Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.590
Filter
1.
Article in English | MEDLINE | ID: mdl-39230249

ABSTRACT

Porous spindle-knot structures have been found in many creatures, such as spider silk and the root of the soybean plant, which show interesting functions such as droplet collection or biotransformation. However, continuous fabrication of precisely controlled porous spindle-knots presents a big challenge, particularly in striking a balance among good structural controllability, low-cost, and functions. Here, we propose a concept of a fiber-microfluidics phase separation (FMF-PS) strategy to address the above challenge. This FMF-PS combines the advantages of a microchannel regulated Rayleigh instability of polymer solution coated onto a fiber with the nonsolvent-induced phase separation of the polymer solution, which enables continuous and cost-effective production of porous spindle-knot fiber (PSKF) with well-controlled size and porous structures. The critical factors controlling the geometry and the porous structures of the spindle-knot by FMF-PS have been systematically investigated. For applications, the PSKF exhibited faster water droplet nucleation, growth, and maximum water collection capability, compared to the control samples, as revealed by in situ water collection growth curves. Furthermore, high-level fabrics of the PSKFs, including a two-dimensional network and three-dimensional architecture, have been demonstrated for both large-scale water collection and art performance. Finally, the PSKF is demonstrated as a programmable building block for surface nanopatterning.

2.
J Exp Biol ; 227(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39221623

ABSTRACT

Development of the heart is a very intricate and multiplex process as it involves not only the three spatial dimensions but also the fourth or time dimension. Over time, the heart of an embryo needs to adapt its function to serve the increasing complexity of differentiation and growth towards adulthood. It becomes even more perplexing by expanding time into millions of years, allocating related species in the tree of life. As the evolution of soft tissues can hardly be studied, we have to rely on comparative embryology, supported heavily by genetic and molecular approaches. These techniques provide insight into relationships, not only between species, but also between cell populations, signaling mechanisms, molecular interactions and physical factors such as hemodynamics. Heart development depends on differentiation of a mesodermal cell population that - in more derived taxa - continues in segmentation of the first and second heart field. These fields deliver not only the cardiomyocytes, forming the three-dimensionally looping cardiac tube as a basis for the chambered heart, but also the enveloping epicardium. The synchronized beating of the heart is then organized by the conduction system. In this Review, the epicardium is introduced as an important player in cardiac differentiation, including the conduction system.


Subject(s)
Biological Evolution , Heart Conduction System , Hemodynamics , Pericardium , Vertebrates , Animals , Pericardium/physiology , Pericardium/embryology , Vertebrates/physiology , Heart Conduction System/physiology , Heart/physiology , Heart/embryology
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125104, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39260240

ABSTRACT

A novel method for the rapid identification of hemp fibers is proposed in this paper, utilizing terahertz time-domain spectroscopy (THz-TDS) combined with the LargeVis (LV) dimensionality reduction technique. This approach takes advantage of the strengths of THz-TDS while enhancing classification accuracy through LV. To verify the efficacy of this method, terahertz absorption spectral data from three types of hemp fibers were processed. The THz absorption spectra were initially preprocessed using Hanning filtering. Following this, the filtered data underwent dimensionality reduction through three distinct methods: linear Principal Component Analysis (PCA), nonlinear t-Distributed Stochastic Neighbor Embedding (t-SNE), and the LV method. This sequence of steps resulted in a two-dimensional feature data matrix derived from the THz source spectral data. The resultant feature data matrices were then input into both K-Nearest Neighbors (KNN) and Decision Tree (DT) classifiers for analysis. The classification accuracies of six models were evaluated, revealing that the LV-KNN model achieved a 86.67% accuracy rate for the three hemp fiber types. Impressively, the LV-DT model achieved a perfect 100.00% accuracy rate for the same fibers. The LV-DT model, when integrated with THz spectroscopy technology, offers a quick and precise method for identifying various types of hemp fibers. This development introduces an innovative optical measurement scheme for the characterization of textile materials.

