Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.152
Filter
1.
Biology (Basel) ; 13(8)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39194495

ABSTRACT

The increasing prevalence of diabetic reproductive complications has prompted the development of innovative animal models. The use of the silkworm Bombyx mori as a model for diabetic reproductive damage shows potential as a valuable research tool. This study employed silkworms as a novel model to investigate diabetic reproductive damage. The silkworms were fed a high-glucose diet containing 10% glucose to induce a diabetic model. Subsequently, the study concentrated on assessing the influence of diabetes on the reproductive system of male silkworms. The results indicate that diabetes resulted in reduced luteinizing hormone (LH) and testosterone (T) levels, as well as elevated triglyceride (TG) levels in male silkworms. Moreover, diabetes mellitus was associated with pathological testicular damage in male silkworms, accompanied by decreased glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) levels, along with increased malondialdehyde (MDA) levels in the testis. Additionally, diabetes mellitus reduced the expression of siwi1 and siwi2 genes in the testis of male silkworms. Overall, these results support using silkworms as a valuable model for studying diabetic reproductive damage.

2.
Mol Carcinog ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136605

ABSTRACT

Sirtuin 1 (SIRT1), a member of histone deacetylase III family, plays a pivotal role in mediating chemoresistance in several cancers, including breast cancer. However, the molecular mechanism by which the deregulated SIRT1 promotes doxorubicin (Dox) resistance is still elusive. Here, we showed that the cell proliferation rates and invasive properties of MDA-MB-231 breast cancer cells were increased from low- to high-Dox-resistant cells. In agreement, severe combined immunodeficiency disease (SCID) mice bearing labeled MDA-MB-231high Dox-Res cells showed significantly higher tumor growth, angiogenesis, and metastatic ability than parental MDA-MB-231 cells. Interestingly, the levels of SIRT1 and glutathione (GSH) were positively correlated with the degree of Dox-resistance. Dox-induced SIRT1 promoted NRF2 nuclear translocation with an accompanying increase in the antioxidant response element promotor activity and GSH levels. In contrast, inhibition of SIRT1 by EX527 greatly reversed these events. More so, Dox-resistance-induced pro-proliferative, proangiogenic, and invasive effects were obviated with depletion of either SIRT1 or GSH. Together, Dox-induced SIRT1 promotes dysregulation of redox homeostasis leading to breast cancer chemoresistance, tumor aggressiveness, angiogenesis, and metastasis.

3.
J Forensic Leg Med ; 106: 102726, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39094352

ABSTRACT

BACKGROUND: The assessment of the postmortem interval (PMI) represents one of the major challenges in forensic pathology. Because of their stability, microRNAs, or miRNAs, are anticipated to be helpful in forensic research. OBJECTIVE: To see if estimation of PMI is possible using miRNA-21 and Hypoxia-inducible factor-1α (HIF-1α) expression levels in the heart samples from aluminum phosphide toxicity (Alpt). METHODS: This was a cross sectional study on 60 post-mortem samples (heart tissues) collected at different intervals during forensic autopsies. The two groups were allocated equally according to the cause of death into Group I (non-toxicated deaths, n = 30): Deaths caused by other than toxicity, and Group II (toxicated deaths, n = 30): Deaths due to Alpt. MDA (Malondialdehyde) and GSH (Glutathione), were measured in heart tissues using ELIZA. MiRNA- 21and HIF-1α expression levels were measured in heart tissues at different PMI using RT-Q PCR. ROC curve for detection of toxicated deaths using miRNA-21 and HIF was carried out. RESULTS: miRNA-21 and HIF-1α expression levels in Alp deaths were up regulated while GSH was downregulated with statistically significant difference. There was positive correlation between miRNA-21, HIF-1α and MDA with PMI while there was negative correlation between GSH and PMI in Alp deaths. In prediction of post mortem interval in Alp deaths miRNA-21 sensitivity and specificity were (75.9 %, 51.7 %, respectively) while HIF-1α sensitivity and specificity were 100 %. CONCLUSION: PMI can be calculated using the degree to which particular miRNA-21 and HIF-1α are expressed in the heart tissue. The combination of miRNA-21 with HIF-1α in post mortem estimation is precious indicators.

