Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.735
Filter
1.
Sci Rep ; 14(1): 21064, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256504

ABSTRACT

Zeolite molecular sieves are potential adsorbents for wastewater treatment, characterized by high efficiency, simple process, easy regeneration, and low treatment cost. In this study, zeolite A molecular sieves were prepared using coal fly ash (CFA), which is an effective method for the utilization of CFA. The results showed that the CFA-based zeolite molecular sieves synthesized under optimized conditions exhibited excellent adsorption and removal rates (> 40%) for ammonia-nitrogen in wastewater of different concentrations and properties. The analysis of adsorption kinetics revealed that the adsorption process followed pseudo-second-order kinetics model, indicating that the adsorption of ammonia-nitrogen on zeolite is primarily controlled by chemisorption rather than physisorption. The adsorption process can be divided into two stages, with a higher adsorption rate and a smaller diffusion boundary layer thickness in the first stage, and a lower adsorption rate and an increased diffusion boundary layer thickness in the second stage. This indicates that as the adsorption proceeds, the internal diffusion resistance within the particles gradually increases, leading to a decrease in the adsorption rate until reaching equilibrium, where both the diffusion and adsorption become stable. The adsorption isotherms of ammonia-nitrogen on zeolite A conformed to the assumptions of the Langmuir model, suggesting that the adsorption mechanism primarily involves uniform monolayer adsorption on the surface without intermolecular interactions.

2.
Sci Rep ; 14(1): 21087, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256600

ABSTRACT

To solve the problem of a large amount of fly ash accumulation and study the axial compression and bearing capacity prediction of the self-compacting fly ash concrete filled circle steel tube (SCCFST) columns, eight specimens are designed to explore the impact of concrete strength grade, internal structural measures, and additional parameters. The stress, progression of deformation, and failure mode of each specimen are observed during the loading process. The load-displacement curves, load-strain curves, characteristic load and displacement, ductility, and stiffness degradation are analyzed. The findings revealed that shear deformation occurred predominantly in the middle and upper portions of the steel tubes. Enhancing the strength of the concrete or adopting internal structural measures could increase the bearing capacity and ductility of the specimens. The peak load and ductility could be increased by up to 17.6 and 53.6%, respectively. The proposed unified calculation equation for the axial compression bearing capacity of SCCFST columns demonstrates notable reliability and precision. Furthermore, these tests offer valuable references for the engineering application of various forms of SCCFST columns, which are of significant importance in practical engineering.

3.
Sci Rep ; 14(1): 20953, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39251791

ABSTRACT

Manufacturing ordinary Portland cement (OPC) poses significant challenges for sustainable construction practices. OPC manufacturing emits substantial greenhouse gases into the atmosphere and demands extensive raw materials. In pursuit of greener alternatives, researchers explore geopolymer concrete (GPC), a revolutionary material that entirely replaces OPC, comprising industrial wastes/by-products activated through an alkaline solution. The study aims to investigate the feasibility of incorporating quarry rock dust (QRD) into GPC production for environmentally sustainable structural applications. Circular columns (200 mm diameter, 1000 mm length) were formulated using GPC blends with fly ash, slag (SG), and QRD as a partial SG replacement. The structural performance of these columns, with and without steel fiber reinforcement, was evaluated under varied loading conditions. Results show that QRD is a valuable ingredient in GPC for structural concrete elements, offering performance comparable to traditional OPC concrete. Furthermore, the incorporation of steel fibers significantly enhances the peak axial loads, displacement response, and overall performance of GPC columns with or without QRD. Fiber-reinforced GPC columns demonstrated approximately 8-10% higher ultimate load capacity than equivalent OPC columns. Eccentricity was found to significantly reduce ductility, but fiber reinforcement offers substantial ductility improvements (25-55%).