4.
Sci Total Environ ; : 176160, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39260475

ABSTRACT

Microplastics (MPs) are an anthropogenic emerging pollutant, with global contamination of both marine and freshwater systems extensively documented. The interplay of MP particle properties and environmental conditions needs to be understood in order to assess the environmental fate and evaluate mitigation measures. In cold climate, ice formation has appeared to significantly affect the distribution of MPs, but so far, limited research is available comparing different aquatic systems, especially freshwater. Experiments often rely on artificial water and specific MP model particles. This study used laboratory tests to investigate the ice-water distribution of a variety of environmentally relevant MP particle types (PP, PE, PS and PVC fragments (25-1000 µm), PET fibers (average length 821 µm, diameter 15 µm)) across different water types, including artificial water of high and low salinity, as well as natural water from a lake and a treatment wetland. Overall, ice entrapment of MPs occurred in almost all tests, but the ice-water distribution of MPs differed across the different water types tested. Among the tests with artificial water, salinity clearly increased MP concentrations in the ice, but it cannot be resolved whether this is caused by increased buoyancy, changes in ice structure, or thermohaline convection during freezing. In the natural freshwater tests, the partition of MPs was shifted towards the ice compared to what was seen in the artificial freshwater. The influence of different types of dissolved and particulate substances in the different waters on MPs fate should be considered important and further explored. In this study, the higher content of suspended solids in the lake water might have enhanced MP settling to the bottom and thereby contributed to the absence of MPs in the ice of the lake test, compared to the wetland test with low suspended solids and considerably more MPs in the ice. Furthermore, the higher negative charge in the lake water possibly stabilized the negatively charged MPs in suspension, and reduced ice entrapment. Regarding particle properties, shape had a distinct effect, with fibers being less likely incorporated into ice than fragments. No fibers were found in freshwater ice. However, it became clear that ice entrapment of MPs depends on factors other than the particles' buoyancy based on density differences and particle size and shape alone.

5.
Int J Biol Macromol ; : 135476, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39260646

ABSTRACT

Cellulose nanofiber (CNF) has been widely used in MXene film electrodes to improve its mechanical properties and rate capability for supercapacitors. However, all the above enhancements are obtained with inevitably sacrificing the capacitance, because of the non-electrochemically-active characteristic of CNF. Herein, to address this issue, lignin-containing cellulose fibers (LCNF) is innovatively used to substitute CNF. Specifically, LCNF play a role as a bridge to significantly reinforce mechanical strength of LCNF/MXene film electrode (LM) by binding the adjacent MXene nanosheets, reaching a tensile strength of 34.2 MPa. Lignin in LCNF contributes to pseudocapacitance through the reversible conversion of its quinone/hydro-quinone (Q/QH2), thus yielding an excellent capacitance of 364.4 F g-1 at 1 A g-1. Meanwhile, LCNF has different diameters in which microfibers form a loose structure for LM, nanofibers enlarge d-spacing between adjacent MXene nanosheets, and fibers self-crosslinking creates abundant pores, thus constructing graded channels to achieve an outstanding rate capability of 87 % at 15 A g-1. The fabricated supercapacitor demonstrates a large energy density of 1.8 Wh g-1 at 71.3 W g-1. This work provides a promising approach to decouple the trade-off between electrochemical performance and mechanical properties of MXene film electrodes caused by using CNF, thus obtaining high-performance supercapacitors.

6.
Crit Rev Food Sci Nutr ; : 1-23, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264366

ABSTRACT

The human gastrointestinal microbiota, densely populated with a diverse array of microorganisms primarily from the bacterial phyla Bacteroidota, Bacillota, and Actinomycetota, is crucial for maintaining health and physiological functions. Dietary fibers, particularly pectin, significantly influence the composition and metabolic activity of the gut microbiome. Pectin is fermented by gut bacteria using carbohydrate-active enzymes (CAZymes), resulting in the production of short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate, which provide various health benefits. The gastrointestinal microbiota has evolved to produce CAZymes that target different pectin components, facilitating cross-feeding within the microbial community. This review explores the fermentation of pectin by various gut bacteria, focusing on the involved transport systems, CAZyme families, SCFA synthesis capacity, and effects on microbial ecology in the gut. It addresses the complexities of the gut microbiome's response to pectin and highlights the importance of microbial cross-feeding in maintaining a balanced and diverse gut ecosystem. Through a systematic analysis of pectinolytic CAZyme production, this review provides insights into the enzymatic mechanisms underlying pectin degradation and their broader implications for human health, paving the way for more targeted and personalized dietary strategies.