4.
Neurochem Res ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105899

ABSTRACT

Noradrenaline (NA) levels are altered during the first hours and several days after cortical injury. NA modulates motor functional recovery. The present study investigated whether iron-induced cortical injury modulated noradrenergic synthesis and dopamine beta-hydroxylase (DBH) activity in response to oxidative stress in the brain cortex, pons and cerebellum of the rat. Seventy-eight rats were divided into two groups: (a) the sham group, which received an intracortical injection of a vehicle solution; and (b) the injured group, which received an intracortical injection of ferrous chloride. Motor deficits were evaluated for 20 days post-injury. On the 3rd and 20th days, the rats were euthanized to measure oxidative stress indicators (reactive oxygen species (ROS), reduced glutathione (GSH) and oxidized glutathione (GSSG)) and catecholamines (NA, dopamine (DA)), plus DBH mRNA and protein levels. Our results showed that iron-induced brain cortex injury increased noradrenergic synthesis and DBH activity in the brain cortex, pons and cerebellum at 3 days post-injury, predominantly on the ipsilateral side to the injury, in response to oxidative stress. A compensatory increase in contralateral noradrenergic activity was observed, but without changes in the DBH mRNA and protein levels in the cerebellum and pons. In conclusion, iron-induced cortical injury increased the noradrenergic response in the brain cortex, pons and cerebellum, particularly on the ipsilateral side, accompanied by a compensatory response on the contralateral side. The oxidative stress was countered by antioxidant activity, which favored functional recovery following motor deficits.

5.
J Colloid Interface Sci ; 677(Pt A): 400-415, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39096708

ABSTRACT

Chemodynamic therapy (CDT), an emerging cancer treatment modality, uses multivalent metal elements to convert endogenous hydrogen peroxide (H2O2) to toxic hydroxyl radicals (•OH) via a Fenton or Fenton-like reaction, thus eliciting oxidative damage of cancer cells. However, the antitumor potency of CDT is largely limited by the high glutathione (GSH) concentration and low catalytic efficiency in the tumor sites. The combination of CDT with chemotherapy provides a promising strategy to overcome these limitations. In this work, to enhance antitumor potency by tumor-targeted and GSH depletion-amplified chemodynamic-chemo therapy, the hyaluronic acid (HA)/polydopamine (PDA)-decorated Fe2+-doped ZIF-8 nano-scaled metal-organic frameworks (FZ NMs) were fabricated and utilized to load doxorubicin (DOX), a chemotherapy drug, via hydrophobic, π-π stacking and charge interactions. The attained HA/PDA-covered DOX-carrying FZ NMs (HPDFZ NMs) promoted DOX and Fe2+ release in weakly acidic and GSH-rich milieu and exhibited acidity-activated •OH generation. Through efficient CD44-mediated endocytosis, the HPDFZ NMs internalized by CT26 cells not only prominently enhanced •OH accumulation by consuming GSH via PDA-mediated Michael addition combined with Fe2+/Fe3+ redox couple to cause mitochondria damage and lipid peroxidation, but also achieved intracellular DOX release, thus eliciting apoptosis and ferroptosis. Importantly, the HPDFZ NMs potently inhibited CT26 tumor growth in vivo at a low DOX dose and had good biosafety, thereby showing promising potential in tumor-specific treatment.

6.
Article in English | MEDLINE | ID: mdl-39093465

ABSTRACT

In acute renal failure (ARF), the glomerular filtration rate is reduced, and nitrogenous waste products accumulate persistently, which can last anywhere from a few hours to several days. There is hope for a reversal of the rapid loss of renal function caused by this condition. This study, with gentamicin-induced acute ARF as a prospective setting, sets out to examine the reno-protective benefits of virgin coconut oil (VCO) and GSH. Furthermore, the study evaluated the effect of medication nanoparticle compositions on several kidney function markers. The induction of ARF is achieved with the intraperitoneal injection of gentamicin. To assess renal function, rats underwent 24 h of dehydration and hunger before their deaths. The study examined various aspects, including kidney function tests, markers of oxidative stress, histology of kidney tissue, inflammatory cytokines, immunohistochemistry expression of nuclear factor-kappa B (NF-κB), and specific biomarkers for kidney tissue damage, such as kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). The results of our study indicated that the combination of VCO and GSH, using both regular and nanoparticle formulations, had a better protective impact on the kidneys compared to using either drug alone. The recovery of renal tissue and serum markers, which are symptomatic of organ damage, indicates improvement. This was also demonstrated by the reduction in tubular expression of TNF-α, IL-1ß, KIM-1, and NGAL. The immunohistochemical studies showed that the combination therapy, especially with the nanoforms, greatly improved the damaged cellular changes in the kidneys, as shown by higher levels of NF-κB. The study shows that VCO and GSH, when administered individually or combined, significantly improve ARF in a gentamicin-induced rat model, highlighting potential therapeutic implications. Notably, the combined nanoparticulate formulations exhibit substantial effectiveness.

7.
Int J Biol Macromol ; 278(Pt 1): 134661, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39128741

ABSTRACT

Hypoxia and high concentration of glutathione (GSH) in tumor seriously hinder the role of reactive oxygen species (ROS) and oxygen-dependence strategy in tumor treatment. In this work, a self-generating oxygen and self-consuming GSH hyaluronic acid (HA)-coated porphyrin nanoplatform (TAPPP@CaO2/Pt(IV)/HA) is established for enhancing photodynamic/ion/chemo targeting synergistic therapy of tumor. During the efforts of ROS production by nanosystems, a GSH consuming strategy is implemented for augmenting ROS-induced oxidative damage for synergetic cancer therapy. CaO2 in the nanosystems is decomposed into O2 and H2O2 in an acidic environment, which alleviates hypoxia and enhances the photodynamic therapy (PDT) effect. Calcium overload causes mitochondria dysfunction and induces apoptosis. Pt (IV) reacts with GSH to produce Pt (II) for chemotherapy and reduce the concentration of GSH, protecting ROS from scavenging for augmenting ROS-induced oxidative damage. In vitro and in vivo results demonstrated the self-generating oxygen and self-consuming GSH strategy can enhance ROS-dependent PDT coupled with ion/chemo synergistic therapy. The proposed strategy not only solves the long-term problem that hypoxia limits therapeutic effect of PDT, but also ameliorates the highly reducing environment of tumors. Thus the preparation of TAPPP@CaO2/Pt(IV)/HA provided a novel strategy for the effective combined therapy of cancers.

8.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125992

ABSTRACT

The most abundant tripeptide-glutathione (GSH)-and the major GSH-related enzymes-glutathione peroxidases (GPxs) and glutathione S-transferases (GSTs)-are highly significant in the regulation of tumor cell viability, initiation of tumor development, its progression, and drug resistance. The high level of GSH synthesis in different cancer types depends not only on the increasing expression of the key enzymes of the γ-glutamyl cycle but also on the changes in transport velocity of its precursor amino acids. The ability of GPxs to reduce hydroperoxides is used for cellular viability, and each member of the GPx family has a different mechanism of action and site for maintaining redox balance. GSTs not only catalyze the conjugation of GSH to electrophilic substances and the reduction of organic hydroperoxides but also take part in the regulation of cellular signaling pathways. By catalyzing the S-glutathionylation of key target proteins, GSTs are involved in the regulation of major cellular processes, including metabolism (e.g., glycolysis and the PPP), signal transduction, transcription regulation, and the development of resistance to anticancer drugs. In this review, recent findings in GSH synthesis, the roles and functions of GPxs, and GST isoforms in cancer development are discussed, along with the search for GST and GPx inhibitors for cancer treatment.


Subject(s)
Glutathione Transferase , Glutathione , Neoplasms , Signal Transduction , Humans , Glutathione/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/drug therapy , Glutathione Transferase/metabolism , Animals , Glutathione Peroxidase/metabolism
9.
J Affect Disord ; 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39191311

ABSTRACT

BACKGROUND: The relationship between neurotransmitters and oxidative stress in Major Depressive Disorder (MDD) patients, considering HPA axis activity and psychological and cognitive states, is unclear. This study examines changes in neurotransmitters (GABA, Glx) and antioxidants (GSH) in the dorsal anterior cingulate cortex (dACC) of MDD patients under varying levels of ACTH, and their relationship with psychological and cognitive conditions. METHODS: Forty-five MDD patients were divided into high-ACTH (>65 pg/mL; n = 16) and normal-ACTH (7-65 pg/mL; n = 29) groups based on blood ACTH levels, along with 12 healthy controls (HC). All participants underwent HAM-D, HAM-A assessments, and most completed MMSE and MoCA tests. GABA+, Glx, and GSH levels in the dACC were measured using the MEGA-PRESS sequence. Intergroup differences and correlations between clinical factors, HPA axis activity, and metabolites were analyzed. RESULTS: Compared to HC, the normal ACTH group showed higher Glx and lower GSH levels. Glx and GSH were negatively correlated with MDD severity. In the high-ACTH MDD group, Glx positively correlated with delayed memory, and GSH positively correlated with abstraction. Factors influencing GABA included ACTH levels, depression duration, and negative events. Predictive factors for HAM-D scores were GSH and GABA. LIMITATIONS: The sample size is small. CONCLUSION: MDD patients exhibit neurochemical differences in the brain related to HPA axis levels, MDD severity, and cognitive function. Clinical factors, neurotransmitters, and neuroendocrine levels significantly influence depression severity.

10.
Curr Drug Deliv ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39192645

ABSTRACT

BACKGROUND: Multidrug resistance (MDR) is a key challenge in clinical chemotherapy. The combination of drugs can effectively reverse multi-drug resistance. OBJECTIVE: In this study, doxorubicin (DOX) was capsulated into nanoparticles formed by an amphiphilic PEGylated-poly (α-lipoic acid)-methanamide analogue of celastrol (mPEG-PαLA-CEN) prodrug polymer. CEN was linked to the branched chain of poly (α-lipoic acid) by forming ester bonds. DOX was physically trapped inside the nanoparticles via electrostatic interaction. Both drugs can be simultaneously released in response to low pH and high GSH in order to overcome DOX resistance. METHODS: The chemical structure of the mPEG-PαLA-CEN-DOX NPs was confirmed through 1H NMR, FT-IR spectroscopy, UV-Vis spectrum, DLS, and TEM. Drug-loading content, efficacy, and drug release were measured using HPLC. Cell toxicity was examined using an MTT assay. RESULTS: CEN/DOX-loaded nanoparticles were found to have spherical shapes with diameters of around 229.7 nm. The NPs exhibited high biocompatibility and released 92% DOX and 71.8% CEN in response to low pH and high GSH of tumor microenvironments. As dual drug-loaded nanoparticles, the efficacy of mPEG-PαLA-CEN-DOX NPs against tumor cell lines in vitro was enhanced for both MCF-7 and MCF-7/ADR compared to free DOX. Compared to free DOX, the IC50 of mPEG-PαLA-CEN-DOX NPs reduced from 46.10 µM to 8.36 µM for the MCF-7/ADR cell line. CONCLUSION: In conclusion, this study demonstrated that PEGylated poly (α-lipoic acid)-CEN copolymers can be used not only as biocompatible, stimulation-responsive anticancer drug nanocarriers but also as chemosensitizers to overcome multidrug resistance, which provide a theoretical base for clinical application of CEN/DOX nanodrug.

11.
Gene ; 931: 148875, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39173979

ABSTRACT

Porcine pleuropneumonia is one of the respiratory diseases that pigs are susceptible to Actinobacillus pleuropneumoniae (A. pleuropneumoniae), poses a great threat to the global pig industry. Glutathione (GSH) is an important sulfur source, cellular antioxidant and virulence determinant of many pathogenic bacteria. In this study, roles of two HbpA-like proteins HbpA1 and HbpA2 of A. pleuropneumoniae were analyzed. A. pleuropneumoniae mutants without HbpA2 were basically unable to grow in chemically defined medium (CDM) with GSH as the sole sulfur source and had significantly reduced oxidative tolerance; whereas mutation in hbpA1 led to reduced survival under low-temperature environments. Neither HbpA1 nor HbpA2 affects utilization of heme. These two HbpA-like proteins are not associated with the virulence of A. pleuropneumoniae. Our results reveal the correlation of A. pleuropneumoniae HbpA1 and HbpA2 in GSH utilization, highlight the roles of HbpA1 in the cold stress resistance and HbpA2 in the anti-oxidative response. GSH limitation is not a way to attenuate colonization and pathogenicity of A. pleuropneumoniae.

12.
J Colloid Interface Sci ; 677(Pt B): 1075-1083, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39180842

ABSTRACT

Pancreatic and colon cancer are malignant tumors of the digestive system that currently lack effective treatments. In cancer cells, a high level of glutathione (GSH) is indispensable to scavenge excessive reactive oxygen species (ROS) and detoxify xenobiotics, which make it a potential target for cancer therapy. GSH depletion has been proved to improve the therapeutic efficacy of photodynamic therapy. Here, we reported that naked mesoporous rhodium nanospheres (Rh MNs), prepared by soft template redox method, can act as GSH depletion agent and photothermal conversion agent to achieve synergistic therapy respectively. Different from conventional nanoagents, Rh MNs with the characteristics of easy synthesis, simple structure and multiple functions can decrease the GSH level in tumor and depict excellent photothermal ability with a high photothermal conversion efficiency (PTCE) up to 39%. Notably, multiple anti-tumor mechanisms in CT26 and BxPC-3 tumor models, include inhibited anti-apoptosis, DNA replication repair, and GSH synthesis are revealed, and the pancreatic tumor cure rate of the cooperative treatment group is 80%. Collectively, we developed Rh MNs to combine GSH depletion with photothermal therapy for cancer treatment.

13.
Poult Sci ; 103(10): 104125, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39137496

ABSTRACT

After viral infection, the virus relies on the host cell's complex metabolic and biosynthetic machinery for replication. However, the impact of avian influenza virus (AIV) on metabolites and gene expression in poultry cells remains unclear. To investigate this, we infected chicken embryo fibroblasts DF1 cells with H9N2 AIV at an MOI of 3. Our aim was to explore how H9N2 AIV alters DF1 cells metabolic pathways to facilitate its replication. We employed metabolomics and transcriptomics techniques to analyze changes in metabolite content and gene expression. Metabolomics analysis revealed a significant increase in glutathione-related metabolites, including reduced glutathione (GSH), oxidized glutathione (GSSG) and total glutathione (T-GSH) upon H9N2 AIV infection in DF1 cells. Elisa results confirmed elevated levels of GSH, GSSG, and T-GSH consistent with metabolomics findings, noting a pronounced increase in GSSG compared to GSH. Transcriptomics showed significant alterations in genes involved in glutathione synthesis and metabolism post-H9N2 infection. However, adding the glutathione synthesis inhibitor BSO exogenously significantly promoted H9N2 replication in DF1 cells. This was accompanied by increased mRNA levels of pro-inflammatory cytokines (IL-1ß, IFN-γ) and decreased mRNA levels of anti-inflammatory cytokines (TGF-ß, IL-13). BSO also reduced catalase (CAT) gene expression and inhibited its activity, leading to higher reactive oxygen species (ROS) and malondialdehyde (MDA) level in DF1 cells. qPCR results indicated decreased mRNA levels of Nrf2, NQO1, and HO-1 with BSO, ultimately increasing oxidative stress in DF1 cells. Therefore, the above results indicated that H9N2 AIV infection in DF1 cells activated the glutathione metabolic pathway to enhance the cell's self-defense mechanism against H9N2 replication. However, when GSH synthesis is inhibited within the cells, it leads to an elevated oxidative stress level, thereby promoting H9N2 replication within the cells through Nrf2/HO-1 pathway. This study provides a theoretical basis for future rational utilization of the glutathione metabolic pathway to prevent viral replication.

14.
Macromol Rapid Commun ; : e2400511, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39154350

ABSTRACT

Nanomedicines loaded in macrophages (MAs) can actively target tumors without dominantly relying on the enhanced permeability and retention (EPR) effect, making them effective for treating EPR-deficient malignancies. Herein, copper-crosslinked carbon dot clusters (CDCs) are synthesized with both photodynamic and chemodynamic functions to manipulate MAs, aiming to direct the MA-mediated tumor targeting. First, green fluorescent CDs (g-CDs) are prepared by a one-step hydrothermal method. Subsequently, the g-CDs are complexed with divalent copper ions to form copper-crosslinked CDCs (g-CDCs/Cu), which are incubated with MAs for their manipulation. Experimental results revealed that the prepared g-CDCs/Cu displayed good aqueous dispersibility and fluorescent emission properties. The nanoassemblies can be activated to deplete the overexpressed glutathione (GSH) and generate reactive oxygen species (ROS) in the presence of laser irradiation through the combined Cu-mediated chemodynamic therapy and CD-mediated photodynamic therapy. Furthermore, the ROS produced in MAs enabled polarization of MAs to antitumor M1 phenotype, suggesting the future potential use to reverse the immunosuppressive tumor microenvironment. These results obtained from the current study suggest a significant potential to develop g-CDCs/Cu for GSH depletion, ROS generation, and MA M1 polarization as a theransotic agent to tackle cancer.

15.
Free Radic Biol Med ; 223: 357-368, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39127141

ABSTRACT

Formaldehyde (FA) is a carcinogen that is not only widespread in the environment, but is also produced endogenously by metabolic processes. In organisms, FA is converted to formic acid in a glutathione (GSH)-dependent manner by alcohol dehydrogenase 5 (ADH5). The abnormal accumulation of FA in the body can cause a variety of diseases, especially cognitive impairment leading to Alzheimer's disease (AD). In this study, melatonin derivative 6a (MD6a) markedly improved the survival and chemotactic performance of wild-type Caenorhabditis elegans exposed to high concentrations of FA. MD6a lowered FA levels in the nematodes by enhancing the release of covalently-bound GSH from S-hydroxymethyl-GSH in an adh-5-dependent manner. In addition, MD6a protected against mitochondrial dysfunction and cognitive impairment in beta-amyloid protein (Aß) transgenic nematodes by lowering endogenous FA levels and reducing Aß aggregation in an adh-5-dependent manner. Our findings suggest that MD6a detoxifies FA via ADH5 and protects against Aß toxicity by reducing endogenous FA levels in the C. elegans AD models. Thus, ADH5 might be a potential therapeutic target for FA toxicity and AD.

16.
J Ethnopharmacol ; 334: 118557, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39009327

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ficus hirta Vahl., a traditional Chinese medicine commonly used in the Lingnan region, has been extensively used for liver disease treatment in China. Its notable antioxidant and anti-inflammatory properties have been reported in previous studies. However, its potential effect and underlying mechanism on liver fibrosis remains unclear. AIM OF STUDY: This study was aimed to investigate the effect and its underlying mechanism of Ficus hirta Vahl on liver fibrosis in vitro and in vivo. MATERIALS AND METHODS: The main components of Ficus hirta Vahl in blood were investigated by using UPLC-Q/TOF-MS/MS. Two animal models of liver fibrosis, the CCl4 and MCD induced mice, were used to assess the efficacy of Ficus hirta Vahl on liver fibrosis. Metabolomics was used to detect the level of metabolites in the serum of liver fibrosis mice after Ficus hirta Vahl treatment. Furthermore, the mechanism was validated in vitro using the human liver stellate cell line LX-2. The binding affinities of the active ingredients of Ficus hirta Vahl to the main targets of liver fibrosis were also determined. Finally, we identified the key active ingredients responsible for the treatment of liver fibrosis in vivo. RESULTS: Fibrosis and inflammatory markers were significant down-regulation in both CCl4 and MCD induced liver fibrosis mice after Ficus hirta Vahl administration in a dose-dependent manner. We found that Ficus hirta Vahl may primarily exert its effect on liver fibrosis through the glutathione metabolic pathway. Importantly, the glutathione metabolic pathway is closely associated with ferroptosis, and our subsequent in vitro experiments provided evidence supporting this association. Ficus hirta Vahl was found to modulate the GSH/GPX4 pathway, ultimately leading to the amelioration of liver fibrosis. Moreover, using serum pharmacochemistry and molecular docking, we successfully identified apigenin as a probable efficacious monomer for the management of liver fibrosis and subsequently validated its efficacy in mice with CCl4-induced hepatic fibrosis. CONCLUSION: Ficus hirta Vahl triggered the ferroptosis of hepatic stellate cell by regulating the GSH/GPX4 pathway, thereby alleviating liver fibrosis in mice. Moreover, apigenin is a key compound in Ficus hirta Vahl responsible for the effective treatment of liver fibrosis.


Subject(s)
Ferroptosis , Ficus , Glutathione , Hepatic Stellate Cells , Liver Cirrhosis , Animals , Ficus/chemistry , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Ferroptosis/drug effects , Male , Humans , Mice , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Glutathione/metabolism , Cell Line , Carbon Tetrachloride , Signal Transduction/drug effects , Mice, Inbred C57BL , Plant Extracts/pharmacology
17.
Int Immunopharmacol ; 139: 112689, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39029234

ABSTRACT

BACKGROUND: Oxidative stress is increased in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients and leads to the development of graft versus host disease (GVHD). Mesenchymal stromal cells (MSCs) can ameliorate GVHD by regulating the function of T cells. However, whether MSCs can modulate erythrocyte antioxidant metabolism and thus reduce GVHD is not known. METHODS: Forty female BALB/c mice were randomly assigned to four groups: the control, GVHDhigh, hPMSC, and PBS groups. A hypoxanthine/xanthine oxidase system was used to steadily and gradually produce superoxide in an in vitro experiment. A scanning microscope was used to examine the ultrastructure of erythrocytes. Laser diffraction analyses were used to analyze erythrocyte deformability. Western blotting was used to measure the expression of the erythrocyte membrane skeleton proteins Band 3 and ß-Spectrin. Corresponding kits were used to assess the levels of oxidative damage and the activity of antioxidant enzymes. RESULTS: Morphological and deformability defects were significantly increased in erythrocytes from GVHD patients. Band 3 and ß-Spectrin expression was also reduced in GVHD patients and model mice. Furthermore, we observed significantly increased oxidative stress-induce injury and decreased antioxidant capability in erythrocytes from both GVHD patients and model mice. Subsequent research showed that human placenta-derived MSC (hPMSC) therapy decreased the GVHD-induced redox imbalance in erythrocytes. Furthermore, our findings suggested that upregulating glucose metabolism promoted both the de novo synthesis and recycling of GSH, which is the primary mechanism by which hPMSCs mediate the increase in antioxidant capacity in erythrocytes. CONCLUSION: Together, our findings suggest that hPMSCs can increase antioxidant capacity by increasing erythrocyte GSH production and thus ameliorate GVHD.


Subject(s)
Erythrocytes , Glutathione , Graft vs Host Disease , Mesenchymal Stem Cells , Mice, Inbred BALB C , Oxidative Stress , Animals , Female , Erythrocytes/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Glutathione/metabolism , Mice , Placenta/metabolism , Pregnancy , Mesenchymal Stem Cell Transplantation , Hematopoietic Stem Cell Transplantation/adverse effects , Adult , Cells, Cultured , Middle Aged , Erythrocyte Deformability , Disease Models, Animal
18.
Nano Lett ; 24(31): 9700-9710, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39052427

ABSTRACT

Chemodynamic therapy (CDT) is an emerging therapeutic modality triggered by endogenous substances in the tumor microenvironment (TME) to generate reactive oxygen species. However, the mild acid pH, low H2O2 concentration, and overexpressed glutathione can suppress the CDT efficiency. Herein, ultrasound (US)-triggered Cu2+-based single-atom nanoenzymes (FA-NH2-UiO-66-Cu, FNUC) are constructed with the performance of target and glutathione depletion. In the TME, the single-atom Cu sites of FNUC consume glutathione and the FNUC:Cu+ generates •OH via peroxidase-like activity. The US-activated FNUC exhibits a fast •OH generation rate, a low Michaelis constant, and a large •OH concentration, indicating the cavitation effect of US promotes the •OH generation. Meanwhile, the tumor target of FNUC is confirmed by NIR-II fluorescence imaging, in which it is modified with IR-1061. Combined with the antitumor performance of FNUC in vitro and in vivo, the novel Cu-based SAzymes can achieve efficient and precise cancer treatment.


Subject(s)
Copper , Metal-Organic Frameworks , Tumor Microenvironment , Copper/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Humans , Animals , Tumor Microenvironment/drug effects , Mice , Catalysis , Neoplasms/diagnostic imaging , Neoplasms/therapy , Cell Line, Tumor , Glutathione/chemistry , Ultrasonic Waves , Reactive Oxygen Species/metabolism
20.
Acta Trop ; 258: 107339, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39084481

ABSTRACT

Toxoplasmosis is a pervasive parasitic infection possessing a chief impact on both public health and veterinary medicine. Unfortunately, the commercially-available anti-Toxoplasma agents have either serious side effects or diminished efficiency, specifically on the Toxoplasma tissue cysts. In the present study, metformin (The first-line treatment for type 2 diabetes mellitus) was investigated for the first time against chronic cerebral toxoplasmosis in mice model experimentally-infected with ME49 strain versus spiramycin. Two metformin regimens were applied; starting one week before the infection and four weeks PI. Parasitological, ultrastructural, histopathological, immunohistochemical, immunological, and biochemical assessments were performed. The anti-parasitic effect of metformin was granted by the statistically-significant reduction in tissue-cyst burden in both treatment regimens. This was accompanied by markedly-mutilated ultrastructure and profound amelioration of the cerebral histopathology with remarkable decline in the brain CD4+ and CD8+ T cell count. Besides, diminution of anti-Toxoplasma IgG and brain GSH levels was evident. Ultimately, the present findings highlighted the powerful promising therapeutic role of metformin in the management of chronic toxoplasmosis on a basis of anti-parasitic, anti-inflammatory, and anti-oxidant possessions.

SELECTION OF CITATIONS
SEARCH DETAIL