Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.131
Filter
1.
J Sci Food Agric ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360957

ABSTRACT

This review describes some processes for converting plantain pulp into flour and semolina and the influences that operating conditions can have on some of the technological characteristics (functional and pasting) of this flour. Some traditional African dishes that can be prepared with plantain flour are also presented. A literature review was conducted using a list of keywords and expressions on platforms such as Google, Google Scholar, and ResearchGate. The results show that work carried out to date has mainly focused on a few well known traditional bakery products such as bread, cakes, and biscuits. There has been relatively little research on transforming plantain pulp into flour as part of the preparation of traditional African dishes such as foutou or amala. This work has often been carried out in the laboratory, without any link to local artisanal processes or knowledge of consumer preferences. There is a need to standardize local culinary practices for processing plantain into flour or semolina. The data from this review opens the door for applied research into innovative technological procedures for processing plantain to add value to local dishes adapted to new urban lifestyles, to meet local consumer needs, and to reduce post-harvest losses. © 2024 Society of Chemical Industry.

2.
J Food Sci ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39363216

ABSTRACT

Plant-based yogurt alternatives (YAs) are in demand due to the societal prevalence of milk sensitivities and allergies and some consumers abstaining from animal-derived products. Producing rice flour YAs has considerable potential because rice flour is hypoallergenic, more economical compared to plant milks, and there are no commercial rice-based YAs. A new higher protein variety of rice was developed, Frontière, which is sold as both brown and white rice. Therefore, the overall goals of this study were (1) to compare physicochemical properties of YAs from Frontière brown (Frontière brown rice flour [FBRF]) and white (Frontière white rice flour [FWRF]) high-protein rice flours to regular protein level rice flours and (2) to evaluate the sensory quality of Frontière YAs compared to commercial plant-based oat yogurt. Rice flours were fermented with Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, and Lacticaseibacillus rhamnosus (a probiotic) to produce FBRF- and FWRF-YAs. A consumer study was conducted to compare FBRF- and FWRF-YAs to a commercially available oat-based YA. Consumers rated the YAs using 9-point hedonic and just-about-right (JAR) scales. Protein, fat, and ash levels were greater, whereas starch levels and peak viscosities were lower for BRFs than for WRFs. The use of BRF resulted in longer fermentation times but higher bacteria counts for YAs. FWRF-YA was preferred in terms of overall flavor and liking, sweetness, and tartness. Purchase intent (PI) for FWRF-YA increased 2.6 times after providing a health claim. This research showed that rice flour can be used to produce YAs with probiotic counts above the minimum recommended, which provides added health benefits for consumers. PRACTICAL APPLICATION: This research provides a possible new use of Frontière high-protein rice flour to produce plant-based yogurts. This will help the rice industry by adding value, and those who are vegan, allergic to casein, or lactose-intolerant will have another option for a plant-based yogurt. Moreover, the greater levels of probiotic bacteria found in the brown rice flour YAs can potentially provide greater health benefits, making brown rice flour a better choice for making rice-based YAs.

3.
Int J Biol Macromol ; 280(Pt 2): 135829, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306175

ABSTRACT

The development of environmental-friendly composite products from renewable resources has been considered as an excellent approach to address the negative impact of petroleum-based plastics on environment. Konjac flour (KF), as an excellent polysaccharide material, has a broad application in food field. It shows a promising future in the film field due to its excellent film-forming properties. In this work, KF was selected as primary film-forming matrix, and dialdehyde starch (DAS) as the reinforcing component. A series of KF/DAS composite films were prepared by adjusting the addition ratio of DAS component. Then, their physical and mechanical properties were characterized and analyzed. The results showed that KF/DAS composite film with 25 % DAS content exhibited the optimal mechanical properties, including tensile strength (TS) of 13.1 MPa and elongation at break (EAB) of 93.7 %, indicating that an excellent cross-linked system formed among KF and DAS utilizing the method described in this study. Furthermore, much evidences from the fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) confirmed that a strong chemical cross-linkages between DAS and KF via Schiff base and esterification reactions. Based on the thermogravimetry (TG) and scanning electron microscopy (SEM) results, KF/DAS composite films also had excellent thermal stability and a dense microstructure, although there are also changes with the DAS usage.