7.
Heliyon ; 10(16): e35885, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39224272

ABSTRACT

High-energy gamma rays produced in inertial confinement fusion (ICF) experiments are crucial for studying implosion dynamics. These gamma rays, characterized by their extremely short durations, represent the least disturbed products of fusion, preserving vital birth information. To detect such γ-rays, ultrafast radiation detectors with high time resolution are necessary. This study introduces a newly developed Cherenkov optical image screen designed for ultra-fast gamma-ray imaging. Composed of pure quartz fiber material, the imaging screen features a single fiber pixel size of 0.6 mm and a thickness of 3 cm. Theoretical investigations explore the luminous time response and efficiency of the Cherenkov optical imaging screen under gamma-ray irradiation. Experimental validation was conducted using a steady-state gamma-ray source with an average energy of 1.25 MeV. Results demonstrate that the image screen achieves a spatial resolution limit of 0.75 mm. The temporal response exhibits a full width at half maximum of less than 0.4 ns when excited by a high-energy electron beam with a single pulse duration of several picoseconds.

8.
Biomater Adv ; 165: 214018, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39226677

ABSTRACT

A high vascular patency was realized in the bulk or surface heparinized small-diameter in situ tissue-engineered vascular grafts (TEVGs) via a rabbit carotid artery replacement model in our previous studies. Those surface heparinized TEVGs could reduce the occurrence of aneurysms, but with a low level of the remodeled elastin, whereas those bulk heparinized TEVGs displayed a faster degradation and an increasing occurrence of aneurysms, but with a high level of the regenerated elastin. To combine the advantages of the bulk and surface graft heparinization to boost the remodeling of elastin and defer the occurrence of aneurysms, a coaxial electro-spinning technique was used to fabricate a kind of small-diameter core/shell fibrous structural in situ TEVGs with a faster degradable poly(lactic-co-glycolic acid) (PLGA) as a core layer and a relatively lower degradable poly(ε-caprolactone) (PCL) as a shell layer followed by the surface heparinization. The in vitro mechanical performance and enzymatic degradation tests revealed the resulting PLGA@PCL-Hep in situ TEVGs possessing not only a faster degradation rate, but also the mechanical properties comparable to those of human saphenous veins. After implanted in the rat abdominal aorta for 12 months, the good endothelialization, low inflammation, and no calcification were evidenced. Furthermore, the neointima layer of regenerated new blood vessels was basically constructed with a well-organized arrangement of elastin and collagen proteins. The results showed the great potential of these in situ TEVGs to be used as a novel type of long-term small-diameter vascular grafts.

9.
Sci Rep ; 14(1): 20844, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242721

ABSTRACT

Concrete is used worldwide as a construction material in many projects. It exhibits a brittle nature, and fibers' addition to it improves its mechanical properties. Polypropylene (PP) fibers stand out as widely employed fibers in concrete. However, conventional micro-PP fibers pose challenges due to their smooth texture, affecting bonding within concrete and their propensity to clump during mixing due to their thin and soft nature. Addressing these concerns, a novel type of PP fiber is proposed by gluing thin fibers jointly and incorporating surface indentations to enhance mechanical anchorage. This study investigates the incorporation of macro-PP fibers into high-strength concrete, examining its fresh and mechanical properties. Three different concrete strengths 40 MPa, 45 MPa, and 50 MPa, were studied with fiber content of 0-1.5% v/f. ASTM specifications were utilized to test the fresh and mechanical properties, while the RILEM specifications were adopted to test the bond of bar reinforcements in concrete. Test results indicate a decrease in workability, increased air content, and no substantial shift in fresh concrete density. Hardened concrete tests, adding macro-PP fibers, show a significant increase in splitting tensile strength, bond strength, and flexural strength with a maximum increase of 34.5%, 35%, and 100%, respectively. Concrete exhibits strain-hardening behavior with 1% and 1.5% fiber content, and the flexural toughness increases remarkably from 2.2 to 47.1. Thus, macro PP fibers can effectively improve concrete's mechanical properties and resistance against crack initiation and spread.

10.
Carbohydr Polym ; 344: 122501, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39218540

ABSTRACT

Cellulose-based aerogel fibers are recognized as a promising candidate for wearable thermal insulation textiles due to their high porosity, extremely low thermal conductivity, and environmental friendliness. Unfortunately, their practical application in textiles is severely limited by their brittleness. Herein, a novel "long yarn-assisted interfacial polyelectrolyte complexation (YAIPC) spinning" technique is proposed to fabricate cellulose-based aerogel fibers with a unique core-shell structure. The as-prepared core-shell aerogel fibers show excellent thermal insulation performance (34.3 mW m-1 K-1) and robust mechanical strength (∼100 MPa, 31.5 MJ m-3), providing great potential as wearable thermal insulating materials. Accordingly, our research would open a new avenue for designing and constructing wearable aerogel fibers and textiles.

