for the preparation of adhesives in recent years, due to its widespread availability, renewability, and abundance of reactive hydroxyl groups. However, the mechanical properties, hydrophobicity, self-adhesion, and particularly high energy efficiency are generally unsatisfactory for current starch-based adhesives. On this premise, starch was oxidized using Fenton's reagent in a ""one-pot cooking" process. The prepared oxidized starch was chain expanded by polyvinyl alcohol (PVA) and then cross-linked with a 10 % isocyanate (PM-200) to fabricate a starch-based adhesive (SFA) with a network crosslinked structure. SF12A35%/2.5-55 adhesive shows significantly higher wet shear strength (1.18 MPa), a remarkable 94 % increase compared to SF0A35%/2.5-55. The adhesive film also demonstrates both hydrophobicity (99° contact angle) and exceptional energy efficiency, with a DSC test revealing a notable 10 % elevation in energy efficiency. In addition, the crosslinked structure increases its molecular weight, thereby increasing its self-adhesion (Fig. S1). This study opens up new possibilities for the design and manufacture of multifunctional starch-based adhesives.


Subject(s)
Adhesives , Starch , Adhesives/chemistry , Oxidation-Reduction , Starch/chemistry , Oxidative Stress
19.
Chemosphere ; 343: 140268, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37758073

ABSTRACT

This study aims to explore the reusability of wastewater treatment by-product for photo-Fenton process to treat an organic pollutant model. The optimal condition, reactive oxygen species (ROS), and kinetic approach in photo-Fenton process was discussed. The Metal oxide crystal pellets from are a by-product of the Fluidized-Bed Crystallization (FBC) process and can be used as a catalyst in the Photo-Fenton process. Electroplating wastewater containing iron and copper was treated via the FBC process using granulated Al(OH)3 as carrier seeds. The binary oxide of FeOOH and Cu2O on the Al(OH)3 surface (Fe0.66Cu0.33@Al(OH)3) was identified as the FBC by-product after characterization using FTIR and XPS analysis. In the photo-Fenton process, visible light from a fluorescence lamp with a wavelength of 400-610 nm was chosen as an irradiation source. Oxalic acid was added as chelating agent to form photosensitive iron oxalate species and hydrogen peroxide was applied as oxidant to generate active radical to decolorize and mineralize RB5 synthesized solution (100 mg/L). The operating conditions including the oxalic acid to pollutant ratio ([OA]0/[RB5]0) of 4.5-13.0, reaction pH (pHr) of 3-7 and initial to theoretical hydrogen peroxide molar ratio [H2O2]0/[ H2O2]theoretical of 35%-120% were optimized. Under the optimal conditions, pHr = 5.0; [H2O2]0/[RB5]0 at 75% stoichiometric and [OA]0/[RB5]0 = 9, the RB5 is almost completely decolorized after 210 min of operation and the mineralization efficiency is 58%. The contribution of •OH, O2•-, and O21 to the Photo-Fenton system was determined using ESR analysis with the addition of DMPO and TEMP as spin trap agents. The kinetic analysis reveals the observed rate constants kRB5, kOA and kR from fitting are 0.0120, 0.0054 and 0.0001 M-1s-1, respectively.


Subject(s)
Environmental Pollutants , Hydrogen Peroxide , Hydrogen Peroxide/chemistry , Copper , Azo Compounds , Kinetics , Light , Oxides/chemistry , Oxalic Acid , Oxidation-Reduction
20.
ACS Appl Bio Mater ; 6(8): 3291-3308, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37543951

ABSTRACT

The constant increase in the human population drives the demand for food supply and thereby increasing the food wastage dramatically all over the world. Especially, around 60% of banana biomass has been generated as inedible domestic waste. Herein, we successfully employed banana waste as a catalyst for Fenton's oxidation reaction. The biomass-derived catalysts were subjected to various characterization techniques such as XRD, ATR-FTIR, confocal Raman spectroscopy, and XPS, XRF, BET, SEM, and TEM analyses. The XRD results revealed that, after carbonization of the dried banana bract material, a perloffite-like metal oxide phase was formed due to the aerial oxidation reaction. Characterization results of Raman and ATR-FTIR confirm that the carbonized catalyst possesses a layer-like structure with different types of functional groups. The calcium, magnesium, potassium, sodium, and iron are the dominating metal species in the resultant material, which was evident from the XRF and EDAX analyses. The carbonized banana bract catalyst is successfully utilized for the Fenton's oxidation reaction at neutral pH. The experimental results showed that the degradation efficiency of the fresh catalyst was 95% in 4 h of reaction time, and the stability of the catalyst was retained up to nine consecutive cycles. The high activity of MB, methylene blue, is mainly attributed to the strong interaction between oxy functional groups of the catalyst and MB molecule as compared to RhB. Further, the calculated efficiency of the hydrogen peroxide was found to be 99% and the self-decomposition of hydrogen peroxide by the formed metal oxides was highly limited.


Subject(s)
Hydrogen Peroxide , Refuse Disposal , Humans , Hydrogen Peroxide/chemistry , Waste Disposal, Fluid/methods , Carbon , Food , Oxidation-Reduction , Coloring Agents/chemistry , Iron/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...