4.
Heliyon ; 10(18): e37628, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39309896

ABSTRACT

This study aimed to analyse the physicochemical, structural, functional, and thermal properties of flour from two indigenous Ethiopian Potato (Plectranthus edulis) varieties, Chanqua and Loffo, and to compare with wheat flour (WF). The study also investigated how oven and sun drying methods affected the physicochemical properties of the flours. The results demonstrated a significant distinction (p ≤ 0.05) between the flour samples and WF, attributable to variations in both the varieties and the drying methods except that no significant difference in pH was observed due to the varieties, and the fibre and ash content did not vary significantly with the drying methods. The moisture content (MC) of the flours ranged from 5.72 % in oven-dried Chanqua Ethiopian potato flour (OD-CEPF) to 7.53 % in sun-dried Loffo Ethiopian potato flour (SD-LEPF), both of which were lower compared to WF. The protein content varied from 4.47 % (SD-CEPF) to 5.93 % (OD-LEPF). FTIR tests revealed a significant impact on the structural changes, leading to variations in the location and intensity of infrared absorption peaks, particularly in sensitive regions. Whereas, the XRD patterns showed characteristic B-type diffraction, with a relative crystallinity (RC) of 31.97 % in CEPF and 30.53 % in LEPF having a significant difference (p ≤ 0.05) between them. LEPF had better flow properties than CEPF, with lower Hausner ratio (HR) (1.16 vs. 1.25), Carr's index (CI) (14.51 % vs. 20.26 %), and angle of repose (31.00° vs. 34.67°). It also showed significantly higher (p ≤ 0.05) water absorption capacity (WAC), oil absorption capacity (OAC) and swelling power (SP) properties than CEPF. The study also indicated notable distinctions in the thermal and paring properties of flours. The oven drying method was found to be superior in enhancing the physicochemical properties, with LEPF showing better physicochemical, functional, structural, and thermal properties than CEPF.

5.
Carbohydr Res ; 544: 109248, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39222593

ABSTRACT

This study aimed at optimizing process protocols for development of low glycemic index (GI) rice flour (LGIRF) by employing enzymatic hydrolysis method using central composite rotatable design (CCRD). LGIRF was evaluated for pasting, farinographic, spectroscopic and microbiological attributes. Independent variables for optimization included concentrations of α-amylase (0.02-0.12 %), glucoamylase (0.02-0.24 %), as well as the incubation temperature (55-80°C). Resistant starch (RS), glycemic index (GI) and glycemic load (GL) were investigated as response variables. The optimum conditions for development of LGIRF with better quality were- α-amylase concentration of 0.040 %, glucoamylase concentration of 0.070 % and an incubation temperature of 60 °C. The results of mineral analysis revealed significantly (p < 0.05) lower levels of boron, potassium, zinc, phosphorus, magnesium, and manganese in LGIRF, while iron and copper were significantly higher. The viscosity profile as evident from pasting profile and farinographic characteristics of LGIRF were significantly (p < 0.05) lower than native rice flour. 1H NMR and 13C NMR spectroscopic studies showed an increase in flexible starch segments and a decrease in amorphous portion of starch LGIRF, along with chemical shift alterations in carbons 1 and 4. Free fatty acids and total plate count were significantly (p < 0.05) higher in LGIRF although was within limits.


Subject(s)
Flour , Glucan 1,4-alpha-Glucosidase , Glycemic Index , Oryza , Rheology , alpha-Amylases , Oryza/chemistry , Hydrolysis , Flour/analysis , alpha-Amylases/metabolism , alpha-Amylases/chemistry , Glucan 1,4-alpha-Glucosidase/metabolism , Glucan 1,4-alpha-Glucosidase/chemistry , Starch/chemistry , Starch/metabolism
6.
J Food Sci ; 89(10): 6283-6295, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39218955