4.
Sci Total Environ ; 952: 175950, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39218098

ABSTRACT

Information on the emission of coal combustion-sourced magnetite nanoparticles (MNPs) is lacking, which is critical for their health-related risks. In this study, MNPs in coal fly ashes (CFAs) from various coal-fired power plants (CFPPs) in China equipped with various dust removal devices were extracted and quantified using single particle ICP-MS. The number concentrations of MNPs in CFAs captured by dust removal increased with stage, while their size decreased. Among all the dust removal devices, electrostatic-fabric-integrated precipitators showed the best removal of MNPs. Furthermore, throughout all the coal combustion by-products in a typical CFPP, MNPs in EFA (fly ash escaped from the stack) showed the highest number concentration (1.2 × 107 particles/mg) and lowest size (78 nm). Although the mass of CFA escaping through the stack is extremely low, it still had an emission rate of 1.9 × 1015 particles/h, contributing 3.56 % of the total emissions of MNPs in number. In addition, the purity of MNPs and their associated toxic metals showed a size-dependent variation pattern. As the particle size of MNPs decreased, the proportion of Fe in MNPs increased from 43 % in bottom ash (BA) to 84 % in EFA, while the abundance of trace toxic metals in EFA was 3.3 times higher than that of BA. These MNPs with the highest purity can adsorb elevated concentrations of toxic metals, and can be discharged directly into the atmosphere, posing a risk of synergistic toxicity.

5.
J Environ Manage ; 367: 122014, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39098066

ABSTRACT

Researchers are actively investigating methodologies for the detoxification and utilization of Municipal Solid Waste Incineration Bottom Ash (MSWIBA) and Fly Ash (MSWIFA), given their potential as alkali-activated materials (AAMs) with low energy consumption. Recent studies highlight that AAMs from MSWIFA and MSWIBA demonstrate significant durability in both acidic and alkaline environments. This article provides a comprehensive overview of the processes for producing MSWIFA and MSWIBA, evaluating innovative engineering stabilization techniques such as graphene nano-platelets and lightweight artificial cold-bonded aggregates, along with their respective advantages and limitations. Additionally, this review meticulously incorporates relevant reactions. Recommendations are also presented to guide future research endeavors aimed at refining these methodologies.


Subject(s)
Alkalies , Coal Ash , Incineration , Solid Waste , Coal Ash/chemistry , Alkalies/chemistry , Graphite/chemistry , Refuse Disposal/methods
6.
J Environ Manage ; 367: 122035, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39106796

ABSTRACT

Vitrification is a promising treatment for municipal solid waste incineration fly ash (MSWI-FA); however, high energy consumption due to the high MSWI-FA fusion temperature limits the development and application of this technique. In this study, fine slag ash (FSA) derived from coal gasification and coal gangue ash (CGA) were mixed with MSWI-FA to reduce the ash fusion temperature. The transformation of minerals in ash during thermal treatment was examined via X-ray diffraction and thermodynamic equilibrium calculations. The ash flow behaviour was observed using a thermal platform microscope, and the silicate structure was quantified using Raman spectra. The co-melting mechanisms for the mixed ash were systematically investigated. Results indicate that the flow temperature (FT) of the mixed ash exhibited an initial decrease and subsequent increase as a function of the addition ratio of FSA or CGA. Lowest ash FT of 1215 °C and 1223 °C were recorded for addition of 50% FSA and 50% CGA, respectively; further, these temperatures were lowered by > 285 °C and >277 °C respectively, relative to FT of the MSWI-FA. The transformation of minerals and silicate structure during mixed ash heating was responsible for the variation in the ash fusion temperature. CaO in MSWI-FA tended to react with mullite, quartz and haematite in FSA and CGA, forming minerals such as anorthite, gehlenite, and andradite with relatively low melting points. The addition of FSA or CGA caused changes in the silicate network structure of the mixed ash. In particular, 50% FSA incorporation caused the transformation of Q4 and Q3 to Q2, whereas 50% CGA introduction resulted in the conversion of Q4 and Q2 into Q3 and Q1 + Q0, respectively. The silicate network depolymerised, causing reduction in the ash fusion temperature and increasing the melting rate.


Subject(s)
Coal Ash , Coal , Incineration , Solid Waste , Coal Ash/chemistry , Vitrification , X-Ray Diffraction , Temperature
7.
Environ Pollut ; 360: 124692, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39127335

ABSTRACT

To improve the photodegradation capacity, for the first time, a simple yet efficient photocatalyst was prepared by solely employing hot dip galvanization waste (GW) and fly ash (FA) disposed from medical waste incinerators. Impressively, the as-synthesized photocatalyst (GW-FA) in the ratio 3:1 displayed an outstanding ciprofloxacin degradation efficiency of 98.3% under natural sunlight within 60 min and possessed superior reusability. Herein, adjusting the amount of GW evidenced effective tuning of the electronic band structure and increased active sites. Detailed microscopic morphology, chemical structure, magnetic, and optical properties of GW-FA were studied by UV-DRS, FESEM-EDX, HRTEM, XRD, XPS, ESR, VSM, and AFM, which confirmed the successful fabrication of GW-FA and their outstanding ability to reduce the recombination rate. Besides, the effects of crucial experimental parameters (concentration, pH, and photocatalyst loading) on ciprofloxacin degradation were examined using RSM-BBD. Further, OH• was manifested to be the main active species for the photodegradation of ciprofloxacin. Eventually, GC-MS analysis was employed to deduce plausible photodegradation pathways, and ICP-AES analysis proved that the concentration of leached heavy metals was lower than that of the standard limits for irrigation water. This work establishes a new route for effectively reutilizing waste generated from medical waste incinerators and galvanization industries as a photocatalyst, which otherwise would be disposed in landfills.

8.
J Hazard Mater ; 477: 135315, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39096638

ABSTRACT

Low-temperature thermal degradation of PCDD/Fs for incineration fly ash (IFA), as a novel and emerging technology approach, offers promising features of high degradation efficiency and low energy consumption, presenting enormous potential for application in IFA resource utilization processes. This review summarizes the concentrations, congener distributions, and heterogeneity characteristics of PCDD/Fs in IFA from municipal, medical, and hazardous waste incineration. A comparative analysis of five PCDD/Fs degradation technologies is conducted regarding their characteristics, industrial potential, and applicability. From the perspective of low-temperature degradation mechanisms, pathways to enhance PCDD/Fs degradation efficiency and inhibit their regeneration reactions are discussed in detail. Finally, the challenges to achieve low-temperature degradation of PCDD/Fs for IFA with high-efficiency are prospected. This review seeks to explore new opportunities for the detoxification and resource utilization of IFA by implementing more efficient and viable low-temperature degradation technologies.

9.
Materials (Basel) ; 17(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39124314

ABSTRACT

Geopolymer concretes are considered to be a potential sustainable, low-embodied carbon alternative for Ordinary Portland Cement (OPC) concrete. Alkali leaching is considered to be a major esthetic concern for Na-silicate-based geopolymers as it can lead to the formation of efflorescence products on the surfaces of concrete members exposed to humidity. In this context, this research aims to investigate the effect of the alkali content and the FA/GGBS mass ratio on the alkali leaching and formation of the efflorescence products. Paste cylinders were fabricated and cured in ambient conditions. Samples were submerged in deionized water and the concentration of the leached-out ions was measured. Efflorescence potential was also investigated by partial immersion of the samples in deionized water. The results highlight the complexity of the interacting parameters governing the formation of efflorescence products in geopolymer materials. Establishing relationships between the concrete mix variables and the risk of efflorescence seems unfeasible particularly because of the wide range of possible precursors and activators available to design geopolymer concrete mixes. To overcome this barrier, a practical performance-based testing method is developed. For the first time, by testing a wide range of geopolymer materials, performance-based requirements associated with the risk of efflorescence for geopolymer concrete surfaces exposed to humidity are calibrated. Four categories of risk are proposed and typical suitable exposure conditions for geopolymer concrete surfaces are suggested for each risk category.

10.
Materials (Basel) ; 17(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39124386

ABSTRACT

Biomass fly ash is a sustainable, eco-friendly cement substitute with economic and performance benefits, being renewable compared to coal fly ash. This study examines using biomass fly ash (BFA) as a sustainable cement substitute, comparing it with Class F fly ash (CFA). With a water-binder ratio of 0.5 and replacement rates of 10%, 15%, 20%, 25%, and 30% (by mass), the research highlights BFA's promising applications. BFA and CFA were mixed into cement paste/mortar to analyze their reactivity and properties, with hydration products CH and C-S-H evaluated at 7, 28, and 91 days. Compressive strength, micro-pore structure, and drying shrinkage (assessed from 7 to 182 days) were tested. Results showed BFA had similar pozzolanic reactions to CFA at later stages. While compressive strength decreased with higher BFA replacement rates, early-stage performance matched CFA; growth was CFA-10 (18 MPa) and BFA-10 (17.6 MPa). BFA mortars exhibited slightly better deformation properties. BFA-30 cement had superior performance, with a lower drying shrinkage rate of 65.7% from 14 to 56 days compared to CFA-10's 73.4% and a more stable shrinkage growth rate decrease to 8.4% versus CFA-10's 6.4% after 56 days. This study concluded that BFA, usable without preprocessing, performed best at a 10-15% replacement rate.

11.
Materials (Basel) ; 17(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39124502

ABSTRACT

The intricate composition of wastewater impedes the recycling of agricultural and industrial effluents. This study aims to investigate the potential of sisal leaf wastewater (SLW), both water-treated (WTSLW) and alkali-treated (ATSLW), as a substitute for the alkali activator (NaOH solution) in the production of slag-powder- and fly-ash-based composites, with a focus on the effects of WTSLW substitution ratios and sisal leaf soaking durations. Initially, the fresh properties were assessed including electrical conductivity and fluidity. A further analysis was conducted on the influence of both WTSLW and ATSLW on drying shrinkage, density, and mechanical strength, including flexural and compressive measures. Microstructural features were characterized using SEM and CT imaging, while XRD patterns and FTIR spectra were employed to dissect the influence of WTSLW substitution on the composite's products. The results show that incorporating 14 wt% WTSLW into the composite enhances 90-day flexural and compressive strengths by 34.8% and 13.2%, respectively, while WTSLW curtails drying shrinkage. Conversely, ATSLW increases porosity and decreases density. Organic constituents in both WTSLW and ATSLW encapsulated in the alkaline matrix fail to modify the composites' chemical composition. These outcomes underscore the potential for sustainable construction materials through the integrated recycling of plant wastewater and solid by-products.

12.
Environ Sci Pollut Res Int ; 31(38): 50225-50242, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39088174

ABSTRACT

The sustainable management of large amounts of fly ash (FA) is a concern for researchers, and we aim to determine the FA application in plant development and nematicidal activity in the current study. A pot study is therefore performed to assess the effects of adding different, FA-concentrations to soil (w/w) on the infection of chickpea plants with the root-knot nematode Meloidogyne incognita. Sequence characteristic amplified region (SCAR) and internal transcribed spacer (ITS) region-based-markers were used to molecularly confirm M. incognita. With better plant growth and chickpea yield performance, FA enhanced the nutritious components of the soil. When compared with untreated, uninoculated control (UUC) plants, the inoculation of M. incognita dramatically reduced chickpea plant growth, yield biomass, and metabolism. The findings showed that the potential of FA to lessen the root-knot nematode illness in respect of galls, egg-masses, and reproductive attributes may be used to explain the mitigating effect of FA. Fascinatingly, compared with the untreated, inoculated control (UIC) plants, the FA treatment, primarily at 20%, considerably (p ≤ 0.05) boosted plant growth, yield biomass, and pigment content. Additionally, when the amounts of FA rose, the activity of antioxidants like superoxide dismutase-SOD, catalase-CAT, and peroxidase-POX as well as osmo-protectants like proline gradually increased. Therefore, our findings imply that 20% FA can be successfully applied as a potential strategy to increase biomass yield and plant growth while simultaneously reducing M. incognita infection in chickpea plants.


Subject(s)
Cicer , Coal Ash , Tylenchoidea , Animals , Tylenchoidea/physiology , Plant Roots/parasitology , Soil/chemistry , Soil/parasitology , Plant Diseases/parasitology , Plant Diseases/prevention & control
13.
Sci Rep ; 14(1): 19147, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160227

ABSTRACT

This research is focused on the development of an eco-friendly low-cost concrete using fly ash (FA) and marble powder waste (MPW) as partial replacements for cement and fine aggregate respectively. The substantial use of cement in concrete makes it expensive and contributes to global warming due to high carbon emissions. Thus, using such waste materials can help reduce the overall carbon footprint. For this purpose, various mix designs of concrete were developed by varying the percentages of FA and MPW. The concrete's fresh and hardened properties were experimentally determined for those mixes. The test results revealed that MPW as a sand substitute increases strength up to 40% and gradually decreases beyond that, but a 60% replacement still has more strength than the control specimen. Similarly, using FA as a cement replacement was found to reduce the strength, but the reduction was not very significant up to 20%. A mixed blend of FA and MPW showed superior results and maximum strength was obtained at F10M40. The optimal mix, with 10% FA and 40% MPW (F10M40), achieved a compressive strength of 4493.46 psi, a 16.21% improvement compared to the control mix proportion. Furthermore, the microstructure of the cementitious material was improved due to the pozzolanic reaction that led to a denser microstructure, as supported by the permeability test and SEM analysis.

14.
Environ Sci Pollut Res Int ; 31(40): 53458-53471, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39190247

ABSTRACT

The presence of heavy metals in mine tailings poses a serious threat to the surrounding environment. In this study, we aimed to stabilize Pb/Zn-containing mine tailings using modified fly ash (FA) with various alkali solutions. Notably, the modification of FA with Na2SiO3 (NaSi-FA) resulted in the most significant structure changes. To understand the adsorption mechanism of Pb and Zn by modified FA, batch adsorption experiments were conducted. Doubling the adsorption capacity for both Pb and Zn was observed in the modified FA samples compared to unmodified samples. These results could be attributed to the enhanced surface area and porous structure, providing more anchor sites for the heavy metal ions. Additionally, the adsorption of Pb and Zn was found to follow the Langmuir isotherm and pseudo-second order kinetic. Molecular dynamics simulations further supported the notion that Pb and Zn ions could effectively exchange with Na ions within the N-A-S-H gel network, ultimately solidifying them in its structure. Stabilizing Pb/Zn tailings with NaSi-FA resulted in a significant decrease in the leaching of Pb and Zn. Specifically, the leading amount decreased by 55.2% for Pb and 35.3% for Zn, showcasing the superior performance of this stabilization method. This reduction in leaching indicates effective compliance with environmental regulations regarding the containment of Pb and Zn.


Subject(s)
Coal Ash , Lead , Mining , Zinc , Coal Ash/chemistry , Lead/chemistry , Zinc/chemistry , Adsorption , Metals, Heavy/chemistry
15.
J Hazard Mater ; 478: 135479, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39141943

ABSTRACT

The growth in municipal solid waste incineration (MSWI) has resulted in a substantial rise in the production of fly ash in China. It is anticipated that during the "14th Five-Year Plan", the accumulated amount of fly ash stocked and disposed of at landfills will surpass 100 million tons. With the development of the economy and the implementation of garbage classification relevant policies, the pollution characteristics of heavy metal change in spatiotemporal distribution. Solidification/stabilization (S/S) pre-treatment coupled with landfill disposal is the mainstream method for fly ash. This study provides a systematic overview and comparison of the current application status and research on the mechanism of S/S technology, and the long-term stability of solidified/stabilized fly ash is a crucial factor in controlling the risks of landfills. Subsequently, it examines the influencing factors and mechanisms associated with heavy metals leaching under different environmental scenarios (meteorological factors, leachate and acid rain erosion, and carbonation, etc.), and concludes that single stabilization technology is difficult to meet long-term landfill requirements. Finally, the limits of heavy metal leaching toxicity evaluation methods and landfilled fly ash supervision were discussed, and relevant suggestions for future development were proposed. This study can provide theoretical instruction and technical support for the risk control of potential environmental risks of heavy metals in solidified/stabilized fly ash from landfills in China.

16.
R Soc Open Sci ; 11(8): 240598, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39169966

ABSTRACT

Porous alkali-activated materials are synthetic aluminosilicates that should be often produced as granules for practical applications. In the present study, municipal solid waste incineration fly ash with ~1.2 wt% of metallic aluminium was used as a novel blowing agent for metakaolin (their ratio ranged from 0% to 100%) with an aqueous sodium silicate solution as the alkali-activator and granulation fluid in high-shear granulation. The compressive strength of all granules was sufficient (≥2 MPa). Water absorption indicated an increase in porosity as the fly ash content increased. However, X-ray microtomography imaging showed no clear correlation between the fly ash content and porosity. The granules exceeded the leaching limits for earth construction materials for antimony, vanadium, chloride and sulphate. Of those, antimony, chloride and sulphate could be controlled by decreasing the ash content, but the source of vanadium was identified as metakaolin. The increase in the fly ash content decreased the cation exchange capacity of the granules. In conclusion, the recommended fly ash content is equivalent to 0.3 wt% of Al0 and the developed granules could be best suited as light-weight artificial aggregates in concrete where the additional binder would provide stabilization to decrease the leaching.

17.
Heliyon ; 10(14): e34661, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39130456

ABSTRACT

In view of the problems caused by chromium-containing wastewater, such as environmental pollution, biological toxicity, and human health risks. Based on fly ash adsorption and nano-FeS reduction characteristics, fly ash loaded nano-FeS composite (nFeS-FA) was synthesized using mineral supported modification technology and ultrasonic precipitation method. The effect of adsorbent dosage, initial pH, contact time, and initial concentration of the solution on the adsorption of Cr(VI) and total Cr by nFeS-FA was investigated. The characteristics of Cr(VI) and total Cr adsorption by nFeS-FA were studied using adsorption isotherms, adsorption kinetics principles, as well as XRD, TEM, SEM-EDS, and BET analysis. The results demonstrated that under the conditions of nFeS-FA of 8 g/L, initial pH of 4, contact time of 150 min, and initial concentration of the solution at 100 mg/L, nFeS-FA achieved removal efficiency of 87.85 % for Cr(VI) and 71.77 % for total Cr. The adsorption of Cr(VI) and total Cr by nFeS-FA followed the Langmuir model and pseudo-second-order kinetic model, indicating monolayer adsorption with chemical adsorption as the dominant mechanism. XRD, TEM, SEM-EDS, and BET revealed that the flaky nano-FeS was uniformly distributed on the surface of fly ash, exhibiting good dispersion and thereby increasing the specific surface area. During the adsorption experiments, nFeS-FA reacted with Cr(VI), and the generated Fe3+ mainly existed as FeOOH precipitation, while S2- reacted with Cr(III) to produce Cr2S3 precipitation. Therefore, nFeS-FA exhibited excellent adsorption performance towards Cr(VI) and total Cr. It can serve as a technological reference for the remediation of heavy metal chromium pollution in the field of water treatment.

18.
Heliyon ; 10(14): e34812, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39149027

ABSTRACT

Developing recovery methods from coal mine waste like mudstone and coal fly ash (CFA) is crucial to expanding the alumina supply beyond bauxite. This review explores various approaches for alumina recovery from mudstone and CFA. Six main leaching techniques are discussed-caustic soda, nitric acid, Sulphuric acid, hydrochloric acid, and leaching roasted coal mine wastes. Due to high silica content, these techniques differ from those for bauxite minerals. Alkaline solutions, like sodium and calcium hydroxide, show promise but are cost-intensive. Sulphuric acid, combined with calcium hydroxide or sodium carbonate before roasting, yields efficient results, surpassing 90 % recovery. Microbial extraction also shows promise, but commercialisation faces equipment accessibility challenges. Heat treatment and optimal calcination temperatures are crucial, especially with acid reagents like Sulphuric and hydrochloric acids, preferred for insolubility in silica and better recovery. Sustainable alumina recovery requires further research into economically viable and ecologically friendly technology. This review underscores the need for feasible, high-purity alumina recovery techniques from mudstone and CFA for industrialisation.

19.
J Environ Manage ; 368: 122066, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39116811

ABSTRACT

Fly ash (FA) is a very alkaline, hazardous waste with a potential to be recycled in amelioration of master pedovariables, notably: i) pH, drives soil biogeochemistry, ii) electrical conductivity (EC), reflects soil salinity level and overall soil health, iii) water holding capacity (WHC), determines soil hydraulic functions and iv) bulk denisity (BD), indicates soil compaction and water-air relations. We performed a multilevel meta-analysis, encompassing 30 out of 1325 screend studies, using a random effect model and non-aggregated data sets. By moderating; experimental type, FA application rate, soil type and land use, two distinct meta-analytical approaches on observed pedovariables were performed: i) uni-moderator, considering moderators separately, and ii) multi-moderator, considering moderators combined. It was found that FA application: increased soil pH by 15.4% (Hedge's g = 8.07), EC by 51.7% (Hedge's g = 8.07), WHC by 22.6% (Hedge's g = 7.79), and reduced BD by 13.5% (Hedge's g = -5.03). However, the uni-moderator meta-analytical model revealed a significant increase in pH and EC only with relatively lower FA dosage (up to 20%). In addition, the impact of FA on pH and EC was significantly positive in acid (pHH2O < 6.5), negative in alkaline (pHH2O > 7.2), and not significant in neutral (pHH2O = 6.6-7.2) soil types. The same uni-moderator approach revealed that FA dosages above 5% significantly increased WHC, but reduced BD. Moreover, the multi-moderator model identified two significant interactions: i) between varying FA dosage and land use, and ii) between varying FA dosage and soil type. Confirmed positive implications of FA on key soil properties underscore its strong potential as a valuable resource for sustainable soil management, mitigating widespread soil constraints and contributing waste reduction. However, careful consideration of FA dosage, soil type, and land use is imperative to optimize FA application and prevent potential adverse environmental implications.


Subject(s)
Coal Ash , Soil , Soil/chemistry , Hydrogen-Ion Concentration
20.
Environ Pollut ; 361: 124854, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39214443

ABSTRACT

Microplastics (MPs) discharged from wastewater treatment plants (WWTPs) have emerged as serious pollutants in aquatic environments. Herein, a new magnetic filter (MFA) was prepared using an acidification-magnetization method with fly ash (FA) as the base material. The filter specifically targeted the removal of 1-µm polystyrene microspheres (PSMPs) because of the challenges they pose in filtration processes. The findings demonstrated that MFA filter exhibited superior PSMPs removal efficiency, with increases of 219%, 250%, and 288% compared to FA at flow rates of 1, 3, and 5 mL min-1, respectively. Scanning electron microscopy and other characterizations provided insights into the removal mechanisms of PSMPs using the MFA filter, which combined electrostatic attraction, π-electron conjugation, hydrogen bonding, and complexation. Environmental variables, such as solution pH, ionic strength, and dissolved organic matter, were identified as considerable influences in the removal process of PSMPs. The practical application confirmed that the MFA filter considerably promoted the elimination of MPs from the secondary treatment effluent of WWTPs without having any toxic effects on freshwater fish. Thus, this study provides a new approach to the resource utilization of FA, which would prominently promote its application prospects in MPs immobilization and removal from wastewater effluent.

SELECTION OF CITATIONS
SEARCH DETAIL