11.
Carbohydr Polym ; 344: 122523, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39218546

ABSTRACT

Cellulose laminates represent a remarkable convergence of natural materials and modern engineering, offering a wide range of versatile applications in sustainable packaging, construction, and advanced materials. In this study, novel all-cellulose laminates are developed using an environmentally friendly approach, where freshly regenerated cellulose II films are stacked without the need for solvents (for impregnation and/or partial dissolution), chemical modifications, or resins. The structural and mechanical properties of these all-cellulose laminates were thoroughly investigated. This simple and scalable procedure results in transparent laminates with exceptional mechanical properties comparable to or even superior to common plastics, with E-modulus higher than 9 GPa for a single layer and 7 GPa for the laminates. These laminates are malleable and can be easily patterned. Depending on the number of layers, they can be thin and flexible (with just one layer) or thick and rigid (with three layers). Laminates were also doped with 10 wt% undissolved fibers without compromising their characteristics. These innovative all-cellulose laminates present a robust, eco-friendly alternative to traditional synthetic materials, thus bridging the gap between environmental responsibility and high-performance functionality.

12.
Sci Total Environ ; 953: 176000, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233080

ABSTRACT

Αirborne microplastics (MPs) are considered an important exposure hazard to humans, especially in the indoor environment. Deposition and clearance of MPs in the human respiratory tract (HRT) was investigated using the ExDoM2 dosimetry model, modified to incorporate the deposition and clearance of MPs fibers. Fiber deposition was calculated via the fiber equivalent aerodynamic diameter determined using their properties such as size, density and dynamic shape factor. Scenario simulations were performed for elongated particles of cylindrical (base) diameters 1 µm and 10 µm and aspect ratios (ratio of fiber length to base diameter) 3, 10 and 100. Modelling results showed that the highest fiber deposition occurred in the extra-thoracic region due to large particles (fiber cylindrical diameter dp > 0.1 µm), whereas particle length (via the aspect ratio) had an influence mainly on smaller base-diameter fibers (dp < 0.1 µm) that deposited predominantly in the alveolar region. The ExDoM2 dosimetry model was also used to calculate fiber deposition in the HRT using experimental data for microplastic fiber and fragment concentrations in different microenvironments. The highest deposited number dose (220 fibers) after a 24-hour exposure was calculated in the microenvironment (bus) that had the highest fiber concentration (17.3 ± 2.4 fibers/m3). After clearance, the majority (66.4 %) of the average deposited fiber mass was transferred from the respiratory tract to the esophagus via mucociliary clearance, 32.6 % was retained in the respiratory tract, 1 % passed into the blood, and a very small amount (0.0004 %) was transferred to the lymph nodes.

13.
Int J Biol Macromol ; 279(Pt 3): 135333, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39241997

ABSTRACT

Curcumin (Cur) and resveratrol (Rsv) have already been proposed for both anti-tumor and wound healing applications and contrasting results have been published regarding their anti- or pro-angiogenic activity; depending on the final application, an anti- or a pro-angiogenic activity is required. In the present study, a comparison of Cur and Rsv loaded electrospun fibers based on collagen and polycaprolactone (PCL) mixture was performed in order to make a contribution to understanding whether the two polyphenols have anti or pro-angiogenic activity. Despite their hydrophobic character, the two polyphenols affected morphology and wettability of the fibers, and Rsv-loaded fibers resulted larger and more quickly wettable. After hydration, collagen/PCL fibers loaded with both Cur and Rsv exhibited higher elongation and better deformation with respect to the unloaded fibers. Fourier transformed infrared spectroscopy and thermal analysis showed interactions between the polyphenols and collagen. Both fiber formulations resulted biocompatible with an increase of fibroblast number during 7 days of culture; confocal microscopy analyses demonstrated that Cur released by the fibers was internalized by the cells which remained vital and adherent. Chick embryo chorioallantoic membrane assay showed that both fibers had anti-angiogenic behavior, suggesting that an anti-cancer application more than a wound healing one could be envisaged.

14.
J Colloid Interface Sci ; 678(Pt B): 301-312, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39245020

ABSTRACT

Expanding the application field of polyolefin materials through functionalization has been a research hotspot in the past three decades. Here, a TiO2-supported anilinenaphthoquinone nickel catalyst was assembled and applied for in situ ethylene polymerization with high activity (>2000 kg mol-1h-1) to produce ultra-high molecular weight polyethylene (UHMWPE)/TiO2 composites with unique physicochemical performance. The UHMWPE/TiO2 composite films and fibers prepared by in-situ ethylene polymerization are superior to the samples from the blend system in issues such as TiO2 dispersibility, mechanical property, and photocatalytic degradability. The mechanical properties (strength up to 26.8 cN/dtex, modulus up to 1248.8 cN/dtex) of the obtained UHMWPE/TiO2 composite fibers are significantly improved with a very low dosage of TiO2 (as low as 1.4 wt‰). Moreover, UHMWPE/TiO2 composites obtained by coating Al2O3 and SiO2 on the surface of TiO2 not only retain the strong absorption of ultraviolet rays, but also effectively weaken the photocatalytic degradation effect.

15.
Int J Biol Macromol ; : 135425, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39245113

ABSTRACT

Most conventional wound dressings do not meet the clinical requisites owing to their limited multifunctionality. Herein, a bilayer wound dressing containing both hydrogel and fibrous structures with multifunctional features was developed for effective skin rehabilitation. Sodium alginate (SA)/gelatin (Gel) hydrogel comprising Matricaria chamomilla L extract and silver sulfadiazine (AgSD) drug as antibacterial agents was cross-linked using genipin and CaCl2. Then, the surface of the hydrogel was covered by electrospun polyacrylonitrile (PAN) nanofibers to fabricate a bilayer dressing. FESEM images revealed formation of continuous, smooth, and bead-free PAN nanofibers with excellent compatibility between hydrogel and fibers. The bilayer wound dressing exhibited satisfactory mechanical virtues including elastic modulus (2.4 ±â€¯0.2 MPa), tensile strength (6.2 ±â€¯0.5 MPa) and elongation at break (21.8 ±â€¯1 %) as well as suitable swelling ratio. Such bilayer dressing revealed biodegradability, cytocompatibility and effective antibacterial performance against gram positive and gram negative strains. Release kinetics of AgSD drug followed a Fickian diffusion mechanism, ensuring sustained drug release. In vivo studies demonstrated bilayer dressing could promote rate of wound closure, re-epithelialization and collagen deposition, facilitating the replacement of damaged skin with healthy tissue. Such engineered wound dressing has a high potency for inducing skin repair and could be used in skin tissue engineering.

16.
Int J Biol Macromol ; 279(Pt 3): 135284, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233156

ABSTRACT

Rhododendron ponticum (R. ponticum), a rapidly spreading invasive species in Ireland, was investigated for its potential use in creating sustainable bioproducts. This study explored the utilization of R. ponticum biomass as a source of microfibrillated cellulose (MFC) for fungal cultivation. The production of MFC was evaluated employing a novel cryocrushing treatment combined with a twin-screw extruder (TSE). The results demonstrated a significant increase in film strength, up to 332.3 MPa, with increasing TSE steps compared to 72.5 MPa in untreated samples. X-ray diffraction (XRD) analysis revealed a decrease in crystallinity from 68.93 % to 59.2 %, following cryocrushing and TSE treatment. Additionally, MFC subjected to the highest TSE treatment (12 steps) was successfully used as a substrate for cultivating Agaricus blazei mushrooms using 0.2 wt%, 0.5 wt%, and 1 wt% MFC over a period of 7 days. Fourier-transform infrared spectroscopy (FTIR) confirmed the presence of chitin/chitin glucan within the fungal fibers. This research highlights the potential for transforming the invasive R. ponticum into valuable biocomposite materials. These MFC-fungus composites hold promise for various applications, including sustainable packaging, biodegradable plastics, and eco-friendly textiles.

17.
Anat Sci Int ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256283

ABSTRACT

Despite advancements in automatic approaches for histomorphometry analysis of peripheral nerves, manual and semi-automated methods are widely utilized. Standard software functions are often unsuitable for analysis due to their irregular shapes, especially in pathological conditions. This study aims to assess the reproducibility of nerves morphometric analysis and compare results obtained using both default and new alternative algorithms. Sciatic nerves from Wistar rats (untreated and after administration of intraperitoneal hydrargyrum chloride), previously embedded in resin, were used. Morphometric analysis (diameters, myelin thickness, g-ratio, and circularity) was conducted using ImageJ on semithin sections, with axon and myelin boundaries manually outlined. Default diameters were calculated as the mean of Feret diameters, with subsequent calculations for myelin thickness and g-ratio. The alternative approach estimated diameters based on the geometric center of axons, iterating through selected coordinates; myelin thickness was obtained using line equations. In the control group, inter-rater agreement was higher or within expected reliability (0.8 ± 0.05). However, in the experimental group, myelin thickness, g-ratio, and axon circularity showed lower agreement (0.66, 0.58, and 0.68, respectively) without visible patterns on Bland-Altman plots. The alternative approach did not reveal significant differences between approaches, except for g-ratio in the control group and fiber diameter in the experimental group (p < 0.05), with effect sizes of 0.29-0.30 and 0.19-0.20, respectively. This study highlights reduced agreement among investigators analyzing nerve fibers under pathological conditions, raising concerns about the current standard measurement methods. The proposed approach, based on a single geometric center, provides more natural estimations for irregular fibers, and can be implemented in automated nerve fibers acquisition systems.

18.
J Biomater Sci Polym Ed ; : 1-14, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140253

ABSTRACT

Bone defects and injuries are common, and better solutions are needed for improved regeneration and osseointegration. Bioresorbable membranes hold great potential in bone tissue engineering due to their high surface area and versatility. In this context, polymers such as poly(lactic-co-glycolic acid) (PLGA) can be combined with osteoconductive materials like hydroxyapatite (HA) nanoparticles (NPs) to create membranes with enhanced bioactivity and bone regeneration. Rotary Jet spinning (RJS) is a powerful technique to produce these composite membranes. This study presents an innovative and efficient method to obtain PLGA-HA(NPs) membranes with continuous fibers containing homogeneous HA(NPs) distribution. The membranes demonstrated stable thermal degradation, allowing HA(NPs) quantification. In addition, the PLGA-HA(NPs) presented osteoconductivity, were not cytotoxic, and had high cell adhesion when cultured with pre-osteoblastic cells. These findings demonstrate the potential of RJS to produce PLGA-HA(NPs) membranes for easy and effective application in bone regeneration.

19.
ChemSusChem ; : e202401178, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39108218

ABSTRACT

Lithium-sulfur (Li-S) batteries are considered promising energy-storage systems because of their high theoretical energy density, low cost, and eco-friendliness. However, problems such as the shuttle effect can result in the loss of active materials, poor cyclability, and rapid capacity degradation. The utilization of a structural configuration that enhances electrochemical performance via dual adsorption-catalysis strategies can overcome the limitations of Li-S batteries. In this study, an integrated interlayer structure, in which hollow carbon fibers (HCFs) were modified with in-situ-generated Ni nanoparticles, was prepared by scalable one-step carbonization. Highly hierarchically porous HCFs act as the carbon skeleton and provide a continuous three-dimensional conductive network that enhances ion/electron diffusion. Ni nanoparticles with superior anchoring and catalytic abilities can prevent the shuttle effect and increase the conversion rate, thereby promoting the electrochemical performance. This synergistic effect resulted in a high capacity retention of 582 mAh g-1 at 1 C after 100 cycles, providing an excellent rate capability of up to 3 C. The novel structure, wherein Ni nanoparticles are embedded in cotton-tissue-derived HCFs, provides a new avenue for enhancing electrochemical performance at high C rates. This results in a low-cost, sustainable, and high-performance hybrid material for the development of practical Li-S batteries.

20.
Adv Sci (Weinh) ; : e2406742, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120009

ABSTRACT

Reactive astrogliosis is the main cause of secondary injury to the central nerves. Biomaterials can effectively suppress astrocyte activation, but the mechanism remains unclear. Herein, Differentially Expressed Genes (DEGs) are identified through whole transcriptome sequencing in a mouse model of spinal cord injury, revealing the VIM gene as a pivotal regulator in the reactive astrocytes. Moreover, DEGs are predominantly concentrated in the extracellular matrix (ECM). Based on these, 3D injectable electrospun short fibers are constructed to inhibit reactive astrogliosis. Histological staining and functional analysis indicated that fibers with unique 3D network spatial structures can effectively constrain the reactive astrocytes. RNA sequencing and single-cell sequencing results reveal that short fibers downregulate the expression of the VIM gene in astrocytes by modulating the "ECM receptor interaction" pathway, inhibiting the transcription of downstream Vimentin protein, and thereby effectively suppressing reactive astrogliosis. Additionally, fibers block the binding of Vimentin protein with inflammation-related proteins, downregulate the NF-κB signaling pathway, inhibit neuron apoptosis, and consequently promote the recovery of spinal cord neural function. Through mechanism elucidation-material design-feedback regulation, this study provides a detailed analysis of the mechanism chain by which short fibers constrain the abnormal spatial expansion of astrocytes and promote spinal cord neural function.

SELECTION OF CITATIONS
SEARCH DETAIL