ABSTRACT

This study investigates the impact of aqueous ozone (AO) on the yield, molecular structure, and rheological properties of wheat gluten separated using the batter procedure. Employing strong gluten flour (SGF) and weak gluten flour (WGF), we demonstrate that AO pretreatment significantly enhances the yield and purity of separated starch and gluten. Surface hydrophobicity, free sulfhydryl groups, Fourier transform infrared spectroscopy (FTIR), Raman, and size exclusion-high-performance liquid chromatography (SE-HPLC) analyses were used to evaluate the effects of AO on the molecular structure of gluten. Our analysis reveals that low concentrations of AO induce specific modifications in gluten proteins. AO treatment increases cross-linking in glutenin macropolymer (GMP), reduces surface hydrophobicity, and stabilizes secondary and tertiary structures. These changes include an increase in ß-sheet content by approximately 9% and a corresponding decrease in ß-turn structures, leading to enhanced viscoelastic properties of the gluten. The research highlights AO's potential as a sustainable and efficient agent in wheat flour processing, offering advancements in both product quality and eco-friendly processing techniques. Future research should optimize AO treatment parameters and explore its effects on different cereal types further to enhance its applicability and benefits in food processing. PRACTICAL APPLICATION: Our work substantially advances the existing knowledge on wheat flour processing by demonstrating the multifaceted benefits of AO pretreatment. We unveil significant improvements in the yield and purity of starch and gluten when compared to conventional separation methods. Moreover, our in-depth analysis of molecular changes induced by AO, including increased cross-linking, alterations in surface hydrophobicity, and modifications in glutenin macropolymer content, provides new insights into how AO affects the viscoelastic properties of gluten. This contribution is pivotal for the development of more efficient, sustainable, and eco-friendly wheat flour processing technologies.


Subject(s)
Flour , Food Handling , Glutens , Hydrophobic and Hydrophilic Interactions , Ozone , Rheology , Triticum , Glutens/chemistry , Triticum/chemistry , Flour/analysis , Ozone/chemistry , Food Handling/methods , Spectroscopy, Fourier Transform Infrared/methods , Viscosity , Starch/chemistry
7.
ACS Appl Mater Interfaces ; 16(39): 52878-52893, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39301782

ABSTRACT

To realize the health benefits of probiotic bacteria, they must withstand processing and storage conditions and remain viable after use. The encapsulation of these probiotics in the form of microspheres containing tapioca flour as a prebiotic and vehicle component in their structure or shell affords symbiotic effects that improve the survival of probiotics under unfavorable conditions. Microencapsulation is one such method that has proven to be effective in protecting probiotics from adverse conditions while maintaining their viability and functionality. The aim of the work was to obtain high-quality microspheres that can act as carriers of Lactobacillus casei bacteria and to assess the impact of encapsulation on the viability of probiotic microorganisms in alginate microspheres enriched with a prebiotic (tapioca flour) and additionally coated with hyaluronic acid, chitosan, or gelatin. The influence of the composition of microparticles on the physicochemical properties and the viability of probiotic bacteria during storage was examined. The optimal composition of microspheres was selected using the design of experiments using statistical methods. Subsequently, the size, morphology, and cross-section of the obtained microspheres, as well as the effectiveness of the microsphere coating with biopolymers, were analyzed. The chemical structure of the microspheres was identified by using Fourier-transform infrared spectrophotometry. Raman spectroscopy was used to confirm the success of coating the microspheres with the selected biopolymers. The obtained results showed that the addition of tapioca flour had a positive effect on the surface modification of the microspheres, causing the porous structure of the alginate microparticles to become smaller and more sealed. Moreover, the addition of prebiotic and biopolymer coatings of the microspheres, particularly using hyaluronic acid and chitosan, significantly improved the survival and viability of the probiotic strain during long-term storage. The highest survival rate of the probiotic strain was recorded for alginate-tapioca flour microspheres coated with hyaluronic acid, at 5.48 log CFU g-1. The survival rate of L. casei in that vehicle system was 89% after storage for 30 days of storage.


Subject(s)
Alginates , Lacticaseibacillus casei , Manihot , Microspheres , Probiotics , Lacticaseibacillus casei/chemistry , Alginates/chemistry , Alginates/pharmacology , Probiotics/chemistry , Manihot/chemistry , Flour , Biopolymers/chemistry , Biopolymers/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Microbial Viability/drug effects , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology
8.
Genes (Basel) ; 15(9)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39336768

ABSTRACT

Wheat is used for making many food products due to its diverse quality profile among different wheat classes. Since laboratory analysis of these end-use quality traits is costly and time-consuming, genetic dissection of the traits is preferential. This study used a genome-wide association study (GWAS) of ten end-use quality traits, including kernel protein, flour protein, flour yield, softness equivalence, solvent's retention capacity, cookie diameter, and top-grain, in soft red winter wheat (SRWW) adapted to US southeast. The GWAS included 266 SRWW genotypes that were evaluated in two locations over two years (2020-2022). A total of 27,466 single nucleotide markers were used, and a total of 80 significant marker-trait associations were identified. There were 13 major-effect quantitative trait loci (QTLs) explaining >10% phenotypic variance, out of which, 12 were considered to be novel. Five of the major-effect QTLs were found to be stably expressed across multiple datasets, and four showed associations with multiple traits. Candidate genes were identified for eight of the major-effect QTLs, including genes associated with starch biosynthesis and nutritional homeostasis in plants. These findings increase genetic comprehension of these end-use quality traits and could potentially be used for improving the quality of SRWW.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/growth & development , Genome-Wide Association Study/methods , Phenotype , Polymorphism, Single Nucleotide , Flour , Genotype
9.
Food Sci Biotechnol ; 33(13): 3037-3046, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39220312

ABSTRACT

This study explores the impact of milling methods on the quality and noodle-making performance by comparing jet-milled (WF-JM) and ultra-centrifugally milled (WF-UM) purple-colored whole wheat flours. WF-JM exhibits smaller starch granules and a fragmented protein matrix attributed to the increased milling pressure. Physicochemical analyses reveal lower moisture and higher damaged starch in WF-JM. Rheological analyses show lower viscosity in the WF-JM blends. The mixograph results reveal weaker dough-mixing stability and strength for WF-JM. Cooked noodles from WF-JM are uneven, in contrast to uniform WF-UM strands. Blending WF-UM enhances noodle quality. Overall, the noodle-making performance for WF-JM was inferior compared to WF-UM, confirming the significantly negative impact of damaged starch and fragmented protein matrix in whole wheat flour than the positive effect of particle size. This study highlights the complex interplay between milling methods, particle size, and physicochemical attributes, providing insights for optimizing whole wheat flour processing and product quality.

10.
Plant Foods Hum Nutr ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222224

ABSTRACT

The use of new types of raw materials to improve the quality and nutritional value of products is an important trend in flour confectionery. Flour from extruded sunflower seed kernels (FESSK), the by-product of oil production, was used as a new ingredient in muffin formulation. Analysis of physicochemical and nutritional properties of muffins prepared with FESSK, which was added in the amounts of 5, 10, and 15% to the total weight of mixture of wheat and rye flours, as well as their sensory evaluation, were performed. According to the sensory evaluation, the muffins with FESSK had a pleasant, nutty and sunflower aroma, and the best results were shown by muffins with 10% of FESSK. Addition of FESSK, 10%, led to an increase of the content of protein by 24.7%, fat by 16.9%, fiber by 23.3%, ash by 16.9%, and a decrease of content of total carbohydrates by 5.2% and sugars by 16.2%. Enriched muffins had improved texture characteristics, particularly, smooth, crack-free surface, soft, and elastic crumb with well-developed porosity and small, evenly distributed, thin-walled pores. The FESSK could be recommended as an ingredient for improving the nutritional and technological properties of flour confectionery products.

11.
Front Nutr ; 11: 1435364, 2024.
Article in English | MEDLINE | ID: mdl-39229587

ABSTRACT

The intelligent senses (Electronic nose and tongue), were combined with headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) and free amino acid were used in combination to determine the aroma and taste components during the processing of Chinese traditional dish Steamed beef with rice flour (SBD). The findings revealed that E-nose and E-tongue, could clearly distinguish and identify the aroma and taste of SBD. A total of 66 volatile substances and 19 free amino acids were identified by HS-GC-IMS and amino acid analyzer, respectively. The highest contribution to aroma in the production of SBD was alcohols, esters and aldehydes. Further analysis of relative odor activity showed that 3-Methylbutanol-D, 3-Methylbutanol-M and 3-Methylthio propanal is the marinating stage (T2) main aroma components. Ethyl 3-methylbutanoate-M and Ethyl 3-methylbutanoate-D were the main aroma components in the seasoning stage (T3). Additionally, the calculation of the taste activity value showed that Glutamic contributed significantly to the umami of SBD. Alanine was a representative taste component in the marinating stage (T2), while Proline, Aspartic, Lysine, Glutamic, Valine, Arginine, and Histidine were characteristic amino acids of the seasoning stage (T3). Consequently, this study offers valuable insights into the industrial-scale production and flavor regulation of SBD products.

12.
Food Res Int ; 194: 114936, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232547

ABSTRACT

The volatile profiles of wheat flour during maturation were examined through headspace solid-phase micro-extraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) combined with electronic nose (E-nose) and electronic tongue (E-tongue) analyses. The wheat flour underwent maturation under three distinct conditions for predetermined durations. While GC/MS coupled with E-tongue exhibited discernment capability among wheat flour samples subjected to varying maturation conditions, E-nose analysis solely relying on principal component analysis failed to achieve discrimination. 83 volatile compounds were identified in wheat flour, with the highest abundance observed in samples matured for 50 d at 25 °C. Notably, trans-2-Nonenal, decanal, and nonanal were the main contributors to the characteristic flavor profile of wheat flour. Integration of HS-SPME-GC/MS with E-tongue indicated superior flavor development and practical viability in wheat flour matured for 50 d at 25 °C. This study furnishes a theoretical groundwork for enhancing the flavor profiles of wheat flour and its derivative products.


Subject(s)
Electronic Nose , Flour , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction , Taste , Triticum , Volatile Organic Compounds , Flour/analysis , Volatile Organic Compounds/analysis , Triticum/chemistry , Food Handling/methods , Principal Component Analysis , Odorants/analysis
13.
Food Res Int ; 194: 114941, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232551

ABSTRACT

The fate of Alternaria toxin tenuazonic acid (TeA) during the processing chain of wheat flour products was systemically evaluated. TeA was analyzed by liquid chromatography-mass spectrometry (LC-MS/MS) in wheat grains and the corresponding wheat flour products produced throughout the whole chain. The results indicated that TeA contamination in wheat grains largely determines the level of TeA toxin present in byproducts, semi-finished products, and finished products of the processing of four types of simulated processed wheat flour products (e.g., dry noodles, steamed breads, baked breads, and biscuits). The different food processing techniques had different effects on the fate of TeA. Wheat flour processing can reduce the TeA content in wheat grains by 58.7-83.2 %, indicating that wheat flour processing is a key step in reducing the TeA content in the food chain. Among the four types of wheat flour products, the decreases in TeA content in biscuits (69.8-76.7 %) were greater than those in dry noodles (15.5-22.3 %) and steamed breads (24.9-43.6 %). In addition, the decreasing effect of TeA was especially obvious in the wheat flour product chain with a high level of contamination. The processing factors (PFs) for TeA were as low as 0.20 for the four wheat processing methods and as high as 1.24 for the dry noodle processing method. At the average and 95th percentiles, dietary exposure to TeA in Chinese consumers including infants and young children did not exceed the relevant threshold value of toxicological concern (TTC) of TeA (1.5 µg/kg body weight per day), indicating an acceptable health risk for Chinese consumers via wheat flour products. These findings provide new insight into the fate of TeA in the food chain and mycotoxin control on the safety of wheat flour products and public health.


Subject(s)
Alternaria , Flour , Food Contamination , Food Handling , Tandem Mass Spectrometry , Tenuazonic Acid , Triticum , Tenuazonic Acid/analysis , Flour/analysis , Triticum/chemistry , Food Contamination/prevention & control , Food Contamination/analysis , Food Handling/methods , Mycotoxins/analysis , Humans , Chromatography, Liquid , Bread/analysis
14.
Animals (Basel) ; 14(17)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39272353

