Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Med Inform Decis Mak ; 24(1): 198, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039464

ABSTRACT

Genes, expressed as sequences of nucleotides, are susceptible to mutations, some of which can lead to cancer. Machine learning and deep learning methods have emerged as vital tools in identifying mutations associated with cancer. Thyroid cancer ranks as the 5th most prevalent cancer in the USA, with thousands diagnosed annually. This paper presents an ensemble learning model leveraging deep learning techniques such as Long Short-Term Memory (LSTM), Gated Recurrent Units (GRUs), and Bi-directional LSTM (Bi-LSTM) to detect thyroid cancer mutations early. The model is trained on a dataset sourced from asia.ensembl.org and IntOGen.org, consisting of 633 samples with 969 mutations across 41 genes, collected from individuals of various demographics. Feature extraction encompasses techniques including Hahn moments, central moments, raw moments, and various matrix-based methods. Evaluation employs three testing methods: self-consistency test (SCT), independent set test (IST), and 10-fold cross-validation test (10-FCVT). The proposed ensemble learning model demonstrates promising performance, achieving 96% accuracy in the independent set test (IST). Statistical measures such as training accuracy, testing accuracy, recall, sensitivity, specificity, Mathew's Correlation Coefficient (MCC), loss, training accuracy, F1 Score, and Cohen's kappa are utilized for comprehensive evaluation.


Subject(s)
Deep Learning , Mutation , Thyroid Neoplasms , Humans , Thyroid Neoplasms/genetics , Thyroid Neoplasms/diagnosis , Disease Progression
2.
J Environ Manage ; 358: 120756, 2024 May.
Article in English | MEDLINE | ID: mdl-38599080

ABSTRACT

Water quality indicators (WQIs), such as chlorophyll-a (Chl-a) and dissolved oxygen (DO), are crucial for understanding and assessing the health of aquatic ecosystems. Precise prediction of these indicators is fundamental for the efficient administration of rivers, lakes, and reservoirs. This research utilized two unique DL algorithms-namely, convolutional neural network (CNNs) and gated recurrent units (GRUs)-alongside their amalgamation, CNN-GRU, to precisely gauge the concentration of these indicators within a reservoir. Moreover, to optimize the outcomes of the developed hybrid model, we considered the impact of a decomposition technique, specifically the wavelet transform (WT). In addition to these efforts, we created two distinct machine learning (ML) algorithms-namely, random forest (RF) and support vector regression (SVR)-to demonstrate the superior performance of deep learning algorithms over individual ML ones. We initially gathered WQIs from diverse locations and varying depths within the reservoir using an AAQ-RINKO device in the study area to achieve this. It is important to highlight that, despite utilizing diverse data-driven models in water quality estimation, a significant gap persists in the existing literature regarding implementing a comprehensive hybrid algorithm. This algorithm integrates the wavelet transform, convolutional neural network (CNN), and gated recurrent unit (GRU) methodologies to estimate WQIs accurately within a spatiotemporal framework. Subsequently, the effectiveness of the models that were developed was assessed utilizing various statistical metrics, encompassing the correlation coefficient (r), root mean square error (RMSE), mean absolute error (MAE), and Nash-Sutcliffe efficiency (NSE) throughout both the training and testing phases. The findings demonstrated that the WT-CNN-GRU model exhibited better performance in comparison with the other algorithms by 13% (SVR), 13% (RF), 9% (CNN), and 8% (GRU) when R-squared and DO were considered as evaluation indices and WQIs, respectively.


Subject(s)
Algorithms , Neural Networks, Computer , Water Quality , Machine Learning , Environmental Monitoring/methods , Lakes , Chlorophyll A/analysis , Wavelet Analysis
3.
Genes (Basel) ; 14(5)2023 05 18.
Article in English | MEDLINE | ID: mdl-37239464

ABSTRACT

The most common cause of mortality and disability globally right now is cholangiocarcinoma, one of the worst forms of cancer that may affect people. When cholangiocarcinoma develops, the DNA of the bile duct cells is altered. Cholangiocarcinoma claims the lives of about 7000 individuals annually. Women pass away less often than men. Asians have the greatest fatality rate. Following Whites (20%) and Asians (22%), African Americans (45%) saw the greatest increase in cholangiocarcinoma mortality between 2021 and 2022. For instance, 60-70% of cholangiocarcinoma patients have local infiltration or distant metastases, which makes them unable to receive a curative surgical procedure. Across the board, the median survival time is less than a year. Many researchers work hard to detect cholangiocarcinoma, but this is after the appearance of symptoms, which is late detection. If cholangiocarcinoma progression is detected at an earlier stage, then it will help doctors and patients in treatment. Therefore, an ensemble deep learning model (EDLM), which consists of three deep learning algorithms-long short-term model (LSTM), gated recurrent units (GRUs), and bi-directional LSTM (BLSTM)-is developed for the early identification of cholangiocarcinoma. Several tests are presented, such as a 10-fold cross-validation test (10-FCVT), an independent set test (IST), and a self-consistency test (SCT). Several statistical techniques are used to evaluate the proposed model, such as accuracy (Acc), sensitivity (Sn), specificity (Sp), and Matthew's correlation coefficient (MCC). There are 672 mutations in 45 distinct cholangiocarcinoma genes among the 516 human samples included in the proposed study. The IST has the highest Acc at 98%, outperforming all other validation approaches.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Deep Learning , Male , Humans , Female , Early Detection of Cancer , Cholangiocarcinoma/diagnosis , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/diagnosis , Bile Duct Neoplasms/genetics
4.
Chaos Solitons Fractals ; 146: 110861, 2021 May.
Article in English | MEDLINE | ID: mdl-33746373

ABSTRACT

In December 2019, first case of the COVID-19 was reported in Wuhan, Hubei province in China. Soon world health organization has declared contagious coronavirus disease (a.k.a. COVID-19) as a global pandemic in the month of March 2020. Over the span of eleven months, it has rapidly spread out all over the world with total confirmed cases of ~ 41.39 M and causing a total fatality of ~1.13 M. At present, the entire mankind is facing serious threat and it is believed that COVID-19 may have been around for quite some time. Therefore, it has become imperative to forecast the global impact of COVID-19 in the near future. The present work proposes state-of-art deep learning Recurrent Neural Networks (RNN) models to predict the country-wise cumulative confirmed cases, cumulative recovered cases and the cumulative fatalities. The Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) cells along with Recurrent Neural Networks (RNN) were developed to predict the future trends of the COVID-19. We have used publicly available data from John Hopkins University's COVID-19 database. In this work, we emphasize the importance of various factors such as age, preventive measures, and healthcare facilities, population density, etc. that play vital role in rapid spread of COVID-19 pandemic. Therefore, our forecasted results are very helpful for countries to better prepare themselves to control the pandemic.

5.
J Bioinform Comput Biol ; 16(5): 1850021, 2018 10.
Article in English | MEDLINE | ID: mdl-30419785

ABSTRACT

Protein secondary structure prediction (PSSP) is an important research field in bioinformatics. The representation of protein sequence features could be treated as a matrix, which includes the amino-acid residue (time-step) dimension and the feature vector dimension. Common approaches to predict secondary structures only focus on the amino-acid residue dimension. However, the feature vector dimension may also contain useful information for PSSP. To integrate the information on both dimensions of the matrix, we propose a hybrid deep learning framework, two-dimensional convolutional bidirectional recurrent neural network (2C-BRNN), for improving the accuracy of 8-class secondary structure prediction. The proposed hybrid framework is to extract the discriminative local interactions between amino-acid residues by two-dimensional convolutional neural networks (2DCNNs), and then further capture long-range interactions between amino-acid residues by bidirectional gated recurrent units (BGRUs) or bidirectional long short-term memory (BLSTM). Specifically, our proposed 2C-BRNNs framework consists of four models: 2DConv-BGRUs, 2DCNN-BGRUs, 2DConv-BLSTM and 2DCNN-BLSTM. Among these four models, the 2DConv- models only contain two-dimensional (2D) convolution operations. Moreover, the 2DCNN- models contain 2D convolutional and pooling operations. Experiments are conducted on four public datasets. The experimental results show that our proposed 2DConv-BLSTM model performs significantly better than the benchmark models. Furthermore, the experiments also demonstrate that the proposed models can extract more meaningful features from the matrix of proteins, and the feature vector dimension is also useful for PSSP. The codes and datasets of our proposed methods are available at https://github.com/guoyanb/JBCB2018/ .


Subject(s)
Computational Biology/methods , Neural Networks, Computer , Proteins/chemistry , Databases, Protein , Deep Learning , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL