Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 12(4)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38668492

ABSTRACT

Due to their significant environmental impact, there has been a gradual restriction of the production and utilization of legacy per- and polyfluoroalkyl substances (PFAS), leading to continuous development and adoption of novel alternatives. To effectively identify the potential environmental risks from crop consumption, the levels of 25 PFAS, including fourteen perfluoroalkyl acids (PFAAs), two precursor substances and nine novel alternatives, in agricultural soils and edible parts of various crops around a fluoride industrial park (FIP) in Changshu city, China, were measured. The concentration of ΣPFAS in the edible parts of all crops ranged from 11.64 to 299.5 ng/g, with perfluorobutanoic acid (PFBA) being the dominant compound, accounting for an average of 71% of ΣPFAS. The precursor substance, N-methylperfluoro-octanesulfonamidoacetic acid (N-MeFOSAA), was detected in all crop samples. Different types of crops showed distinguishing accumulation profiles for the PFAS. Solanaceae and leafy vegetables showed higher levels of PFAS contamination, with the highest ΣPFAS concentrations reaching 190.91 and 175.29 ng/g, respectively. The highest ΣAlternative was detected in leafy vegetables at 15.21 ng/g. The levels of human exposure to PFAS through crop consumption for various aged groups were also evaluated. The maximum exposure to PFOA for urban toddlers reached 109.8% of the standard value set by the European Food Safety Authority (EFSA). In addition, short-chained PFAAs and novel alternatives may pose potential risks to human health via crop consumption.

2.
Sci Total Environ ; 927: 172343, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608890

ABSTRACT

The environmental risks of fluorinated alternatives are of great concern with the phasing out of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate. Here, multi-omics (i.e., metabolomics and transcriptomics) coupled with physiological and biochemical analyses were employed to investigate the stress responses of wheat seedings (Triticum aestivum L.) to perfluorobutanoic acid (PFBA), one of the short-chain per- and polyfluoroalkyl substances (PFAS) and PFOA alternatives, at environmentally relevant concentrations (0.1-100 ng/g). After 28 days of soil exposure, PFBA boosted the generation of OH and O2- in wheat seedlings, resulting in lipid peroxidation, protein perturbation and impaired photosynthesis. Non-enzymatic antioxidant defense systems (e.g., glutathione, phenolics, and vitamin C) and enzymatic antioxidant copper/zinc superoxide dismutase were strikingly activated (p < 0.05). PFBA-triggered oxidative stress induced metabolic and transcriptional reprogramming, including carbon and nitrogen metabolisms, lipid metabolisms, immune responses, signal transduction processes, and antioxidant defense-related pathways. Down-regulation of genes related to plant-pathogen interaction suggested suppression of the immune-response, offering a novel understanding on the production of reactive oxygen species in plants under the exposure to PFAS. The identified MAPK signaling pathway illuminated a novel signal transduction mechanism in plant cells in response to PFAS. These findings provide comprehensive understandings on the phytotoxicity of PFBA to wheat seedlings and new insights into the impacts of PFAS on plants.


Subject(s)
Fluorocarbons , Seedlings , Soil Pollutants , Triticum , Triticum/drug effects , Fluorocarbons/toxicity , Seedlings/drug effects , Soil Pollutants/toxicity , Oxidative Stress
3.
Neurotoxicol Teratol ; 97: 107174, 2023.
Article in English | MEDLINE | ID: mdl-36907230

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) cause potential threats to biota and are persistent and never-ending substances in the environment. Regulations and ban on legacy PFAS by various global organizations and national level regulatory agencies had shifted the fluorochemical production to emerging PFAS and fluorinated alternatives. Emerging PFAS are mobile and more persistent in aquatic systems, posing potential greater threats to human and environmental health. Emerging PFAS have been found in aquatic animals, rivers, food products, aqueous film-forming foams, sediments, and a variety of other ecological media. This review summarizes the physicochemical properties, sources, occurrence in biota and the environment, and toxicity of the emerging PFAS. Fluorinated and non-fluorinated alternatives for several industrial applications and consumer goods as the replacement of historical PFAS are also discussed in the review. Fluorochemical production plants and wastewater treatment plants are the main sources of emerging PFAS to various environmental matrices. Information and research are scarcely available on the sources, existence, transport, fate, and toxic effects of emerging PFAS to date.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Animals , Humans , Fluorocarbons/toxicity , Water Pollutants, Chemical/toxicity
4.
Sci Total Environ ; 827: 154274, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35247411

ABSTRACT

Emerging per-and polyfluoroalkyl substances (PFASs) and traditional organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs) in the marginal seas of China were analyzed to study the occurrence, transport and phase partitioning. The influence of organic carbon (OC) and element carbon (EC) on particulate emerging pollutants in seawater was studied for the first time. The concentrations of PFASs, OCPs and PAHs in the seawater (dissolved phase plus particulate phase) ranged from 1.4 to 8.6, 0.76 to 4.3 and 8.4 to 130 ng L-1, respectively. Pollutants in the northern East China Sea were generally higher than that in the southern East China Sea and South China Sea, which may be attribute to river discharges and land sources in the Yangtze River Delta. The Yellow Sea Coastal Current and Yangtze River Dilute Water drove the transport of contaminants from north to south marginal seas. Positive correlations between EC and PAHs were found, which can be explained by co-emission of them during combustion. Moreover, positive correlations between OC, EC and Log Kd for BkF, BeP, HCB, 6:2 FTSA were found, which demonstrated that OC and EC promoted the partitioning of these high oleophilic compounds to suspended particle.


Subject(s)
Fluorocarbons , Hydrocarbons, Chlorinated , Pesticides , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Carbon/analysis , China , Coal , Environmental Monitoring , Hydrocarbons, Chlorinated/analysis , Oceans and Seas , Persistent Organic Pollutants , Pesticides/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Rivers , Water Pollutants, Chemical/analysis
5.
Anal Bioanal Chem ; 414(3): 1259-1278, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34907451

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) include persistent organic pollutants whose spread is still ubiquitous. Efforts to substitute substances of high concern with fluorinated alternatives, such as HFPO-DA (GenX), DONA (ADONA), and cC6O4, have been made. The aim of this work was to develop and validate an isotopic dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method suitable to quantify 30 PFASs in human plasma. Analytes included legacy PFASs (PFOA, PFOS, and PFHxS), fluorinated alternatives (PFBA, PFBS, 6:2 FTSA, HFPO-DA, DONA, and cC6O4), and newly identified compounds (F-53B and PFECHS). The sample preparation was rapid and consisted of simple protein precipitation and centrifugation. Calibration standards and quality control solutions were prepared with a human pooled plasma containing relatively low background levels of the considered analytes. A complete validation was carried out: the lower limits of quantitation (LLOQs) ranged from 0.009 to 0.245 µg/L; suitable linearity (determination coefficients, R2 0.989-0.999), precision (2.0-19.5%, relative standard deviation), and accuracy (87.9-113.1% of theoretical) were obtained for considered concentration ranges. No significant variations of analyte responses were recorded under investigated storage conditions and during matrix effect tests. The external verification confirmed the accuracy of the method, although limited to 12 analytes. The method was also applied to 38 human plasma samples to confirm its applicability. The developed assay is suitable for large-scale analyses of a wide range of legacy and emerging PFASs in human plasma. To our knowledge, this is the first published method including cC6O4 for human biomonitoring.


Subject(s)
Environmental Pollutants/blood , Fluorocarbons/blood , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Environmental Monitoring/methods , Humans , Limit of Detection
6.
J Hazard Mater ; 423(Pt A): 127019, 2022 02 05.
Article in English | MEDLINE | ID: mdl-34523491

ABSTRACT

Due to their great environmental hazards, the widely used legacy perfluoroalkyl acids (PFAAs) are gradually restricted, and novel alternatives are being developed and applied. For efficient control of emerging environmental risks in agricultural production, we systematically studied the source apportionment in field soils and bioaccumulation characteristics in multiple crops of 12 PFAAs and five novel alternatives in an industrial-intensive region of China, followed by human exposure estimation and health risk assessment. Compared with perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), shorter-chained PFAAs and novel alternatives have become the dominant components in local soils and crops, indicating their wide application. A positive matrix factorization (PMF) model coupled with multivariate analysis identified fluoropolymer manufacturing and textile treatment as the principal sources. The bioaccumulation factors (BAFs) of individual PFAAs and alternatives in crops decreased with increasing carbon chain lengths. As a novel alternative of PFOA, hexafluoropropylene oxide dimer acid (GenX) exhibited much higher BAFs; for the alternative of PFOS, 6:2 chlorinated polyfluorinated ether sulfonic acid (6:2 Cl-PFESA) showed lower BAFs. The bioaccumulation capacities of PFAAs and alternatives were also associated with soil organic matter and crop species. Through crop consumption, short-chained PFAAs and novel alternatives might pose emerging human health threats.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Bioaccumulation , China , Crops, Agricultural , Environmental Monitoring , Fluorocarbons/analysis , Fluorocarbons/toxicity , Humans , Industry , Soil
7.
Environ Pollut ; 241: 504-510, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29883951

ABSTRACT

Chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) caused great concerns recently as novel fluorinated alternatives. However, information on their bioconcentration, bioaccumulation and biomagnification in marine ecosystems is limited. In this study, 152 biological samples including invertebrates, fishes, seabirds and mammals collected from Bohai Sea of China were analyzed to investigate the residual level, spatial distribution, bioaccumulation and biomagnification of Cl-PFESAs. 6:2 Cl-PFESA was found in concentrations ranging from

Subject(s)
Bays/chemistry , Environmental Monitoring , Fishes , Food Chain , Invertebrates/chemistry , Mammals , Sulfonic Acids/analysis , Animals , China , Water Pollutants, Chemical/analysis
8.
Arch Toxicol ; 92(1): 359-369, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28864880

ABSTRACT

Although shorter chain homologues and other types of fluorinated chemicals are currently used as alternatives to long-chain perfluoroalkyl substances (PFASs), their safety information remains unclear and urgently needed. Here, the cytotoxicity of several fluorinated alternatives (i.e., 6:2 fluorotelomer carboxylic acid (6:2 FTCA), 6:2 fluorotelomer sulfonic acid (6:2 FTSA), 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA), and hexafluoropropylene oxide (HFPO) homologues) to human liver HL-7702 cell line were measured and compared with perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Their binding mode and affinity to human liver fatty acid binding protein (hL-FABP) were also determined. Compared with PFOA and PFOS, 6:2 Cl-PFESA, HFPO trimer acid (HFPO-TA), HFPO tetramer acid (HFPO-TeA), and 6:2 FTSA showed greater toxic effects on cell viabilities. At low exposure doses, these alternatives induced cell proliferation with similar mechanism which was different from that of PFOA and PFOS. Furthermore, binding affinity to hL-FABP decreased in the order of 6:2 FTCA < 6:2 FTSA < HFPO dimer acid (HFPO-DA) < PFOA < PFOS/6:2 Cl-PFESA/HFPO-TA. Due to their distinctive structure, 6:2 Cl-PFESA and HFPO homologues were bound to the hL-FABP inner pocket with unique binding modes and higher binding energy compared with PFOA and PFOS. This research enhances our understanding of the toxicity of PFAS alternatives during usage and provides useful evidence for the development of new alternatives.


Subject(s)
Fatty Acid-Binding Proteins/metabolism , Fluorocarbons/metabolism , Fluorocarbons/toxicity , Alkanesulfonic Acids/metabolism , Alkanesulfonic Acids/toxicity , Binding Sites , Caprylates/metabolism , Caprylates/toxicity , Cell Cycle/drug effects , Cell Line , Cell Survival , Fatty Acid-Binding Proteins/chemistry , Fatty Acid-Binding Proteins/genetics , Fluorocarbons/chemistry , Gene Expression Regulation/drug effects , Humans , Liver/cytology , Liver/drug effects , Molecular Docking Simulation , Protein Structure, Secondary , Toxicity Tests/methods
9.
Environ Pollut ; 231(Pt 2): 1223-1231, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28928021

ABSTRACT

A simultaneous sampling campaign was undertaken to study the pollution by 21 per- and polyfluoroalkyl substances (PFASs) in rivers, drain outlets and their receiving Bohai Sea of China. Chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) are being used as fluorinated alternatives and they were included in this study. In comparison with other regions and countries, high concentrations of ∑21PFASs in seawater samples from the Bohai Sea, ranging from 5.03 to 41 700 ng/L (median: 64.8 ng/L), were observed. The spatial distribution of PFAS levels in this sea area was in the ranking of Laizhou Bay > Liaodong Bay > Bohai Bay > other sea areas. By comparing the levels and composition profiles of PFASs in the seawater and their sources (rivers and drain outlets), it was concluded that rivers and drain outlets are the primary sources of PFAS contamination to the Bohai Sea. These PFAS levels varied seasonally among the rivers and drain outlets, but statistically significant changes were not observed. Levels of 6:2 and 8:2 Cl-PFESAs in rivers, drain outlets and receiving sea were firstly reported in the present study. Relatively high concentrations of 6:2 Cl-PFESA were found in drain outlets, ranging from below method limits of quantification (MLQ) to 7600 ng/L, but 8:2 Cl-PFAES detection was infrequent and all median concentration below MLQ. Mass discharges to the sea of 6:2 Cl-PFESA from rivers and drain outlets to the sea were estimated to be 37 and 17 kg/y, respectively.


Subject(s)
Environmental Monitoring , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , China , Environmental Monitoring/methods , Rivers , Seasons , Seawater , Sulfonic Acids
SELECTION OF CITATIONS
SEARCH DETAIL