Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Res ; 259: 119432, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38944104

ABSTRACT

The Mediterranean Basin has experienced substantial land use changes as traditional agriculture decreased and population migrated from rural to urban areas, which have resulted in a large forest cover increase. The combination of Landsat time series, providing spectral information, with lidar, offering three-dimensional insights, has emerged as a viable option for the large-scale cartography of forest structural attributes across large time spans. Here we develop and test a comprehensive framework to map forest above ground biomass, canopy cover and forest height in two regions spanning the most representative biomes in the peninsular Spain, Mediterranean (Madrid region) and temperate (Basque Country). As reference, we used lidar-based direct estimates of stand height and forest canopy cover. The reference biomass and volume were predicted from lidar metrics. Landsat time series predictors included annual temporal profiles of band reflectance and vegetation indices for the 1985-2023 period. Additional predictor variables including synthetic aperture radar, disturbance history, topography and forest type were also evaluated to optimize forest structural attributes retrieval. The estimates were independently validated at two temporal scales, i) the year of model calibration and ii) the year of the second lidar survey. The final models used as predictor variables only Landsat based metrics and topographic information, as the available SAR time-series were relatively short (1991-2011) and disturbance information did not decrease the estimation error. Model accuracies were higher in the Mediterranean forests when compared to the temperate forests (R2 = 0.6-0.8 vs. 0.4-0.5). Between the first (1985-1989) and the last (2020-2023) decades of the monitoring period the average forest cover increased from 21 ± 2% to 32 ± 1%, mean height increased from 6.6 ± 0.43 m to 7.9 ± 0.18 m and the mean biomass from 31.9 ± 3.6 t ha-1 to 50.4 ± 1 t ha-1 for the Mediterranean forests. In temperate forests, the average canopy cover increased from 55 ± 4% to 59 ± 3%, mean height increased from 15.8 ± 0.77 m to 17.3 ± 0.21m, while the growing stock volume increased from 137.8 ± 8.2 to 151.5 ± 3.8 m3 ha-1. Our results suggest that multispectral data can be successfully linked with lidar to provide continuous information on forest height, cover, and biomass trends.


Subject(s)
Biomass , Environmental Monitoring , Forests , Spain , Environmental Monitoring/methods , Remote Sensing Technology , Trees/growth & development
2.
Oecologia ; 196(1): 249-261, 2021 May.
Article in English | MEDLINE | ID: mdl-33870455

ABSTRACT

Understanding the multiple biotic and abiotic controls of aboveground biomass (AGB) is important for projecting the consequences of global change and to effectively manage carbon storage. Although large-scale studies have identified the major environmental and biological controls of AGB, drivers of local-scale variation are less well known. Additionally, involvement of multiple causal paths and scale dependence in effect sizes potentially confounds comparisons among studies differing in methodology and sampling grain. We tested for scale dependence in evidence supporting selection, complementarity and environmental factors as the main determinants of AGB variation over a 50 ha study extent in subtropical China, modelling this at four sampling grains (0.01, 0.04, 0.25 and 1 ha). At each grain, we used piecewise structural equation models to quantify the direct and indirect effects of environmental (topographic and edaphic properties) and forest attributes (structure, diversity and functional traits) on AGB, while controlling for spatial autocorrelation. Direct scale-invariant effects on AGB were evident for structure and community-mean traits, supporting dominance of selection effects. However, diversity had strong indirect effects on AGB via forest structure, particularly at larger sampling grains (≥ 0.25 ha), while direct effects only emerged at the smallest grain size (0.01 ha). The direct and indirect effects of edaphic and topographic factors were also important for explaining both forest attributes and AGB across all scales. Although selection effects appeared to be more influential on ecosystem function, ignoring indirect causal pathways for diversity via structural attributes risks overlooking the importance of complementarity on ecosystem functioning, particularly as sampling grain increases.


Subject(s)
Ecosystem , Forests , Biomass , Carbon/analysis , China , Trees
SELECTION OF CITATIONS
SEARCH DETAIL