ABSTRACT

Olive oil coproducts and their phenolic extracts have shown beneficial effects when added to the diets of food-producing animals, whereas data on their effects on pets are scarce. The aim of this study was to evaluate the effects of dietary supplementation with olive flour (MOP®) on oxidative blood biomarkers in dogs. Thirty dogs were recruited and divided into two groups. Both groups were fed the same kibble feed twice daily. The treatment group (T) also received canned wet feed supplemented with 11.5 mg/kg of body weight of organic olive flour per day, whereas the control group (C) received the same wet feed without any supplementation. The findings showed that oil-free olive pulp flour supplementation led to a significant decrease in d-ROMs (p < 0.044) in the blood of the T group (from 101.26 to 86.67 U CARR), whereas no significant changes were observed in the C group. An increasing OXY trend was found in the blood of the T group. Polyphenols in olive flour at a dose of 11.5 mg/kg of body weight contributed to lowering the oxidative stress threshold in dogs, reducing the levels of d-ROMs in dogs and leading to increasing trends in the amount of blood antioxidants. The use of olive pulp flour in dog diets has proven to be beneficial for their health and could also reduce the waste associated with olive oil production.

15.
Foods ; 13(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39272419

ABSTRACT

Third-generation snacks were developed from a triad of flours made up of chestnut, spelt, and chickpea flour. Optimal snack formulations and processing parameters have been established to ensure acceptable workability of the raw dough while protecting the bioactive components of the raw materials. The parameters examined were mixing time, speed, and temperature. The properties of the snack were evaluated by analyzing the expansion ratio, hardness, moisture content, and phenolic and volatile compounds. The optimal mixing conditions that ensure maximum expansion were a temperature of 30 °C, a speed of 30 rpm, and a time of 6 min. The results showed that the proper percentage of water and sodium bicarbonate was 35% and 2%, respectively, and that the developed snacks had an alveolar and homogeneous structure. The proposed approach brings several advantages, including the preservation of bioactive compounds during the production process. Furthermore, the mild operating conditions prevented the development of unwanted or unpleasant compounds, as confirmed by the analysis of volatile compounds. Therefore, this study opens new perspectives in the food industry, satisfying the growing demand for functional products and healthy snacks.

16.
Food Chem X ; 23: 101770, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39280226

ABSTRACT

Chestnuts, despite their nutritional value, pose challenges in starch processing, digestion, and absorption. This study employed various color-fixing formulations and processing methods to simulate the in vitro digestion of both untreated and enzymatically hydrolyzed chestnut flour. Changes in starch properties, digestion characteristics, and estimated glycemic index (eGI) were analyzed to understand how enzymatic hydrolysis affects chestnut flour properties. The results showed that the browning of chestnut flour was the least when the mass ratio of vitamin C, citric acid, and EDTA-Na2 was 9:1:0.3. Following treatment with pullulanase and glucoamylase, the content of rapidly digestible starch decreased to 10 %, while the content of slowly digestible starch and resistant starch increased to 62 % and 27 %, respectively. The eGI value of chestnut flour after enzymatic hydrolysis increased to 61.85-65.14, the hydrolysis rate was 78.37 %-89.20 %, the water holding capacity was 5.3-8.6, the solubility was 51.33 %-58.33 %, and the swelling degree decreased to 2.21-3.33 mL/g.

17.
Article in English | MEDLINE | ID: mdl-39292336

ABSTRACT

The aim of this study is to determine the effect of the digestibility of cassava starch by the enzymes extracted from corn malt, which will constitute one of the answers to the problem of integrating local products into the process in a modern brewery. Cassava starch solutions of different concentrations (E0: 0 g/L; E1: 1 g/L; E2: 1.1 g/L; E3: 1.2 g/L; E4: 1.3 g/L; E5: 1.4 g/L and E6: 1.5 g/L) were prepared and subjected to two treatments (gelatinized and non-gelatinized) and 5 mL of each were placed in a test tube. Three millilitres (3 mL) of the solution containing amylases extracted from malt corn was then added to each of the test tubes containing the cassava flour solutions. All the treatments were subjected to three temperature stages (50 °C for 15 min, 90 °C for 20 min, and 100 °C for 75 min). Twenty-eight (28) objects (two duplicates) were experimented in a complete factorial design (2 treatments × 2 temperature levels). The results obtained showed that gelatinization had no effect, which could be due to the high optimum temperatures of corn enzyme activity. The concentrations also did not have significant differences which shows that these concentrations can well be used on an industrial scale to digest cassava starch by corn malt enzymes.

