Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.060
Filter
1.
Article in English | MEDLINE | ID: mdl-39091119

ABSTRACT

BACKGROUND: Fractional flow reserve (FFR) represents the gold standard in guiding the decision to proceed or not with coronary revascularization of angiographically intermediate coronary lesion (AICL). Optical coherence tomography (OCT) allows to carefully characterize coronary plaque morphology and lumen dimensions. OBJECTIVES: We sought to develop machine learning (ML) models based on clinical, angiographic and OCT variables for predicting FFR. METHODS: Data from a multicenter, international, pooled analysis of individual patient's level data from published studies assessing FFR and OCT on the same target AICL were collected through a dedicated database to train (n = 351) and validate (n = 151) six two-class supervised ML models employing 25 clinical, angiographic and OCT variables. RESULTS: A total of 502 coronary lesions in 489 patients were included. The AUC of the six ML models ranged from 0.71 to 0.78, whereas the measured F1 score was from 0.70 to 0.75. The ML algorithms showed moderate sensitivity (range: 0.68-0.77) and specificity (range: 0.59-0.69) in detecting patients with a positive or negative FFR. In the sensitivity analysis, using 0.75 as FFR cut-off, we found a higher AUC (0.78-0.86) and a similar F1 score (range: 0.63-0.76). Specifically, the six ML models showed a higher specificity (0.71-0.84), with a similar sensitivity (0.58-0.80) with respect to 0.80 cut-off. CONCLUSIONS: ML algorithms derived from clinical, angiographic, and OCT parameters can identify patients with a positive or negative FFR.

2.
Article in English | MEDLINE | ID: mdl-39096407

ABSTRACT

The prompt and precise identification of hemodynamically significant coronary artery lesions remains an ongoing challenge. This study investigated the diagnostic value of non-invasive global left ventricular myocardial work indices by echocardiography in functional status of coronary artery disease (CAD) patients with myocardial ischemia using fractional flow reserve (FFR) as the gold standard. A total of 77 consecutive patients with clinically suspected CAD were prospectively enrolled. All participants sequentially underwent echocardiography, invasive coronary angiography (ICA) and FFR measurement. According to the results of ICA, patients were divided into myocardial ischemia group (FFR ≤ 0.8, n = 27) and non-myocardial ischemia group (FFR > 0.8, n = 50). Myocardial work indices including global work index (GWI), global constructive work (GCW), global wasted work (GWW), global work efficiency (GWE), global positive work (GPW), global negative work (GNW), global systolic constructive work (GSCW) and global systolic wasted work (GSWW) were obtained by using the non-invasive left ventricular pressure strain loop (PSL) technique. Compared with the non-myocardial ischemia group, GWI, GCW, GPW and GSCW were significantly decreased in the myocardial ischemia group at either the 18-segment level or the 12-segment level (P < 0.001). At the 18-segment level, GWI < 1783.6 mmHg%, GCW < 1945.4 mmHg%, GPW < 1788.7 mmHg% and GSCW < 1916.5 mmHg% were optimal cut-off value to detect myocardial ischemia with an FFR ≤ 0.8. Global left ventricular myocardial work indices by echocardiography exhibited a good diagnostic value in patients with CAD and may have a good clinical significance for the screening of suspected myocardial ischemia.

3.
Br J Radiol ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110519

ABSTRACT

OBJECTIVES: This study aims to investigate the differences in plaque characteristics and fat attenuation index (FAI) between in patients who received revascularization versus those who did not receive revascularization and examine whether the machine-learning (ML) based model constructed by plaque characteristics and FAI can predict revascularization. MATERIALS & METHODS: This study was a post hoc analysis of a prospective single-center registry of sequential patients undergoing CCTA, referred from inpatient and emergency department settings (n = 261, 63 years ± 8; 188 men). The primary outcome was revascularization by percutaneous coronary revascularization. The CTA images were analyzed by experienced radiologists using a dedicated workstation in a blinded fashion. The ML-based model was automatically computed. RESULTS: The study cohort consisted of 261 subjects. Revascularization was performed in 105 subjects. Patients receiving revascularization had higher FAI value (67.35±5.49 Hu vs -80.10±7.75 Hu, p < 0.001) as well as higher plaque length, calcified, lipid and fibrous plaque burden and volume. When FAI was incorporated into a ML risk model based on plaque characteristics to predict revascularization, the area under the curve increased from 0.84 (95% CI: 0.68-0.99) to 0.95 (95% CI: 0.88-1.00). CONCLUSION: ML-algorithms based on FAI and characteristics could help improve the prediction of future revascularization and identify patients likely to receive revascularization. ADVANCES IN KNOWLEDGE: Pre-procedural FAI could help guide revascularization in symptomatic CAD patients.

5.
Eur Radiol ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39014089

ABSTRACT

BACKGROUND: Adding functional information by CT-derived fractional flow reserve (FFRct) to coronary CT angiography (CCTA) and assessing its temporal change may provide insight into the natural history and physiopathology of cardiac allograft vasculopathy (CAV) in heart transplantation (HTx) patients. We assessed FFRct changes as well as CAV progression over a 2-year period in HTx patients undergoing serial CT imaging. METHODS: HTx patients from Erasmus MC and Mount Sinai Hospital, who had consecutive CCTAs 2 years apart were evaluated. FFRct analysis was performed for both scans. FFRct values at the most distal point in the left anterior descending (LAD), left circumflex (LCX), and right coronary artery (RCA) were measured after precisely matching the anatomical locations in both analyses. Also, the number of anatomical coronary stenoses of > 30% was scored. RESULTS: In total, 106 patients (median age 57 [interquartile range 47-67] years, 67% male) at 9 [6-13] years after HTx at the time of the baseline CCTA were included. Median distal FFRct values significantly decreased from baseline to follow-up for the LAD from 0.85 [0.79-0.90] to 0.84 [0.76-0.90] (p = 0.001), LCX from 0.92 [0.88-0.96] to 0.91 [0.85-0.95] (p = 0.009), and RCA from 0.92 [0.86-0.95] to 0.90 [0.86-0.94] (p = 0.004). The number of focal anatomical stenoses of > 30% increased from a median of 1 [0-2] at baseline to 2 [0-3] at follow-up (p = 0.009). CONCLUSIONS: The distal coronary FFRct values in post-HTX patients in each of the three major coronary arteries decreased, and the number of focal coronary stenoses increased over a 2-year period. Temporal FFRct change rate may become an additional parameter in the follow-up of HTx patients, but more research is needed to elucidate its role. CLINICAL RELEVANCE STATEMENT: CT-derived fractional flow reserve (FFRct) is important post-heart transplant because of additional information on coronary CT angiography for cardiac allograft vasculopathy (CAV) detection. The decrease and degree of reduction in distal FFRct value may indicate progression in anatomic CAV burden. KEY POINTS: CT-derived fractional flow reserve (FFRct) is important for monitoring cardiac allograft vasculopathy (CAV) in heart transplant patients. Over time, transplant patients showed a decrease in distal FFRct and an increase in coronary stenoses. Temporal changes in FFRct could be crucial for transplant follow-up, aiding in CAV detection.

6.
J Cardiovasc Dev Dis ; 11(7)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39057636

ABSTRACT

The use of invasive physiology methods in patients with renal dysfunction is not well elucidated. Our objective was to evaluate the in-hospital and long-term results of using intracoronary physiology to guide revascularization in patients with chronic kidney disease. In this retrospective study, we evaluated 151 patients from January 2018 to January 2022, divided into 2 groups: CKD (81 patients [114 lesions]) and non-CKD (70 patients [117 lesions]). The mean age was higher (p < 0.001), body mass index was lower (p = 0.007), contrast volume used was lower (p = 0.02) and the number of ischemic lesions/patients was higher (p = 0.005) in the CKD group. The primary outcomes (rate of major adverse cardiac events during follow-up, defined as death, infarction, and need for new revascularization) in the CKD and non-CKD groups were 22.07% and 14.92%, respectively (p = 0.363). There was a significant difference in the target lesion revascularization (TLR) rate (11.68%, CKD group vs. 1.49%, non-CKD group, p = 0.02), this initial statistical difference was not significant after adjusting for variables in the logistic regression model. There was no difference between the rates of death from all causes (6.49%, CKD group vs. 1.49%, non-CKD group, p = 0.15), reinfarction (3.89%, CKD group vs. 1.49%, non-CKD group, p = 0.394), and need for new revascularization (11.68%, CKD group vs. 5.97%, non-CKD group, p = 0.297). As there was no difference in the endpoints between groups with long-term follow-up, this study demonstrated the safety of using intracoronary physiology to guide revascularization in patients with CKD.

7.
Article in English | MEDLINE | ID: mdl-39001732

ABSTRACT

BACKGROUND: The association of coronary computed tomography angiography (CTA) and left ventricular (LV) myocardium measurements with cancer therapy-related cardiac dysfunction (CTRCD) is limited. OBJECTIVES: In this study, the authors sought to evaluate the changes in coronary arteries and LV myocardium in patients with left breast cancer (BC) receiving anthracycline with or without radiotherapy, with the use of coronary CTA. METHODS: Participants with left BC receiving anthracycline with or without radiotherapy were prospectively included. All participants underwent coronary CTA before and after treatment, including nonenhanced calcium-scoring scan, computed tomography angiography, and dual-energy late enhancement scan. Computed tomographic fractional flow reserve (CT-FFR), pericoronary adipose tissue (PCAT) CT attenuation, and LV segments' extracellular volume (ECV) before and after treatment were compared. Logistic regression analysis was used to assess the association between baseline coronary CTA parameters and CTRCD. RESULTS: Eighty participants receiving anthracycline and 59 participants receiving anthracycline with radiotherapy were included. CT-FFR decreased and PCAT CT attenuation and LV global and segments' ECV increased after treatment (all P < 0.05). After chemoradiotherapy, CT-FFR was lower and PCAT CT attenuation and LV myocardial ECV were higher than after chemotherapy. Twenty-four participants developed CTRCD. After adjustment by Heart Failure Association-International Cardio-Oncology Society risk in multivariable logistic regression analysis, baseline stenosis of the left anterior descending artery (LAD) (OR: 1.987 [95% CI: 1.322-2.768]; P = 0.021), left circumflex artery (LCX) (OR: 1.895 [95% CI: 1.281-2.802]; P = 0.031), and right coronary artery (RCA) (OR: 1.920 [95% CI: 1.405-2.811]; P = 0.028), and baseline CT-FFR of the LAD (OR: 3.425 [95% CI: 1.621-9.434]; P < 0.001), LCX (OR: 2.058 [95% CI: 1.030-5.076]; P = 0.006), and RCA (OR: 2.469 [95% CI: 1.232-6.944]; P = 0.004) were associated with CTRCD. CONCLUSIONS: Multiparameter coronary CTA contributes to comprehensive assessment of the coronary arteries and myocardium in patients with left BC receiving anthracycline with or without radiotherapy. Baseline coronary artery stenosis and CT-FFR might be imaging markers for predicting CTRCD in these patients.

8.
Heart Vessels ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981910

ABSTRACT

Continuous intravenous adenosine triphosphate (ATP) administration is the standard method for inducing maximal hyperemia in fractional flow reserve (FFR) measurements. Several cases have demonstrated fluctuations in the ratio of mean distal coronary pressure to mean arterial pressure (Pd/Pa) value during ATP infusion, which raised our suspicions of FFR value inaccuracy. This study aimed to investigate our hypothesis that Pd/Pa fluctuations may indicate inaccurate FFR measurements caused by insufficient hyperemia. We examined 57 consecutive patients with angiographically intermediate coronary lesions who underwent fractional flow reverse (FFR) measurements in our hospital between November 2016 and September 2018. Pd/Pa was measured after continuous ATP administration (150 µg/kg/min) via a peripheral forearm vein for 5 min (FFRA); and we analyzed the FFR value variation in the final 20 s of the 5 min, defining 'Fluctuation' as variation range > 0.03. Then, 2 mg of nicorandil was administered into the coronary artery during continued ATP infusion, and the Pd/Pa was remeasured (FFRA+N). Fluctuations were observed in 23 of 57 patients. The cases demonstrating discrepancies of > 0.05 between FFRA and FFRA+N were observed more frequently in the fluctuation group than in the non-fluctuation group (12/23 vs. 1/34; p < 0.0001). The discrepancy between FFRA and FFRA+N values was smaller in the non-fluctuation group (mean difference ± SD; -0.00026 ± 0.04636 vs. 0.02608 ± 0.1316). Pd/Pa fluctuation with continuous ATP administration could indicate inaccurate FFR measurements caused by incomplete hyperemia. Additional vasodilator administration may achieve further hyperemia when Pd/Pa fluctuations are observed.

9.
Article in English | MEDLINE | ID: mdl-38995488

ABSTRACT

Accurate modeling of blood dynamics in the coronary microcirculation is a crucial step toward the clinical application of in silico methods for the diagnosis of coronary artery disease. In this work, we present a new mathematical model of microcirculatory hemodynamics accounting for microvasculature compliance and cardiac contraction; we also present its application to a full simulation of hyperemic coronary blood flow and 3D myocardial perfusion in real clinical cases. Microvasculature hemodynamics is modeled with a compliant multi-compartment Darcy formulation, with the new compliance terms depending on the local intramyocardial pressure generated by cardiac contraction. Nonlinear analytical relationships for vessels distensibility are included based on experimental data, and all the parameters of the model are reformulated based on histologically relevant quantities, allowing a deeper model personalization. Phasic flow patterns of high arterial inflow in diastole and venous outflow in systole are obtained, with flow waveforms morphology and pressure distribution along the microcirculation reproduced in accordance with experimental and in vivo measures. Phasic diameter change for arterioles and capillaries is also obtained with relevant differences depending on the depth location. Coronary blood dynamics exhibits a disturbed flow at the systolic onset, while the obtained 3D perfusion maps reproduce the systolic impediment effect and show relevant regional and transmural heterogeneities in myocardial blood flow (MBF). The proposed model successfully reproduces microvasculature hemodynamics over the whole heartbeat and along the entire intramural vessels. Quantification of phasic flow patterns, diameter changes, regional and transmural heterogeneities in MBF represent key steps ahead in the direction of the predictive simulation of cardiac perfusion.

10.
Eur Heart J Imaging Methods Pract ; 2(1): qyae035, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39045181

ABSTRACT

Aims: A comparison of diagnostic performance comparing AI-QCTISCHEMIA, coronary computed tomography angiography using fractional flow reserve (CT-FFR), and physician visual interpretation on the prediction of invasive adenosine FFR have not been evaluated. Furthermore, the coronary plaque characteristics impacting these tests have not been assessed. Methods and results: In a single centre, 43-month retrospective review of 442 patients referred for coronary computed tomography angiography and CT-FFR, 44 patients with CT-FFR had 54 vessels assessed using intracoronary adenosine FFR within 60 days. A comparison of the diagnostic performance among these three techniques for the prediction of FFR ≤ 0.80 was reported. The mean age of the study population was 65 years, 76.9% were male, and the median coronary artery calcium was 654. When analysing the per-vessel ischaemia prediction, AI-QCTISCHEMIA had greater specificity, positive predictive value (PPV), diagnostic accuracy, and area under the curve (AUC) vs. CT-FFR and physician visual interpretation CAD-RADS. The AUC for AI-QCTISCHEMIA was 0.91 vs. 0.76 for CT-FFR and 0.62 for CAD-RADS ≥ 3. Plaque characteristics that were different in false positive vs. true positive cases for AI-QCTISCHEMIA were max stenosis diameter % (54% vs. 67%, P < 0.01); for CT-FFR were maximum stenosis diameter % (40% vs. 65%, P < 0.001), total non-calcified plaque (9% vs. 13%, P < 0.01); and for physician visual interpretation CAD-RADS ≥ 3 were total non-calcified plaque (8% vs. 12%, P < 0.01), lumen volume (681 vs. 510 mm3, P = 0.02), maximum stenosis diameter % (40% vs. 62%, P < 0.001), total plaque (19% vs. 33%, P = 0.002), and total calcified plaque (11% vs. 22%, P = 0.003). Conclusion: Regarding per-vessel prediction of FFR ≤ 0.8, AI-QCTISCHEMIA revealed greater specificity, PPV, accuracy, and AUC vs. CT-FFR and physician visual interpretation CAD-RADS ≥ 3.

11.
Sci Rep ; 14(1): 15640, 2024 07 08.
Article in English | MEDLINE | ID: mdl-38977740

ABSTRACT

Coronary artery disease is the leading global cause of mortality and Fractional Flow Reserve (FFR) is widely regarded as the gold standard for assessing coronary artery stenosis severity. However, due to the limitations of invasive FFR measurements, there is a pressing need for a highly accurate virtual FFR calculation framework. Additionally, it's essential to consider local haemodynamic factors such as time-averaged wall shear stress (TAWSS), which play a critical role in advancement of atherosclerosis. This study introduces an innovative FFR computation method that involves creating five patient-specific geometries from two-dimensional coronary angiography images and conducting numerical simulations using computational fluid dynamics with a three-element Windkessel model boundary condition at the outlet to predict haemodynamic distribution. Furthermore, four distinct boundary condition methodologies are applied to each geometry for comprehensive analysis. Several haemodynamic features, including velocity, pressure, TAWSS, and oscillatory shear index are investigated and compared for each case. Results show that models with average boundary conditions can predict FFR values accurately and observed errors between invasive FFR and virtual FFR are found to be less than 5%.


Subject(s)
Coronary Angiography , Coronary Vessels , Fractional Flow Reserve, Myocardial , Humans , Coronary Angiography/methods , Coronary Vessels/diagnostic imaging , Coronary Vessels/physiopathology , Models, Cardiovascular , Hemodynamics , Coronary Stenosis/physiopathology , Coronary Stenosis/diagnostic imaging , Coronary Artery Disease/physiopathology , Coronary Artery Disease/diagnostic imaging , Male , Computer Simulation , Female , Middle Aged
12.
Scand Cardiovasc J ; 58(1): 2373082, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38962961

ABSTRACT

OBJECTIVES: The diagnostic performance of fractional flow reserve with computed tomography (FFR-CT) is affected by the presence of calcified plaque. Subtraction can remove the influence of calcification in coronary computed tomography angiography (CCTA) to increase confidence in the diagnosis of coronary artery stenosis. Our purpose is to investigate the accuracy of post-subtraction FFR-CT in predicting early revascularization. DESIGN: Based on CCTA data of 237 vessels from 79 patients with coronary artery disease, subtraction CCTA images were obtained at a local post-processing workstation, and the conventional and post-subtraction FFR-CT measurements and the difference in proximal and distal FFR-CT values of the narrowest segment of the vessel (ΔFFR-CT) were analyzed for their accuracy in predicting early coronary artery hemodynamic reconstruction. RESULTS: With FFR-CT ≤ 0.8 as the criterion, the accuracy of conventional and post-subtraction FFR-CT measurements in predicting early revascularization was 73.4% and 77.2% at the patient level, and 64.6% and 72.2% at the vessel level, respectively. The specificity of post-subtraction FFR-CT measurements was significantly higher than that of conventional FFR-CT at both the patient and vessel levels (P of 0.013 and 0.015, respectively). At the vessel level, the area under the curve of receiver operating characteristic was 0.712 and 0.797 for conventional and post-subtraction ΔFFR-CT, respectively, showing a difference (P = 0.047), with optimal cutoff values of 0.07 and 0.11, respectively. CONCLUSION: The post-subtraction FFR-CT measurements enhance the specificity in predicting early revascularization. The post-subtraction ΔFFR-CT value of the stenosis segment > 0.11 may be an important indicator for early revascularization.


Subject(s)
Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Myocardial Revascularization , Predictive Value of Tests , Humans , Male , Female , Middle Aged , Aged , Coronary Artery Disease/physiopathology , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/physiopathology , Coronary Stenosis/therapy , Reproducibility of Results , Coronary Vessels/physiopathology , Coronary Vessels/diagnostic imaging , Vascular Calcification/diagnostic imaging , Vascular Calcification/physiopathology , Vascular Calcification/therapy , Retrospective Studies , Multidetector Computed Tomography , Severity of Illness Index , Time-to-Treatment , Angiography, Digital Subtraction
13.
Article in English | MEDLINE | ID: mdl-38970593

ABSTRACT

BACKGROUND: Selection for invasive angiography is recommended to be based on pretest probabilities (PTPs), and physiological measures of hemodynamical impairment by, for example, fractional flow reserve (FFR) should guide revascularization. The risk factor-weighted clinical likelihood (RF-CL) and coronary artery calcium score-weighted clinical likelihood (CACS-CL) models show superior discrimination of patients with suspected obstructive coronary artery disease (CAD), but validation against hemodynamic impairment is warranted. OBJECTIVES: The aim of this study was to validate the RF-CL and CACS-CL models against hemodynamically obstructive CAD. METHODS: Stable de novo chest pain patients (N = 4,371) underwent coronary computed tomography angiography and subsequently invasive coronary angiography with FFR measurements. Hemodynamically obstructive CAD was defined as invasive FFR ≤0.80 or high-grade stenosis by visual assessment (>90% diameter stenosis). For comparison, a guideline-endorsed basic PTP model was calculated based on age, sex, and symptom typicality. The RF-CL model additionally included the number of risk factors, and the CACS-CL model incorporated the coronary artery calcium score into the RF-CL. RESULTS: In total, 447 of 4,371 (10.9%) patients had hemodynamically obstructive CAD. Both the RF-CL and CACS-CL models classified more patients with a very low clinical likelihood (≤5%) of obstructive CAD compared to the basic PTP model (33.0% and 53.7% vs 12.0%; P < 0.001) with a preserved low prevalence of hemodynamically obstructive CAD (<5% for all models). Against hemodynamically obstructive CAD, calibration and discrimination of the RF-CL and CACS-CL models were superior to the basic PTP model. CONCLUSIONS: The RF-CL and CACS-CL models are well calibrated and superior to a currently recommended basic PTP model to predict hemodynamically obstructive CAD. (Danish Study of Non-Invasive Diagnostic Testing in Coronary Artery Disease [Dan-NICAD]; NCT02264717; Danish Study of Non-Invasive Diagnostic Testing in Coronary Artery Disease 2 [Dan-NICAD 2]; NCT03481712, Danish Study of Non-Invasive Diagnostic Testing in Coronary Artery Disease 3 [Dan-NICAD 3]; NCT04707859).

14.
Article in English | MEDLINE | ID: mdl-38963591

ABSTRACT

Coronary computed angiography (CCTA) with non-invasive fractional flow reserve (FFR) calculates lesion-specific ischemia when compared with invasive FFR and can be considered for patients with stable chest pain and intermediate-grade stenoses according to recent guidelines. The objective of this study was to compare a new CCTA-based artificial-intelligence deep-learning model for FFR prediction (FFRAI) to computational fluid dynamics CT-derived FFR (FFRCT) in patients with intermediate-grade coronary stenoses with FFR as reference standard. The FFRAI model was trained with curved multiplanar-reconstruction CCTA images of 500 stenotic vessels in 413 patients, using FFR measurements as the ground truth. We included 37 patients with 39 intermediate-grade stenoses on CCTA and invasive coronary angiography, and with FFRCT and FFR measurements in this retrospective proof of concept study. FFRAI was compared with FFRCT regarding the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy for predicting FFR ≤ 0.80. Sensitivity, specificity, PPV, NPV, and diagnostic accuracy of FFRAI in predicting FFR ≤ 0.80 were 91% (10/11), 82% (23/28), 67% (10/15), 96% (23/24), and 85% (33/39), respectively. Corresponding values for FFRCT were 82% (9/11), 75% (21/28), 56% (9/16), 91% (21/23), and 77% (30/39), respectively. Diagnostic accuracy did not differ significantly between FFRAI and FFRCT (p = 0.12). FFRAI performed similarly to FFRCT for predicting intermediate-grade coronary stenoses with FFR ≤ 0.80. These findings suggest FFRAI as a potential non-invasive imaging tool for guiding therapeutic management in these stenoses.

15.
J Clin Med ; 13(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38999224

ABSTRACT

In patients with diabetes mellitus, accelerated progression of atherosclerosis can lead to worse clinical outcomes. Determining the best diagnostic strategy to identify patients with increased cardiovascular risk is challenging. Current guidelines recommend using both functional imaging and CT angiography to detect myocardial ischemia and coronary artery disease based on pre-test probability. Functional imaging is suggested for patients with a higher clinical likelihood due to its higher rule-in diagnostic capacity. On the other hand, CT angiography is preferred for patients with lower pre-test probability because of its excellent negative predictive value. The optimal management strategy for asymptomatic diabetic patients remains unclear. In asymptomatic diabetic patients, previous randomized trials have not shown benefits from diagnostic testing over standard care. However, these trials were methodologically inconsistent and lacked clear stratification of cardiovascular risk. In terms of invasive evaluation, a combined invasive functional and anatomic imaging approach for angiographically intermediate coronary stenosis appears to be the best, most effective decision pathway for managing diabetic patients.

16.
J Clin Med ; 13(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38999397

ABSTRACT

Objective: To present a novel pipeline for rapid and precise computation of fractional flow reserve from an analysis of routine two-dimensional coronary angiograms based on fluid mechanics equations (FFR2D). Material and methods: This was a pilot analytical study that was designed to assess the diagnostic performance of FFR2D versus the gold standard of FFR (threshold ≤ 0.80) measured with a pressure wire for the physiological assessment of intermediate coronary artery stenoses. In a single academic center, consecutive patients referred for diagnostic coronary angiography and potential revascularization between 1 September 2020 and 1 September 2022 were screened for eligibility. Routine two-dimensional angiograms at optimal viewing angles with minimal overlap and/or foreshortening were segmented semi-automatically to derive the vascular geometry of intermediate coronary lesions, and nonlinear pressure-flow mathematical relationships were applied to compute FFR2D. Results: Some 88 consecutive patients with a single intermediate coronary artery lesion were analyzed (LAD n = 74, RCA n = 9 and LCX n = 5; percent diameter stenosis of 45.7 ± 11.0%). The computed FFR2D was on average 0.821 ± 0.048 and correlated well with invasive FFR (r = 0.68, p < 0.001). There was very good agreement between FFR2D and invasive-wire FFR with minimal measurement bias (mean difference: 0.000 ± 0.048). The overall accuracy of FFR2D for diagnosing a critical epicardial artery stenosis was 90.9% (80 cases classified correctly out of 88 in total). FFR2D identified 24 true positives, 56 true negatives, 4 false positives, and 4 false negatives and predicted FFR ≤ 0.80 with a sensitivity of 85.7%, specificity of 93.3%, positive likelihood ratio of 13.0, and negative likelihood ratio of 0.15. FFR2D had a significantly better discriminatory capacity (area under the ROC curve: 0.95 [95% CI: 0.91-0.99]) compared to 50%DS on 2D-QCA (area under the ROC curve: 0.70 [95% CI: 0.59-0.82]; p = 0.0001) in predicting wire FFR ≤ 0.80. The median time of image analysis was 2 min and the median time of computation of the FFR2D results was 0.1 s. Conclusion: FFR2D may rapidly derive a precise image-based metric of fractional flow reserve with high diagnostic accuracy based on a single two-dimensional coronary angiogram.

17.
Comput Methods Programs Biomed ; 255: 108325, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39053351

ABSTRACT

BACKGROUND AND OBJECTIVE: Fractional Flow Reserve (FFR) is generally considered the gold standard in hemodynamics to assess the impact of a stenosis on the blood flow. The standard procedure to measure involves the displacement of a pressure guide along the circulatory system until it is placed next to the lesion to be analyzed. The main objective of the present study is to analyze the influence of the pressure guide on the invasive FFR measurements and its implications in clinical practice. METHODS: We studied the influence of pressure wires on the measurement of Fractional Flow Reserve (FFR) through a combination of Computational Fluid Dynamics (CFD) simulations using 45 clinical patient data with 58 lesions and ideal geometries. The analysis is conducted considering patients that were subjected to a computer tomography and also have direct measurements using a pressure guide. Influence of the stenosis severity, degree of occlusion and blood viscosity has also been studied. RESULTS: The influence of pressure wires specifically affects severe stenosis with a lumen diameter reduction of 50 % or greater. This type of stenosis leads to reduced hyperemic flow and increased coronary pressure drop. Thus, we identified that the placement of wires during FFR measurements results in partial obstruction of the coronary artery lumen, leading to increased pressure drop and subsequent reduction in blood flow. The severity of low FFR values associated with severe stenosis may be prone to overestimation when compared to stenosis without severe narrowing. These results have practical implications, particularly in the interpretation of lesions falling within the "gray zone" (0,75-0,80). CONCLUSIONS: The pressure wire's presence significantly alters the flow on severe lesions, which has an impact on the FFR calculation. In contrast, the impact of the pressure wire appears to be reduced when the FFR is larger than 0.8. The findings provide critical information for physicians, emphasizing the need for cautious interpretation of FFR values, particularly in severe stenosis. It also offers insights into improving the correlation between FFRct models and invasive measurements by incorporating the influence of pressure wires.

18.
Korean Circ J ; 54(8): 485-496, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38956940

ABSTRACT

BACKGROUND AND OBJECTIVES: Angiographic assessment of coronary stenosis severity using quantitative coronary angiography (QCA) is often inconsistent with that based on fractional flow reserve (FFR) or intravascular ultrasound (IVUS). We investigated the incidence of discrepancies between QCA and FFR or IVUS, and the outcomes of FFR- and IVUS-guided strategies in discordant coronary lesions. METHODS: This study was a post-hoc analysis of the FLAVOUR study. We used a QCA-derived diameter stenosis (DS) of 60% or greater, the highest tertile, to classify coronary lesions as concordant or discordant with FFR or IVUS criteria for percutaneous coronary intervention (PCI). The patient-oriented composite outcome (POCO) was defined as a composite of death, myocardial infarction, or revascularization at 24 months. RESULTS: The discordance rate between QCA and FFR or IVUS was 30.2% (n=551). The QCA-FFR discordance rate was numerically lower than the QCA-IVUS discordance rate (28.2% vs. 32.4%, p=0.050). In 200 patients with ≥60% DS, PCI was deferred according to negative FFR (n=141) and negative IVUS (n=59) (15.3% vs. 6.5%, p<0.001). The POCO incidence was comparable between the FFR- and IVUS-guided deferral strategies (5.9% vs. 3.4%, p=0.479). Conversely, 351 patients with DS <60% underwent PCI according to positive FFR (n=118) and positive IVUS (n=233) (12.8% vs. 25.9%, p<0.001). FFR- and IVUS-guided PCI did not differ in the incidence of POCO (9.5% vs. 6.5%, p=0.294). CONCLUSIONS: The proportion of QCA-FFR or IVUS discordance was approximately one third for intermediate coronary lesions. FFR- or IVUS-guided strategies for these lesions were comparable with respect to POCO at 24 months. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02673424.

19.
Clin Res Cardiol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990250

ABSTRACT

OBJECTIVES: INCORPORATE trial was designed to evaluate whether default coronary-angiography (CA) and ischemia-targeted revascularization is superior compared to a conservative approach for patients with treated critical limb ischemia (CLI). Registered at clinicaltrials.gov (NCT03712644) on October 19, 2018. BACKGROUND: Severe peripheral artery disease is associated with increased cardiovascular risk and poor outcomes. METHODS: INCORPORATE was an open-label, prospective 1:1 randomized multicentric trial that recruited patients who had undergone successful CLI treatment. Patients were randomized to either a conservative or invasive approach regarding potential coronary artery disease (CAD). The conservative group received optimal medical therapy alone, while the invasive group had routine CA and fractional flow reserve-guided revascularization. The primary endpoint was myocardial infarction (MI) and 12-month mortality. RESULTS: Due to COVID-19 pandemic burdens, recruitment was halted prematurely. One hundred eighty-five patients were enrolled. Baseline cardiac symptoms were scarce with 92% being asymptomatic. Eighty-nine patients were randomized to the invasive approach of whom 73 underwent CA. Thirty-four percent had functional single-vessel disease, 26% had functional multi-vessel disease, and 90% achieved complete revascularization. Conservative and invasive groups had similar incidences of death and MI at 1 year (11% vs 10%; hazard ratio 1.21 [0.49-2.98]). Major adverse cardiac and cerebrovascular events (MACCE) trended for hazard in the Conservative group (20 vs 10%; hazard ratio 1.94 [0.90-4.19]). In the per-protocol analysis, the primary endpoint remained insignificantly different (11% vs 7%; hazard ratio 2.01 [0.72-5.57]), but the conservative approach had a higher MACCE risk (20% vs 7%; hazard ratio 2.88 [1.24-6.68]). CONCLUSION: This trial found no significant difference in the primary endpoint but observed a trend of higher MACCE in the conservative arm.

20.
Interv Cardiol ; 19: e09, 2024.
Article in English | MEDLINE | ID: mdl-39081828

ABSTRACT

Recent years have seen the publication of several high-profile, negative trials about pressure wires. This has coincided with a consistent increase in the ratio of angioplasty for acute coronary syndromes versus percutaneous coronary intervention in stable coronary artery disease, a greater use of intracoronary imaging during percutaneous coronary intervention and the continued evolution of computational fluid dynamics-derived estimations of fractional flow reserve from both CT and invasive coronary angiography. Consequently, many interventional cardiologists now wonder if the pressure wire will soon become obsolete. This head-to-head article provides a critical appraisal of recent trial data, discusses a potential evolution in how pressure wires are used and debates the motion that the device (and by extension, invasive assessment of coronary physiology) has now had its day.

SELECTION OF CITATIONS
SEARCH DETAIL