Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Exp Neurol ; 377: 114805, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729552

ABSTRACT

Staufen-1 (STAU1) is a double-stranded RNA-binding protein (RBP) involved in a variety of pathological conditions. In this study, we investigated the potential role of STAU1 in Alzheimer's disease (AD), in which two hallmarks are well-established as cerebral ß-amyloid protein (Aß) deposition and Tau-centered neurofibrillary tangles. We found that STAU1 protein level was significantly increased in cells that stably express full-length APP and the brain of APP/PS1 mice, an animal model of AD. STAU1 knockdown, as opposed to overexpression, significantly decreased the protein levels of ß-amyloid converting enzyme 1 (BACE1) and Aß. We further found that STAU1 extended the half-life of the BACE1 mRNA through binding to the 3' untranslated region (3'UTR). Transcriptome analysis revealed that STAU1 enhanced the expression of growth arrest and DNA damage 45 ß (GADD45B) upstream of P38 MAPK signaling, which contributed to STAU1-induced regulation of Tau phosphorylation at Ser396 and Thr181. Together, STAU1 promoted amyloidogenesis by inhibiting BACE1 mRNA decay, and augmented Tau phosphorylation through activating GADD45B in relation to P38 MAPK. Targeting STAU1 that acts on both amyloidogenesis and tauopathy may serve as an optimistic approach for AD treatment.


Subject(s)
Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , RNA-Binding Proteins , tau Proteins , Animals , tau Proteins/metabolism , tau Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mice , Phosphorylation , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/genetics , Humans , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Cells, Cultured , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics
2.
Life Sci ; 346: 122618, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614306

ABSTRACT

AIMS: This study was designed to investigate the role of growth arrest and DNA damage-inducible ß (GADD45B) in modulating fear memory acquisition and elucidate its underlying mechanisms. MAIN METHODS: Adeno-associated virus (AAV) that knockdown or overexpression GADD45B were injected into ventral hippocampal CA1 (vCA1) by stereotactic, and verified by fluorescence and Western blot. The contextual fear conditioning paradigm was employed to examine the involvement of GADD45B in modulating aversive memory acquisition. The Y-maze and novel location recognition (NLR) tests were used to examine non-aversive cognition. The synaptic plasticity and electrophysiological properties of neurons were measured by slice patch clamp. KEY FINDINGS: Knockdown of GADD45B in the vCA1 significantly enhanced fear memory acquisition, accompanied by an upregulation of long-term potentiation (LTP) expression and intrinsic excitability of vCA1 pyramidal neurons (PNs). Conversely, overexpression of GADD45B produced the opposite effects. Notably, silencing the activity of vCA1 neurons abolished the impact of GADD45B knockdown on fear memory development. Moreover, mice with vCA1 GADD45B overexpression exhibited impaired spatial cognition, whereas mice with GADD45B knockdown did not display such impairment. SIGNIFICANCE: These results provided compelling evidence for the crucial involvement of GADD45B in the formation of aversive memory and spatial cognition.


Subject(s)
CA1 Region, Hippocampal , Fear , GADD45 Proteins , Mice, Inbred C57BL , Animals , Male , Fear/physiology , Mice , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiology , Cognition/physiology , Memory/physiology , Long-Term Potentiation/physiology , Maze Learning/physiology , Neuronal Plasticity/physiology , Antigens, Differentiation/metabolism , Antigens, Differentiation/genetics , Gene Knockdown Techniques
3.
Heliyon ; 10(6): e27427, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38501008

ABSTRACT

Background: The predominant feature of cancer cells during the process of carcinogenesis is the inclination towards glycolytic metabolism rather than mitochondrial oxidative phosphorylation. Nevertheless, there is a scarcity of research investigating the correlation between bladder cancer and mitochondrial energy metabolism. Methods: A qPCR array comprising 90 genes associated with mitochondrial oxidative phosphorylation was employed to discern metabolic disparities between three sets of bladder cancer tissue and adjacent normal tissue. Wound healing and transwell assays were utilized to assess cell migration and invasion capabilities, respectively. Colony formation assays were conducted to ascertain the tumorigenic potential of the cells. The proliferative capacity of the cells was examined through in vitro CCK-8 assays. Additionally, nude mouse models were established to evaluate the impact of bladder tumor cells on in vivo proliferation. The Seahorse XFe96 Analyzer was utilized to quantify mitochondrial oxidative phosphorylation, while the levels of glucose-6-phosphate and pyruvate were assessed to evaluate glycolysis. Results: Examination of qPCR array data demonstrated a noteworthy inhibition of mitochondrial oxidative phosphorylation in bladder cancer tissue, as evidenced by the down-regulation of a majority of genes associated with mitochondrial energy metabolism. Notably, GADD45B may potentially exert a significant influence on bladder cancer development, warranting further investigation. The down-regulation of GADD45B in bladder cancer cells resulted in impaired mitochondrial respiration and elevated levels of glycolysis, thereby enhancing cell migration and invasion. Conversely, up-regulation of GADD45B had the opposite effect. Furthermore, over-expression of GADD45B inhibited tumor proliferation and tumorigenesis in both in vitro and in vivo settings. Conclusion: These findings from our study indicate that the down-regulation of GADD45B promotes the shift of cell mitochondrial oxidative phosphorylation towards glycolysis, thereby facilitating the progression of bladder cancer.

4.
J Adv Res ; 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38342401

ABSTRACT

INTRODUCTION: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease typically characterized by chronic airway inflammation, with emerging evidence highlighting the driving role of cellular senescence-related lung aging. Accelerated lung aging and inflammation mutually reinforce each other, creating a detrimental cycle that contributes to disease progression. Growth arrest and DNA damage-inducible (GADD45) family has been reported to involve in multiple biological processes, including inflammation and senescence. However, the role of GADD45 family in COPD remains elusive. OBJECTIVES: To investigate the role and mechanism of GADD45 family in COPD pathogenesis. METHODS: Expressions of GADD45 family were evaluated by bioinformatic analysis combined with detections in clinical specimens. The effects of GADD45B on inflammation and senescence were investigated via constructing cell model with siRNA transfection or overexpression lentivirus infection and animal model with Gadd45b knockout. Targeted bisulfite sequencing was performed to probe the influence of DNA methylation in GADD45B expression in COPD. RESULTS: GADD45B expression was significantly increased in COPD patients and strongly associated with lung function, whereas other family members presented no changes. GADD45B upregulation was confirmed in mice exposed by cigarette smoke (CS) and HBE cells treated by CS extract as well. Moreover, experiments involving bidirectional modulation of GADD45B expression in HBE cells further substantiated its positive regulatory role in inflammatory response and cellular senescence. Mechanically, GADD45B-facilitated inflammation was directly mediated by p38 phosphorylation, while GADD45B interacted with FOS to promote cellular senescence in a p38 phosphorylation-independent manner. Furthermore, Gadd45b deficiency remarkably alleviated inflammation and senescence of lungs in CS-exposed mice, as well as improved emphysema and lung function. Eventually, in vivo and vitro experiments demonstrated that GADD45B overexpression was partially mediated by CS-induced DNA hypomethylation. CONCLUSION: Our findings have shed light on the impact of GADD45B in the pathogenesis of COPD, thereby offering a promising target for intervention in clinical settings.

6.
Aging (Albany NY) ; 15(23): 13920-13943, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38070141

ABSTRACT

Response to oncogenic factors like UV, GADD45 family in skin participates in scavenging ROS, DNA repair and cell cycle control. Because of this, the previous study of the chronic UVB injury model has found that hsa-miR-300 can conduct intercellular transport by exosomes and target regulation of GADD45B. Whether the hsa-miR-300-GADD45B still regulates tumor development by cell cycle pathway is unclear. Through transcriptomic analysis of primary (n=39) and metastatic (n=102) melanoma, it was confirmed that in metastatic samples, some of the 97 down-regulated genes participate in maintaining skin homeostasis while 42 up-regulated genes were enriched in cancer-related functions. Furthermore, CDKN1A, CDKN2A, CXCR4 and RAD51 in the melanoma pathway, were also differentially expressed between normal skin and melanoma. CDKN1A and CDKN2A were also found to be involved in TP53-dependent cell cycle regulation. In conclusion, it was speculated that CDKN1A, CDKN2A, TP53, GADD45B and hsa-miR-300 may have regulatory relationships. It was demonstrated that there is a bidirectional regulation between hsa-miR-300 and TP53. In addition, miR-300 can regulate CDKN1A by GADD45B/TP53 and promote melanoma growth by accelerating the cell cycle transition from G1/S to G2 phase.


Subject(s)
Melanoma , MicroRNAs , Humans , Melanoma/genetics , Cell Cycle/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Division , Cell Cycle Checkpoints , GADD45 Proteins , Antigens, Differentiation/genetics , Antigens, Differentiation/metabolism
7.
Fetal Pediatr Pathol ; 42(5): 785-795, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37534585

ABSTRACT

Background: We correlated the expression of growth arrest and DNA damage-inducible protein beta (GADD45B) in renal tissue with IgA nephropathy (IgAN) with clinical characteristics and mesangial hypercellularity. Materials and methods: Biopsies from IgAN children were divided into M0 and M1 groups based on the Oxford classification, and biopsies with minimal change disease (MCD) were selected as controls. The mesangial cell proliferation area was evaluated on PAS-stained tissues, and the relative level of GADD45B in renal tissue was assessed by immunohistochemical staining (IHC). Results: Compared with the MCD group, levels of GADD45B in the M0 and M1 groups were significantly higher (p < 0.05). Levels of GADD45B positively correlated with mesangial cell proliferation, proteinuria, and total cholesterol, negatively correlated with Alb levels. Conclusions: It is suggested that high expression of GADD45B may play a regulatory role in mesangial hypercellularity.


Subject(s)
Glomerulonephritis, IGA , Humans , Child , Glomerulonephritis, IGA/pathology , Proteinuria/pathology , Biopsy , Antigens, Differentiation
8.
Int J Mol Sci ; 24(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37511062

ABSTRACT

Chromatin regulators (CRs) are essential upstream regulatory factors of epigenetic modification. The role of CRs in the pathogenesis of renal ischemia-reperfusion injury (IRI) remains unclear. We analyzed a bioinformatic analysis on the differentially expressed chromatin regulator genes in renal IRI patients using data from public domains. The hub CRs identified were used to develop a risk prediction model for renal IRI, and their expressions were also validated using Western blot, qRT-PCR, and immunohistochemistry in a murine renal IRI model. We also examined the relationships between hub CRs and infiltrating immune cells in renal IRI and used network analysis to explore drugs that target hub CRs and their relevant downstream microRNAs. The results of machine learning methods showed that five genes (DUSP1, GADD45A, GADD45B, GADD45G, HSPA1A) were upregulated in renal IRI, with key roles in the cell cycle, p38 MAPK signaling pathway, p53 signaling pathway, FoxO signaling pathway, and NF-κB signaling pathway. Two genes from the network, GADD45A and GADD45B (growth arrest and DNA damage-inducible protein 45 alpha and beta), were chosen for the renal IRI risk prediction model. They all showed good performance in the testing and validation cohorts. Mice with renal IRI showed significantly upregulated GADD45A and GADD45B expression within kidneys compared to sham-operated mice. GADD45A and GADD45B showed correlations with plasmacytoid dendritic cells (pDCs) in infiltrating immune cell analysis and enrichment in the MAPK pathway based on the weighted gene co-expression network analysis (WGCNA) method. Candidate drugs that target GADD45A and GADD45B include beta-escin, sertraline, primaquine, pimozide, and azacyclonol. The dysregulation of GADD45A and GADD45B is related to renal IRI and the infiltration of pDCs, and drugs that target GADD45A and GADD45B may have therapeutic potential for renal IRI.


Subject(s)
Chromatin , Reperfusion Injury , Animals , Mice , Biomarkers/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin/genetics , Chromatin/metabolism , Kidney/metabolism , Reperfusion Injury/metabolism
9.
MedComm (2020) ; 4(3): e269, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37250145

ABSTRACT

Lysine-specific histone demethylase 1 (LSD1) is an attractive target for malignancies therapy. Nevertheless, its role in hepatocellular carcinoma (HCC) progression and the potential of its inhibitor in HCC therapy remains unclear. Here, we show that LSD1 overexpression in human HCC tissues is associated with HCC progression and poor patient survival. ZY0511, a highly selective and potent inhibitor of LSD1, suppressed human HCC cell proliferation in vitro and tumor growth in cell-derived and patient-derived HCC xenograft models in vivo. Mechanistically, ZY0511 induced mRNA expression of growth arrest and DNA damage-inducible gene 45beta (GADD45B) by inducing histone H3 at lysine 4 (H3K4) methylation at the promoter of GADD45B, a novel target gene of LSD1. In human HCC tissues, LSD1 level was correlated with a decreased level of GADD45B, which was associated with HCC progression and predicted poor patient survival. Moreover, co-administration of ZY0511 and DTP3, which specifically enhanced the pro-apoptotic effect of GADD45B, effectively inhibited HCC cell proliferation both in vitro and in vivo. Collectively, our study revealed the potential value of LSD1 as a promising target of HCC therapy. ZY0511 is a promising candidate for HCC therapy through upregulating GADD45B, thereby providing a novel combinatorial strategy for treating HCC.

10.
Autoimmunity ; 56(1): 2209706, 2023 12.
Article in English | MEDLINE | ID: mdl-37165780

ABSTRACT

BACKGROUND: This study focussed on exploring the prognostic prediction performance of the growth arrest and DNA damage-inducible 45 beta (GADD45B) and its associations with T-cell activity and immune soakage in different malignancies, especially lung squamous cell carcinoma (LUSC). METHODS: We applied TIMER database for comparing the expressions of GADD45B among different cancers. OncoLnc, Gene Expression Profiling Interactive Analysis 2 (GEPIA2), and Kaplan-Meier Plotter were utilised to evaluate the prognostic prediction performance of GADD45B. Besides, the associations of GADD45B with clinical stage, associated gene markers, and immune infiltration were examined through TISIDB, GEPIA2, and Tumour Immune Estimation Resource (TIMER). Biological processes (BPs) and KEGG enrichment analyses were performed to illustrate the possible role of GADD45B in LUSC. The miRWalk database was adopted to analyse the gene miRNA interaction network of GADD45B in LUSC. RESULTS: GADD45B expression was decreased in most of the malignancies, with relation to the poor prognosis in LUSC. GADD45B also significantly affected the survival of LUSC subgroups divided by clinic data. GADD45B significantly correlates with and may stimulate T cell exhaustion in LUSC. CONCLUSIONS: GADD45B is a prognostic indicator in multiple tumours, especially in LUSC. Moreover, modulating GADD45B expression may improve immunotherapy efficacy in LUSC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , T-Cell Exhaustion , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/genetics , Lung Neoplasms/genetics , Lung , Prognosis , Gene Expression Regulation, Neoplastic , Antigens, Differentiation/genetics
11.
Front Mol Neurosci ; 15: 1021207, 2022.
Article in English | MEDLINE | ID: mdl-36311022

ABSTRACT

Growth arrest and DNA damage-inducible beta (Gadd45b) is directly intertwined with stress-induced DNA repair, cell cycle arrest, survival, and apoptosis. Previous research on Gadd45b has focused chiefly on non-neuronal cells. Gadd45b is extensively expressed in the nervous system and plays a critical role in epigenetic DNA demethylation, neuroplasticity, and neuroprotection, according to accumulating evidence. This article provided an overview of the preclinical and clinical effects of Gadd45b, as well as its hypothesized mechanisms of action, focusing on major psychosis, depression, autism, stroke, seizure, dementia, Parkinson's disease, and autoimmune diseases of the nervous system.

12.
Biochem Biophys Res Commun ; 619: 166-172, 2022 09 03.
Article in English | MEDLINE | ID: mdl-35803057

ABSTRACT

RNA N6-methyladenosine (m6A) level is closely associated with neurodevelopment and central nervous system dysfunctions including spinal cord injury (SCI). M6A level can be dynamically regulated by m6A methyltransferases and demethylases. In this text, the roles of m6A demethylase FTO alpha-ketoglutarate dependent dioxygenase (FTO) in SCI development along with its m6A-dependent regulatory mechanisms were investigated in hypoxia-induced PC12 cell injury model. The results showed that FTO was low expressed in spinal cord tissues of rats after contusive SCI and hypoxia-treated PC12 cells. FTO knockdown alleviated hypoxia-induced PC12 cell injury. FTO loss increased GADD45B expression and m6A level in PC12 cells. GADD45B knockdown weakened the protective effects of FTO depletion on hypoxia-treated PC12 cells. FTO regulated GADD45B expression in an IGF2BP2-dependent manner. In conclusion, FTO knockdown mitigated the injury of hypoxia-induced PC12 cells by up-regulating GADD45B in an IGF2BP2-dependent manner.


Subject(s)
Adenosine , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Ketoglutarate Dehydrogenase Complex/metabolism , Adenosine/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Animals , Antigens, Differentiation , Hypoxia , Methyltransferases/metabolism , PC12 Cells , RNA-Binding Proteins/metabolism , Rats
13.
Adv Exp Med Biol ; 1360: 109-116, 2022.
Article in English | MEDLINE | ID: mdl-35505166

ABSTRACT

Gadd45a, Gadd45b, and Gadd45g have been implicated in cell cycle arrest, DNA repair, apoptosis, innate immunity, genomic stability, and more recently in senescence. Evidence has accumulated that Gadd45a deficiency results in escape of mouse embryo fibroblasts from senescence, whereas Gadd45b deficiency promotes premature senescence and skin aging. Moreover, recently Gadd45b deficiency was found to promote senescence and attenuate liver fibrosis, whereas Gadd45a was observed to exert a protective effect against hepatic fibrosis. These findings indicate that the Gadd45 stress response proteins play important roles in modulating cellular responses to senescence. Thus, exploring how Gadd45 proteins modulate cellular senescence has the potential to provide new and innovative tools to treat cancer as well as liver disease.


Subject(s)
Apoptosis , Skin Aging , Animals , Antigens, Differentiation , Apoptosis/genetics , Cell Cycle Checkpoints , Cellular Senescence/genetics , DNA Repair , Mice
14.
EMBO Rep ; 23(2): e53543, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34842321

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) is a powerful technique for dissecting the complexity of normal and diseased tissues, enabling characterization of cell diversity and heterogeneous phenotypic states in unprecedented detail. However, this technology has been underutilized for exploring the interactions between the host cell and viral pathogens in latently infected cells. Herein, we use scRNA-seq and single-molecule sensitivity fluorescent in situ hybridization (smFISH) technologies to investigate host single-cell transcriptome changes upon the reactivation of a human neurotropic virus, herpes simplex virus-1 (HSV-1). We identify the stress sensor growth arrest and DNA damage-inducible 45 beta (Gadd45b) as a critical antiviral host factor that regulates HSV-1 reactivation events in a subpopulation of latently infected primary neurons. We show that distinct subcellular localization of Gadd45b correlates with the viral late gene expression program, as well as the expression of the viral transcription factor, ICP4. We propose that a hallmark of a "successful" or "aborted" HSV-1 reactivation state in primary neurons is determined by a unique subcellular localization signature of the stress sensor Gadd45b.


Subject(s)
Antigens, Differentiation/metabolism , Herpesvirus 1, Human , Neurons/virology , Virus Activation , Virus Latency , Gene Expression Regulation , Herpesvirus 1, Human/physiology , Humans , In Situ Hybridization, Fluorescence , Transcriptome
15.
Int J Mol Sci ; 22(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34830055

ABSTRACT

Curcumin and curcuminoids have been discussed frequently due to their promising functional groups (such as scaffolds of α,ß-unsaturated ß-diketone, α,ß-unsaturated ketone and ß'-hydroxy-α,ß-unsaturated ketone connected with aromatic rings on both sides) that play an important role in various bioactivities, including antioxidant, anti-inflammatory, anti-proliferation and anticancer activity. A series of novel curcuminoid derivatives (a total of 55 new compounds) and three reference compounds were synthesized with good yields using three-step organic synthesis. The anti-proliferative activities of curcumin derivatives were examined for six human cancer cell lines: HeLaS3, KBvin, MCF-7, HepG2, NCI-H460 and NCI-H460/MX20. Compared to the IC50 values of all the synthesized derivatives, most α,ß-unsaturated ketones displayed potent anti-proliferative effects against all six human cancer cell lines, whereas ß'-hydroxy-α,ß-unsaturated ketones and α,ß-unsaturated ß-diketones presented moderate anti-proliferative effects. Two potent curcuminoid derivatives were found among all the novel derivatives and reference compounds: (E)-5-hydroxy-7-phenyl-1-(3,4,5-trimethoxyphenyl)hept-1-en-3-one (compound 3) and (1E,4E)-1,7-bis(3,4,5-trimethoxyphenyl)hepta-1,4-dien-3-one (compound MD12a). These were selected for further analysis after the evaluation of their anti-proliferative effects against all human cancer cell lines. The results of apoptosis assays revealed that the number of dead cells was increased in early apoptosis and late apoptosis, while cell proliferation was also decreased after applying various concentrations of (E)-5-hydroxy-7-phenyl-1-(3,4,5-trimethoxyphenyl)hept-1-en-3-one (compound 3) and (1E,4E)-1,7-bis(3,4,5-trimethoxyphenyl)hepta-1,4-dien-3-one (compound MD12a) to MCF-7 and HpeG2 cancer cells. Analysis of the gene expression arrays showed that three genes (GADD45B, SESN2 and BBC3) were correlated with the p53 pathway. From the quantitative PCR analysis, it was seen that (1E,4E)-1,7-bis(3,4,5-trimethoxyphenyl)hepta-1,4-dien-3-one (compound MD12a) effectively induced the up-regulated expression of GADD45B, leading to the suppression of MCF-7 cancer cell formation and cell death. Molecular docking analysis was used to predict and sketch the interactions of the GADD45B-α,ß-unsaturated ketone complex for help in drug design.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Diarylheptanoids/chemistry , Diarylheptanoids/pharmacology , Drug Design , Antigens, Differentiation/chemistry , Antigens, Differentiation/metabolism , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Diarylheptanoids/chemical synthesis , Drug Screening Assays, Antitumor , Gene Expression/drug effects , Gene Expression Regulation/drug effects , Genes, p53/drug effects , Humans , Ketones/chemistry , Ketones/pharmacology , Molecular Docking Simulation , Principal Component Analysis , Signal Transduction/drug effects
16.
Front Cell Dev Biol ; 9: 716501, 2021.
Article in English | MEDLINE | ID: mdl-34490266

ABSTRACT

BACKGROUND: Chemoresistance is the major cause of death in advanced prostate cancer (PCa), especially in metastatic PCa (mPCa). However, the molecular mechanisms underlying the chemoresistance of PCa remain unclear. Understanding the reason behind the drug resistance would be helpful in developing new treatment approaches. METHODS: The Cancer Genome Atlas, Gene Expression Omnibus datasets, and clinical samples were used to examine the correlation between growth arrest and DNA damage-inducible 45 beta (GADD45B) with clinical characteristics and prognosis. Lentiviral transfection was used to construct GADD45B overexpression cell lines. Hypoxic incubator, low serum medium, or docetaxel was used to build environmental stress model or chemotherapy cell model. The MTS assay and colony formation assay were used to test cell viability. Apoptosis and cell cycle were detected by flow cytometry. The RNA and protein levels of related biomarkers were tested by Western blotting and quantitative polymerase chain reaction. Bioinformatics analysis after RNA sequencing was performed to identify the possible mechanism of how GADD45B regulates chemotherapy resistance. RESULTS: GADD45B was related to distant metastasis but not to Gleason score, prostate-specific antigen level, T stage, or lymph node metastasis and indicated a good prognosis. The level of GADD45B increased significantly in PCa cells that faced environmental stress. It was found that a high level of GADD45B significantly enhanced the chemosensitivity. Furthermore, high GADD45B promoted cell apoptosis via mitogen-activated protein kinase (MAPK) pathway. CONCLUSION: GADD45B promoted chemosensitivity of prostate cancer through MAPK pathway. GADD45B could serve as a diagnostic biomarker and therapeutic target for mPCa or chemotherapy-resistant patients.

17.
Mol Ther Nucleic Acids ; 26: 34-48, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34513292

ABSTRACT

N6-methyladenosine (m6A) modification plays a critical role in mammalian development. However, the role of m6A in the skeletal muscle development remains largely unknown. Here, we report a global m6A modification pattern of goat skeletal muscle at two key development stages and identified that the m6A modification regulated the expression of the growth arrest and DNA damage-inducible 45B (GADD45B) gene, which is involved in myogenic differentiation. We showed that GADD45B expression increased during myoblast differentiation, whereas the downregulation of GADD45B inhibits myogenic differentiation and mitochondrial biogenesis. Moreover, the expression of GADD45B regulates the expression of myogenic regulatory factors and peroxisome proliferator-activated receptor gamma coactivator 1 alpha by activating the p38 mitogen-activated protein kinase (MAPK) pathway. Conversely, the inactivation of p38 MAPK abolished the GADD45B-mediated myogenic differentiation. Furthermore, we found that the knockdown of fat mass and obesity-associated protein (FTO) increases GADD45B m6A modification and decreases the stability of GADD45B mRNA, which impairs myogenic differentiation. Our results indicate that the FTO-mediated m6A modification in GADD45B mRNA drives skeletal muscle differentiation by activating the p38 MAPK pathway, which provides a molecular mechanism for the regulation of myogenesis via RNA methylation.

18.
J Dermatol Sci ; 102(1): 47-57, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33676788

ABSTRACT

BACKGROUND: Mast cells play an important role in allergic responses and persistently exposure to environmental fine particulate matter (PM2.5) exacerbates allergic diseases,but the details remained elucidative. OBJECTIVES: To investigate the effect of PM2.5 on IgE-mediated mast cell responses through an IgE-mediated mouse model and mast cell activation. METHODS: The ß-hexosaminidase release and a BALB/c model of passive cutaneous anaphylaxis (PCA) was used to test IgE-mediated mast cells activation in vitro and in vivo. RNA-Seq technique was conducted to study the gene expression profile. Reactive oxygen species (ROS) production was measured by flow-cytometry. RT-PCR,WB and ELISA were performed to examine targeting molecules expression. RESULTS: PM2.5 facilitated IgE-mediated degranulation and increased cytokines expression in mast cells. Meanwhile, the Evan's blue extravasation as well as serum cytokines in mice was increased after treatment with PM2.5. Furthermore, PM2.5 treatment dramatically increased the expression of Gadd45b which is an oxidative stress molecule that directly activates down-stream pathway, such as MEKK4/JNK. PM2.5 treatment activated MEKK4, JNK1/2 but not ERK1/2 and p38. Meanwhile, Knockdown of Gadd45b significantly attenuated PM2.5-mediated JNK1/2 activation and expression of cytokines. In addition, a JNK1/2-specific inhibitor SP600125 blocked IgE-mediated mast cell activation and cytokine release in PCA model mice. Moreover, PM2.5 treatment increased the ROS level and ROS inhibitor dramatically blocked the PM2.5-induced ROS production and reversed the PM2.5-mediated gene expression in the mitochondrial respiratory chain. CONCLUSIONS: PM2.5 regulates ROS production through Gadd45b/MEKK4/JNK pathway, facilitating IgE-mediated mast cell activation.


Subject(s)
Cell Degranulation/immunology , Dermatitis, Allergic Contact/immunology , Mast Cells/immunology , Particulate Matter/adverse effects , Skin/pathology , Animals , Anthracenes/administration & dosage , Antigens, Differentiation/metabolism , Cell Degranulation/drug effects , Cell Line , Cell Line, Tumor , Dermatitis, Allergic Contact/pathology , Disease Models, Animal , Electron Transport/drug effects , Electron Transport/immunology , Humans , Immunoglobulin E/administration & dosage , Immunoglobulin E/immunology , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/metabolism , Male , Mast Cells/cytology , Mast Cells/metabolism , Mice , Mitochondria/metabolism , Particulate Matter/immunology , Passive Cutaneous Anaphylaxis/drug effects , Passive Cutaneous Anaphylaxis/immunology , RNA-Seq , Rats , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology , Skin/cytology , Skin/immunology
19.
Biochem Biophys Res Commun ; 554: 107-113, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33784505

ABSTRACT

BACKGROUND: Poststroke depression (PSD) is an important consequence after stroke, with a negative impact on stroke outcome. Recent evidence points to a modulatory role of Growth arrest and DNA-damage-inducible protein 45 beta (Gadd45b) in depression. Herein, we evaluated the antidepressant efficacy and mechanism underlying the potent therapeutic effects of Gadd45b after cerebral ischemia. METHODS: Adult male Sprague-Dawley rats were subjected to cerebral ischemia by permanent middle cerebral artery occlusion (MCAO). The sucrose preference test (SPT), forced swim test (FST), and tail suspension test (TST) were performed after completing MCAO to study the antidepressant-like effects. The expression of brain-derived neurotrophic factor (BDNF) and neuroinflammation were determined in the hippocampus. RESULTS: We showed that Gadd45b knockdown induced depression-like behaviors after cerebral ischemia, including increased immobility time in the FST and TST and reduced sucrose preference. Gadd45b knockdown enhanced the expression of pro-inflammatory cytokines IL-6 and TNF-α, accompanying with decreased protein levels of BDNF in the hippocampus. Moreover, the levels of phosphorylated ERK and CREB, which have been implicated in events downstream of BDNF signaling, were also decreased after cerebral ischemia. CONCLUSION: Hence, the results showed that Gadd45b is a promising drug candidate for treating PSD and possibly other nervous system diseases associated with neuroinflammation. Gadd45b may have therapeutic potential for PSD through BDNF-ERK-CREB pathway and neuroinflammation.


Subject(s)
Antigens, Differentiation/metabolism , Brain Ischemia/metabolism , Brain Ischemia/psychology , Brain-Derived Neurotrophic Factor/metabolism , Depression/metabolism , Depression/prevention & control , Hippocampus/metabolism , Inflammation/prevention & control , Stroke/metabolism , Stroke/psychology , Animals , CREB-Binding Protein/metabolism , Depression/etiology , Disease Models, Animal , Inflammation/etiology , Inflammation/metabolism , MAP Kinase Signaling System , Male , Rats , Rats, Sprague-Dawley , Signal Transduction
20.
Acta Pharm Sin B ; 11(2): 434-441, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33643822

ABSTRACT

Crosstalk between xenobiotic metabolism and energy metabolism in the liver has provided a potential opportunity to target xenobiotic receptors to treat metabolic diseases. Activation of constitutive androstane receptor (CAR), a xenobiotic-sensing nuclear receptor, has been shown to inhibit obesity, suppress hepatic gluconeogenesis, and ameliorate hyperglycemia in rodent models of obesity and type 2 diabetes. However, the underlying molecular mechanism remains to be defined. The growth arrest and DNA damage-inducible gene 45b (Gadd45b), a well-known anti-apoptotic factor, has been shown to be an inducible coactivator of CAR in promoting rapid liver growth. It is unknown whether the effect of CAR on energy metabolism depends on GADD45B. In the present study and by using a high fat diet (HFD)-induced obesity model, we show that reduced body weight gain and improved insulin sensitivity by the CAR agonist 1,4-bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) were markedly blunted in Gadd45b knockout mice. Mechanistically, the TCPOBOP-responsive inhibition of hepatic lipogenesis, gluconeogenesis, and adipose inflammation observed in wild type mice were largely abolished in Gadd45b knockout mice. We conclude that Gadd45b is required in part for the metabolic benefits of CAR activation.

SELECTION OF CITATIONS
SEARCH DETAIL
...