18.
Plant Foods Hum Nutr ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39292418

ABSTRACT

The extrusion process, a vital technique for starch modification, is notably influenced by the moisture content (MC). This study aimed to elucidate the effect of varying MC levels (18, 22, 26, and 30%) on the structural and physicochemical characteristics of cassava flour during extrusion. Extrusion resulted in the fraction of degree of polymerization 13‒24, degree of branching, and molecular weight increased with increasing MC, with values of above indexes being 32.29%, 1.05%, and 1.21 × 105 g/mol, respectively, at a MC of 18%. This suggested that the degradation of amylopectin and amylose. Additionally, there was an increase in rapidly digestible starch (RDS) and a decrease in slowly digestible starch (SDS) in the extrudates in comparison to the native cassava flour. The extrusion of cassava flour at 18% MC exhibited the highest levels of RDS and SDS, reaching 64.52% and 4.06%, respectively. These findings indicated that low moisture extrusion could be a more effective method for disrupting the structure of cassava starch and enhancing the digestibility of cassava flour, offering valuable insights for the optimized use of cassava extrudates in various applications.

19.
Nutrients ; 16(17)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39275338

ABSTRACT

Manihot esculenta (cassava) roots is a major food crop for its energy content. Leaves contain nutrients and demonstrate biological properties but remain undervalorized. In order to develop a bioguided optimization of cassava nutrition-health properties, we compared the phytochemistry and bioactive potential of cassava root flour extract (CF) with cassava flour extract enriched with 30% leaves powder (CFL). Cassava flour supplementation impact was explored on flour composition (starch, fiber, carotenoids, phenolic compounds), in vivo glycemic index, and bioactivity potential using macrophage cells. We assessed the impact of cassava flour supplementation on free radicals scavenging and cellular production of pro-inflammatory mediators. CFL showed higher levels of fiber, carotenoids, phenolic compounds, and lower glycemic index. Significantly higher bioactive properties (anti-inflammatory and antioxidant) were recorded, and inhibition of cytokines production has been demonstrated as a function of extract concentration. Overall, our results indicate that enrichment of cassava flour with leaves significantly enhances its nutrition-health and bioactive potential. This bioguided matrix recombination approach may be of interest to provide prophylactic and therapeutic dietary strategy to manage malnutrition and associated chronic non-communicable diseases characterized by low-grade inflammation and unbalanced redox status. It would also promote a more efficient use of available food resources.


Subject(s)
Antioxidants , Flour , Manihot , Plant Extracts , Plant Leaves , Manihot/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Plant Leaves/chemistry , Flour/analysis , Plant Extracts/pharmacology , Animals , Mice , Dietary Fiber/analysis , Dietary Fiber/pharmacology , Nutritive Value , Anti-Inflammatory Agents/pharmacology , Glycemic Index , RAW 264.7 Cells , Plant Roots/chemistry , Carotenoids/pharmacology , Carotenoids/analysis , Immunomodulating Agents/pharmacology , Phenols/analysis , Phenols/pharmacology , Immunologic Factors/pharmacology
20.
Food Res Int ; 195: 114957, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39277262

ABSTRACT

To reveal the effect of wheat flour particle size on the quality deterioration of quick-frozen dumpling wrappers (QFDW) during freeze-thawed (F/T) cycles, the components and physicochemical properties of wheat flours with five different particle sizes were determined and compared, along with the changes in texture and sensory properties, water status, and microstructure of QFDW during F/T cycles. Results showed that as particle size decreased, the damaged starch content and B-type starch content increased, the water absorption increased, and the gluten strength decreased. Furthermore, F/T cycles negatively impacted the quality of QFDW, evidenced by decreased texture properties and sensory evaluation score, water redistribution, higher freezable water content, and disruption of gluten network. Notably, QFDW made from larger particle size wheat flours required the shortest duration when traversing the maximum ice crystal formation zone. The QFDW made from larger particle size wheat flours formed a more stable starch-gluten matrix, which resisted the damage caused by ice recrystallization, demonstrating better water binding capacity and F/T resistance. The results may provide theoretical guidance for the study of QFDW quality and the moderate processing of wheat flour in actual production.


Subject(s)
Flour , Food Handling , Freezing , Glutens , Particle Size , Starch , Triticum , Water , Flour/analysis , Triticum/chemistry , Starch/chemistry , Starch/analysis , Food Handling/methods , Water/chemistry , Glutens/analysis , Glutens/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL