Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters











Publication year range
1.
BMC Biotechnol ; 24(1): 37, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825715

ABSTRACT

BACKGROUND: As part of a publicly funded initiative to develop genetically engineered Brassicas (cabbage, cauliflower, and canola) expressing Bacillus thuringiensis Crystal (Cry)-encoded insecticidal (Bt) toxin for Indian and Australian farmers, we designed several constructs that drive high-level expression of modified Cry1B and Cry1C genes (referred to as Cry1BM and Cry1CM; with M indicating modified). The two main motivations for modifying the DNA sequences of these genes were to minimise any licensing cost associated with the commercial cultivation of transgenic crop plants expressing CryM genes, and to remove or alter sequences that might adversely affect their activity in plants. RESULTS: To assess the insecticidal efficacy of the Cry1BM/Cry1CM genes, constructs were introduced into the model Brassica Arabidopsis thaliana in which Cry1BM/Cry1CM expression was directed from either single (S4/S7) or double (S4S4/S7S7) subterranean clover stunt virus (SCSV) promoters. The resulting transgenic plants displayed a high-level of Cry1BM/Cry1CM expression. Protein accumulation for Cry1CM ranged from 5.18 to 176.88 µg Cry1CM/g dry weight of leaves. Contrary to previous work on stunt promoters, we found no correlation between the use of either single or double stunt promoters and the expression levels of Cry1BM/Cry1CM genes, with a similar range of Cry1CM transcript abundance and protein content observed from both constructs. First instar Diamondback moth (Plutella xylostella) larvae fed on transgenic Arabidopsis leaves expressing the Cry1BM/Cry1CM genes showed 100% mortality, with a mean leaf damage score on a scale of zero to five of 0.125 for transgenic leaves and 4.2 for wild-type leaves. CONCLUSIONS: Our work indicates that the modified Cry1 genes are suitable for the development of insect resistant GM crops. Except for the PAT gene in the USA, our assessment of the intellectual property landscape of components presents within the constructs described here suggest that they can be used without the need for further licensing. This has the capacity to significantly reduce the cost of developing and using these Cry1M genes in GM crop plants in the future.


Subject(s)
Arabidopsis , Bacillus thuringiensis Toxins , Bacterial Proteins , Endotoxins , Hemolysin Proteins , Plants, Genetically Modified , Plants, Genetically Modified/genetics , Arabidopsis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hemolysin Proteins/genetics , Animals , Endotoxins/genetics , Promoter Regions, Genetic/genetics , Bacillus thuringiensis/genetics , Moths/genetics , Brassica/genetics , Pest Control, Biological/methods , Insecticides/pharmacology
2.
Pest Manag Sci ; 80(9): 4156-4162, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38843468

ABSTRACT

Despite major breeding efforts by various national and international agencies, yields for the ~40 million hectares of maize, the major food crop in sub-Saharan Africa, have stagnated at <2 tons/ha/year for the past decade, one-third the global average. Breeders have succeeded in breeding increased yield with a modicum of tolerance to some single-weed or pathogen stresses. There has been minimal adoption of these varieties because introgressing polygenic yield and tolerance traits into locally adapted material is very challenging. Multiple traits to deal with pests (weeds, pathogens, and insects) are needed for farmer acceptance, because African fields typically encounter multiple pest constraints. Also, maize has no inherent resistance to some of these pest constraints, rendering them intractable to traditional breeding. The proposed solution is to simultaneously engineer multiple traits into one genetic locus. The dominantly inherited multi-pest resistance trait single locus can be bred simply into locally adapted, elite high-yielding material, and would be valuable for farmers, vastly increasing maize yields, and allowing for more than regional maize sufficiency. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Plants, Genetically Modified , Zea mays , Zea mays/genetics , Plants, Genetically Modified/genetics , Africa South of the Sahara , Animals , Plant Diseases/parasitology , Insecta/genetics , Insecta/physiology , Plant Weeds/genetics , Weed Control/methods , Crops, Agricultural/genetics
3.
Plant J ; 118(6): 1864-1871, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38470090

ABSTRACT

The production of compact vectors for gene stacking is hindered by a lack of effective linkers. Here, we report that a 26-nt nucleic acid linker, NAL1, from the fungus Glarea lozoyensis and its truncated derivatives could connect two genes as a bicistron, enabling independent translation in a maize protoplast transient expression system and human 293 T cells. The optimized 9-nt NAL10 linker was then used to connect four genes driven by a bidirectional promoter; this combination was successfully used to reconstruct the astaxanthin biosynthesis pathway in transgenic maize. The short and efficient nucleic acid linker NAL10 can be widely used in multi-gene expression and synthetic biology in animals and plants.


Subject(s)
Plants, Genetically Modified , Synthetic Biology , Zea mays , Synthetic Biology/methods , Zea mays/genetics , Zea mays/metabolism , Humans , Plants, Genetically Modified/genetics , Promoter Regions, Genetic/genetics , HEK293 Cells , Xanthophylls/metabolism , Hypocreales/genetics , Hypocreales/metabolism , Animals , Nucleic Acids/genetics , Gene Expression , Genetic Vectors/genetics , Protoplasts/metabolism
4.
Methods Mol Biol ; 2772: 337-351, 2024.
Article in English | MEDLINE | ID: mdl-38411827

ABSTRACT

Simultaneous stoichiometric expression of multiple genes plays a major part in modern research and biotechnology. Traditional methods for incorporating multiple transgenes (or "gene stacking") have drawbacks such as long time frames, uneven gene expression, gene silencing, and segregation derived from the use of multiple promoters. 2A self-cleaving peptides have emerged over the last two decades as a functional gene stacking method and have been used in plants for the co-expression of multiple genes under a single promoter. Here we describe design features of multicistronic polyproteins using 2A peptides for co-expression in plant cells and targeting to the endoplasmic reticulum (ER). We designed up to quad-cistronic vectors that could target proteins in tandem to the ER. We also exemplify the incorporation of self-excising intein domains within 2A polypeptides, to remove residue additions. These features could aid in the design of stoichiometric protein co-expression strategies in plants in combination with targeting to different subcellular compartments.


Subject(s)
Biotechnology , Peptides , Peptides/genetics , Transgenes , Endoplasmic Reticulum , Gene Silencing
5.
Front Plant Sci ; 14: 1233248, 2023.
Article in English | MEDLINE | ID: mdl-37692421

ABSTRACT

Abiotic stresses such as drought, salinity, and heat stress significantly affect rice crop growth and production. Under uncertain climatic conditions, the concurrent multiple abiotic stresses at different stages of rice production became a major challenge for agriculture. Hence, improving rice's multiple abiotic stress tolerance is essential to overcome unprecedented challenges under adverse environmental conditions. A significant challenge for rice breeding programs in improving abiotic stress tolerance involves multiple traits and their complexity. Multiple traits must be targeted to improve multiple stress tolerance in rice and uncover the mechanisms. With this hypothesis, in the present study gene stacking approach is used to integrate multiple traits involved in stress tolerance. The multigene transgenics co-expressing Pennisetum glaucum 47 (Pg47), Pea 68 (p68), Pennisetum glaucum Heat Shock Factor 4(PgHSF4), and Pseudomonas Aldo Keto Reductase 1 (PsAKR1) genes in the rice genotype (AC39020) were developed using the in-planta transformation method. The promising transgenic lines maintained higher yields under semi-irrigated aerobic cultivation (moisture stress). These 15 promising transgenic rice seedlings showed improved shoot and root growth traits under salinity, accelerating aging, temperature, and oxidative stress. They showed better physiological characteristics, such as chlorophyll content, membrane stability, and lower accumulation of reactive oxygen species, under multiple abiotic stresses than wild-type. Enhanced expression of transgenes and other stress-responsive downstream genes such as HSP70, SOD, APX, SOS, PP2C, and P5CS in transgenic lines suggest the possible molecular mechanism for imparting the abiotic stress tolerance. This study proved that multiple genes stacking as a novel strategy induce several mechanisms and responsible traits to overcome multiple abiotic stresses. This multigene combination can potentially improve tolerance to multiple abiotic stress conditions and pave the way for developing climate-resilient crops.

6.
Biomolecules ; 13(2)2023 01 18.
Article in English | MEDLINE | ID: mdl-36830568

ABSTRACT

Ranidhan is a popular late-maturing rice variety of Odisha state, India. The farmers of the state suffer heavy loss in years with flash floods as the variety is sensitive to submergence. Bacterial blight (BB) disease is a major yield-limiting factor, and the variety is susceptible to the disease. BB resistance genes Xa21, xa13, and xa5, along with the Sub1 QTL, for submergence stress tolerance were transferred into the variety using marker-assisted backcross breeding approach. Foreground selection using direct and closely linked markers detected the progenies carrying all four target genes in the BC1F1, BC2F1, and BC3F1 generations, and the positive progenies carrying these genes with maximum similarity to the recipient parent, Ranidhan, were backcrossed into each segregating generation. Foreground selection in the BC1F1 generation progenies detected all target genes in 11 progenies. The progeny carrying all target genes and similar to the recipient parent in terms of phenotype was backcrossed, and a total of 321 BC2F1 seeds were produced. Ten progenies carried all target genes/QTL in the BC2F1 generation. Screening of the BC3F1 progenies using markers detected 12 plants carrying the target genes. A total of 1270 BC3F2 seeds were obtained from the best BC3F1 progeny. Foreground selection in the BC3F2 progenies detected four plants carrying the target genes in the homozygous condition. The bioassay of the pyramided lines conferred very high levels of resistance to the predominant isolates of bacterial blight pathogen. These BB pyramided lines were submergence-tolerant and similar to Ranidhan in 13 agro-morphologic and grain quality traits; hence, they are likely to be adopted by farmers.


Subject(s)
Bacterial Infections , Oryza , Genetic Markers , Oryza/genetics , Disease Resistance/genetics , DNA Shuffling , Plant Breeding
7.
Int J Mol Sci ; 25(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38203567

ABSTRACT

The sesquiterpene alkaloid dendrobine, widely recognized as the main active compound and a quality control standard of medicinal orchids in the Chinese Pharmacopoeia, demonstrates diverse biological functions. In this study, we engineered Dendrobium catenatum as a chassis plant for the production of dendrobine through the screening and pyramiding of key biosynthesis genes. Initially, previously predicted upstream key genes in the methyl-D-erythritol 4-phosphate (MEP) pathway for dendrobine synthesis, including 4-(Cytidine 5'-Diphospho)-2-C-Methyl-d-Erythritol Kinase (CMK), 1-Deoxy-d-Xylulose 5-Phosphate Reductoisomerase (DXR), 2-C-Methyl-d-Erythritol 4-Phosphate Cytidylyltransferase (MCT), and Strictosidine Synthase 1 (STR1), and a few downstream post-modification genes, including Cytochrome P450 94C1 (CYP94C1), Branched-Chain-Amino-Acid Aminotransferase 2 (BCAT2), and Methyltransferase-like Protein 23 (METTL23), were chosen due to their deduced roles in enhancing dendrobine production. The seven genes (SG) were then stacked and transiently expressed in the leaves of D. catenatum, resulting in a dendrobine yield that was two-fold higher compared to that of the empty vector control (EV). Further, RNA-seq analysis identified Copper Methylamine Oxidase (CMEAO) as a strong candidate with predicted functions in the post-modification processes of alkaloid biosynthesis. Overexpression of CMEAO increased dendrobine content by two-fold. Additionally, co-expression analysis of the differentially expressed genes (DEGs) by weighted gene co-expression network analysis (WGCNA) retrieved one regulatory transcription factor gene MYB61. Overexpression of MYB61 increased dendrobine levels by more than two-fold in D. catenatum. In short, this work provides an efficient strategy and prospective candidates for the genetic engineering of D. catenatum to produce dendrobine, thereby improving its medicinal value.


Subject(s)
Alkaloids , Dendrobium , Dendrobium/genetics , Metabolic Engineering , Secondary Metabolism , Alkaloids/genetics
8.
Front Genet ; 13: 939182, 2022.
Article in English | MEDLINE | ID: mdl-36452161

ABSTRACT

Soybean is one of the largest sources of protein and oil in the world and is also considered a "super crop" due to several industrial advantages. However, enhanced acreage and adoption of monoculture practices rendered the crop vulnerable to several diseases. Phytophthora root and stem rot (PRSR) caused by Phytophthora sojae is one of the most prevalent diseases adversely affecting soybean production globally. Deployment of genetic resistance is the most sustainable approach for avoiding yield losses due to this disease. PRSR resistance is complex in nature and difficult to address by conventional breeding alone. Genetic mapping through a cost-effective sequencing platform facilitates identification of candidate genes and associated molecular markers for genetic improvement against PRSR. Furthermore, with the help of novel genomic approaches, identification and functional characterization of Rps (resistance to Phytophthora sojae) have also progressed in the recent past, and more than 30 Rps genes imparting complete resistance to different PRSR pathotypes have been reported. In addition, many genomic regions imparting partial resistance have also been identified. Furthermore, the adoption of emerging approaches like genome editing, genomic-assisted breeding, and genomic selection can assist in the functional characterization of novel genes and their rapid introgression for PRSR resistance. Hence, in the near future, soybean growers will likely witness an increase in production by adopting PRSR-resistant cultivars. This review highlights the progress made in deciphering the genetic architecture of PRSR resistance, genomic advances, and future perspectives for the deployment of PRSR resistance in soybean for the sustainable management of PRSR disease.

9.
Plant Physiol Biochem ; 189: 126-138, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36084528

ABSTRACT

Glyphosate residues retained in the growing meristematic tissues or in grains of glyphosate-resistant crops affect the plants physiological functions and crop yield. Removing glyphosate residues in the plants is desirable with no penalty on crop yield and quality. We report a new combination of scientific strategy to detoxify glyphosate that reduces the residual levels and improve crop resistance. The glyphosate detoxifying enzymes Aldo-keto reductase (AKR1) and mutated glycine oxidase (mGO) with different modes of action were co-expressed with modified EPSPS, which is insensitive to glyphosate in tobacco (Nicotiana tabacum L.) and rice (Oryza sativa L.). The transgenic tobacco plants expressing individual PsAKR1, mGO, CP4-EPSPS, combinations of PsAKR1:CP4EPSPS, PsAKR1:mGO, and multigene with PsAKR1: mGO: CP4EPSPS genes were developed. The bio-efficacy studies of in-vitro leaf regeneration on different concentrations of glyphosate, seedling bioassay, and spray on transgenic tobacco plants demonstrate that glyphosate detoxification with enhanced resistance. Comparative analysis of the transgenic tobacco plants reveals that double and multigene expressing transgenics had reduced accumulation of shikimic acid, glyphosate, and its primary residue AMPA, and increased levels of sarcosine were observed in all PsAKR1 expressing transgenics. The multigene expressing rice transgenics showed improved glyphosate resistance with yield maintenance. In summary, results suggest that stacking genes with two different detoxification mechanisms and insensitive EPSPS is a potential approach for developing glyphosate-resistant plants with less residual content.


Subject(s)
Herbicides , Oryza , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Aldo-Keto Reductases , Glycine/analogs & derivatives , Herbicide Resistance/genetics , Herbicides/pharmacology , Magnesium Oxide , Plants, Genetically Modified , Sarcosine/genetics , Shikimic Acid , Nicotiana/genetics , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Glyphosate
10.
Methods Mol Biol ; 2408: 293-302, 2022.
Article in English | MEDLINE | ID: mdl-35325430

ABSTRACT

Plant transformation with multiple genes is a major challenge, rendering multi-trait engineering extremely difficult in crop plants. One of the hurdles in multigene transformation is the uncontrolled integration process that leads to low quality transgenic lines that are unsuitable for practical application. Recombinase-mediated site-specific integration has been tested and validated for developing high quality transgenic lines expressing one, two, or multiple genes. Of the numerous recombinase systems tested, Cre-lox and FLP-FRT show high efficiency in plants. Recently, Cre-lox system was successfully used to stack a set of 3 constitutive, 1 heat-induced, and 1 cold-induced gene. A number of transgenic lines were obtained through a relatively small effort, and the resulting transgenic lines all expressed the genes properly as determined by their promoter-specificity. Here, a method of Cre-lox mediated stacking of a multigene construct is described using rice as a model crop.


Subject(s)
Oryza , Integrases/genetics , Oryza/genetics , Plants, Genetically Modified/genetics , Recombination, Genetic
11.
Front Plant Sci ; 13: 828960, 2022.
Article in English | MEDLINE | ID: mdl-35185992

ABSTRACT

Transgene integration typically takes place in an easy-to-transform laboratory variety before the transformation event is introgressed through backcrosses to elite cultivars. As new traits are added to existing transgenic lines, site-specific integration can stack new transgenes into a previously created transgenic locus. In planta site-specific integration minimizes the number of segregating loci to assemble into a breeding line, but cannot break genetic linkage between the transgenic locus and nearby undesirable traits. In this study, we describe an additional feature of an in planta gene-stacking scheme, in which the Cre (control of recombination) recombinase not only deletes transgenic DNA no longer needed after transformation but also mediates recombination between homologous or non-homologous chromosomes. Although the target site must first be introgressed through conventional breeding, subsequent transgenes inserted into the same locus would be able to use Cre-mediated translocation to expedite a linkage drag-free introgression to field cultivars.

12.
Pest Manag Sci ; 78(3): 855-868, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34570437

ABSTRACT

In the arsenal of plant defense, protease inhibitors (PIs) are well-designed defensive products to counter field pests. PIs are produced in plant tissues by means of 'stable defense metabolite' and triggered on demand as the perception of the signal and well established as a part of plant active defense. PIs have been utilized for approximately four decades, initially as a gene-alone approach that was later replaced by multiple gene pyramiding/gene stacking due to insect adaptability towards the PI alone. By considering the adaptive responses of the pest to the single insecticidal gene, the concept of gene pyramiding gained continuous appreciation for the development of transgenic crops to deal with co-evolving pests. Gene pyramiding approaches are executed to bypass the insect's adaptive responses against PIs. Stacking PIs with additional insecticidal proteins, plastid engineering, recombinant proteinase inhibitors, RNAi-based methods and CRISPR/Cas9-mediated genome editing are the advanced tools and methods for next-generation pest management. Undoubtedly, the domain associated with the mechanism of PIs in the course of plant-pest interactions will occupy a central role for the advancement of more efficient and sustainable pest control strategies. © 2021 Society of Chemical Industry.


Subject(s)
Insecticides , Pesticides , Animals , Crops, Agricultural , Insecta , Protease Inhibitors
13.
GM Crops Food ; 12(1): 361-375, 2021 Jan 02.
Article in English | MEDLINE | ID: mdl-34097556

ABSTRACT

Unintended effects of genetically modified (GM) crops may pose safety issues. Omics techniques provide researchers with useful tools to assess such unintended effects. Proteomics and metabolomics analyses were performed for three GM maize varieties, 2A-7, CC-2, and 2A-7×CC-2 stacked transgenic maize, and the corresponding non-GM parent Zheng58.Proteomics revealed 120, 271 and 135 maize differentially expressed proteins (DEPs) in the 2A-7/Zheng58, CC-2/Zheng58 and 2A-7×CC-2/Zheng58 comparisons, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that most DEPs participated in metabolic pathways and the biosynthesis of secondary metabolite. Metabolomics revealed 179, 135 and 131 differentially accumulated metabolites (DAMs) in the 2A-7/Zheng58, CC-2/Zheng58 and 2A-7×CC-2/Zheng58 comparisons, respectively. Based on KEGG enrichment analysis, most DAMs are involved in the biosynthesis of secondary metabolite and metabolic pathways. According to integrated proteomics and metabolomics analysis, the introduction of exogenous EPSPS did not affect the expression levels of six other enzymes or the abundance of seven metabolites involved in the shikimic acid pathway in CC-2 and 2A-7×CC-2 seeds. Six co-DEPs annotated by integrated proteomics and metabolomics pathway analysis were further analyzed by qRT-PCR.This study successfully employed integrated proteomic and metabolomic technology to assess unintended changes in maize varieties. The results suggest that GM and gene stacking do not cause significantly unintended effects.


Subject(s)
Proteomics , Zea mays , Metabolomics , Plants, Genetically Modified , Seeds/genetics , Zea mays/genetics
14.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Article in English | MEDLINE | ID: mdl-34050013

ABSTRACT

Conventional methods of DNA sequence insertion into plants, using Agrobacterium-mediated transformation or microprojectile bombardment, result in the integration of the DNA at random sites in the genome. These plants may exhibit altered agronomic traits as a consequence of disruption or silencing of genes that serve a critical function. Also, genes of interest inserted at random sites are often not expressed at the desired level. For these reasons, targeted DNA insertion at suitable genomic sites in plants is a desirable alternative. In this paper we review approaches of targeted DNA insertion in plant genomes, discuss current technical challenges, and describe promising applications of targeted DNA insertion for crop genetic improvement.


Subject(s)
Crops, Agricultural/genetics , DNA, Plant/genetics , Gene Transfer Techniques , Genome, Plant , Plants, Genetically Modified/genetics , Transformation, Genetic , Agrobacterium
15.
Metab Eng ; 66: 148-156, 2021 07.
Article in English | MEDLINE | ID: mdl-33895365

ABSTRACT

2-Pyrone-4,6-dicarboxylic acid (PDC), a chemically stable intermediate that naturally occurs during microbial degradation of lignin by bacteria, represents a promising building block for diverse biomaterials and polyesters such as biodegradable plastics. The lack of a chemical synthesis method has hindered large-scale utilization of PDC and metabolic engineering approaches for its biosynthesis have recently emerged. In this study, we demonstrate a strategy for the production of PDC via manipulation of the shikimate pathway using plants as green factories. In tobacco leaves, we first showed that transient expression of bacterial feedback-resistant 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (AroG) and 3-dehydroshikimate dehydratase (QsuB) produced high titers of protocatechuate (PCA), which was in turn efficiently converted into PDC upon co-expression of PCA 4,5-dioxygenase (PmdAB) and 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase (PmdC) derived from Comamonas testosteroni. We validated that stable expression of AroG in Arabidopsis in a genetic background containing the QsuB gene enhanced PCA content in plant biomass, presumably via an increase of the carbon flux through the shikimate pathway. Further, introducing AroG and the PDC biosynthetic genes (PmdA, PmdB, and PmdC) into the Arabidopsis QsuB background, or introducing the five genes (AroG, QsuB, PmdA, PmdB, and PmdC) stacked on a single construct into wild-type plants, resulted in PDC titers of ~1% and ~3% dry weight in plant biomass, respectively. Consistent with previous studies of plants expressing QsuB, all PDC producing lines showed strong reduction in lignin content in stems. This low lignin trait was accompanied with improvements of biomass saccharification efficiency due to reduced cell wall recalcitrance to enzymatic degradation. Importantly, most transgenic lines showed no reduction in biomass yields. Therefore, we conclude that engineering plants with the proposed de-novo PDC pathway provides an avenue to enrich biomass with a value-added co-product while simultaneously improving biomass quality for the supply of fermentable sugars. Implementing this strategy into bioenergy crops has the potential to support existing microbial fermentation approaches that exploit lignocellulosic biomass feedstocks for PDC production.


Subject(s)
Arabidopsis , Polyesters , Arabidopsis/genetics , Biomass , Lignin , Pyrones
16.
Rice (N Y) ; 14(1): 17, 2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33547973

ABSTRACT

Genetic engineering of rice provides a means for improving rice grain quality and yield, and the introduction and expression of multiple genes can produce new traits that would otherwise be difficult to obtain through conventional breeding. GAANTRY (Gene Assembly in Agrobacterium by Nucleic acid Transfer using Recombinase technologY) was previously shown to be a precise and robust system to stably stack ten genes (28 kilobases (kb)) within an Agrobacterium virulence plasmid Transfer-DNA (T-DNA) and obtain high-quality Arabidopsis and potato transgenic events. To determine whether the GAANTRY system can be used to engineer a monocotyledonous crop, two new T-DNA constructs, carrying five (16.9 kb) or eleven (37.4 kb) cargo sequences were assembled and transformed into rice. Characterization of 53 independent transgenic events demonstrated that more than 50% of the plants carried all of the desired cargo sequences and exhibited the introduced traits. Additionally, more than 18% of the lines were high-quality events containing a single copy of the introduced transgenes and were free of sequences from outside of the T-DNA. Therefore, GAANTRY provides a simple, precise and versatile tool for transgene stacking in rice and potentially other cereal grain crops.

17.
Methods Mol Biol ; 2238: 3-17, 2021.
Article in English | MEDLINE | ID: mdl-33471321

ABSTRACT

Plant biotechnology provides a means for the rapid genetic improvement of crops including the enhancement of complex traits like yield and nutritional quality through the introduction and coordinated expression of multiple genes. GAANTRY (gene assembly in Agrobacterium by nucleic acid transfer using recombinase technology) is a flexible and effective system for stably stacking multiple genes within an Agrobacterium virulence plasmid transfer DNA (T-DNA) region. The system provides a simple and efficient method for assembling and stably maintaining large stacked constructs within the GAANTRY ArPORT1 Agrobacterium rhizogenes strain. The assembly process utilizes unidirectional site-specific recombinases in vivo and an alternating bacterial selection scheme to sequentially assemble multiple genes into a single transformation construct. A detailed description of the procedures used for bacterial transformation, selection, counter selection, and genomic PCR validation with the GAANTRY system are presented. The methods described facilitate the efficient assembly and validation of large GAANTRY T-DNA constructs. This powerful, yet simple to use, technology will be a convenient tool for transgene stacking and plant genetic engineering of rice and other crop plants.


Subject(s)
Agrobacterium/genetics , Crops, Agricultural/genetics , DNA Nucleotidyltransferases/metabolism , Gene Transfer Techniques , Genetic Engineering/methods , Nucleic Acids/genetics , Plants, Genetically Modified/genetics , Agrobacterium/pathogenicity , Crops, Agricultural/microbiology , DNA Nucleotidyltransferases/genetics , Genetic Vectors/administration & dosage , Plants, Genetically Modified/microbiology , Plasmids/administration & dosage , Plasmids/genetics , Recombination, Genetic , Transgenes/physiology
18.
J Biotechnol ; 326: 48-51, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33373624

ABSTRACT

Cannabis sativa (Cannabis) is a multipurpose plant species consisting of specific lineages that for centuries has either been artificially selected for the production of fiber or the psychoactive drug Δ9-tetrahydrocannabinol (THC). With the recent lifting of previous legal restrictions on consuming Cannabis, there has been a resurgence of interest in understanding and manipulating Cannabis genetics to enhance its compositions. Yet, recently developed approaches are not amenable to high-throughput gene stacking to study multi-genic traits. Here, we demonstrate an efficient nanoparticle-based transient gene transformation protocol where multiple gene plasmids can be expressed simultaneously in intact Cannabis leaf cells in a very short time (5 days). Constructs encoding two soybean transcription factors were co-grafted onto poly-ethylenimine cationic polymer-modified silicon dioxide-coated gold nanoparticles (PEI-Au@SiO2). Infiltration of the DNA-PEI-Au@SiO2 into Cannabis leaf tissues resulted in the transcription of both soybean genes and the localization of fluorescent-tagged transcription factor proteins in the nuclei of Cannabis leaf cells including the trichomes, which are the cell types that biosynthesize valuable cannabinoid and terpene metabolites. Our study exemplifies a rapid transient gene transformation approach that will be useful to study the effects of gene stacking in Cannabis.


Subject(s)
Cannabis , Metal Nanoparticles , Cannabis/genetics , Gold , Silicon Dioxide , Transformation, Genetic
19.
Plant Direct ; 4(7): e00236, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32760877

ABSTRACT

Efficient methods for multigene transformation are important for developing novel crop varieties. Methods based on random integrations of multiple genes have been successfully used for metabolic engineering in plants. However, efficiency of co-integration and co-expression of the genes could present a bottleneck. Recombinase-mediated integration into the engineered target sites is arguably a more efficient method of targeted integration that leads to the generation of stable transgenic lines at a high rate. This method has the potential to streamline multigene transformation for metabolic engineering and trait stacking in plants. Therefore, empirical testing of transgene(s) stability from the multigene site-specific integration locus is needed. Here, the recombinase technology based on Cre-lox recombination was evaluated for developing multigenic lines harboring constitutively-expressed and inducible genes. Targeted integration of a five genes cassette in the rice genome generated a precise full-length integration of the cassette at a high rate, and the resulting multigenic lines expressed each gene reliably as defined by their promoter activity. The stable constitutive or inducible expression was faithfully transmitted to the progeny, indicating inheritance-stability of the multigene locus. Co-localization of two distinctly inducible genes by heat or cold with the strongly constitutive genes did not appear to interfere with each other's expression pattern. In summary, high rate of co-integration and co-expression of the multigene cassette installed by the recombinase technology in rice shows that this approach is appropriate for multigene transformation and introduction of co-segregating traits. SIGNIFICANCE STATEMENT: Recombinase-mediated site-specific integration approach was found to be highly efficacious in multigene transformation of rice showing proper regulation of each gene driven by constitutive or inducible promoter. This approach holds promise for streamlining gene stacking in crops and expressing complex multigenic traits.

20.
Exp Cell Res ; 388(2): 111852, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31972219

ABSTRACT

Artificial chromosome platforms are described in plants. Because the function of centromeres is largely epigenetic, attempts to produce artificial chromosomes with plant centromere DNA have failed. The removal of the centromeric sequences from the cell strips off the centromeric histone that is the apparent biochemical marker of centromere activity. Thus, engineered minichromosomes have been produced by telomere mediated chromosomal truncation. The introduction of telomere repeats will cleave the chromosome at the site of insertion and attach the accompanying transgenes in the process. Such truncation events have been documented in maize, Arabidopsis, barley, rice, Brassica and wheat. Truncation of the nonvital supernumerary B chromosome of maize is a favorite target but engineered minichromosomes derived from the normal A chromosomes have also been recovered. Transmission through mitosis of small chromosomes is apparently normal but there is loss during meiosis. Potential solutions to address this issue are discussed. With procedures now well established to produce the foundation for artificial chromosomes in plants, current efforts are directed at building them up to specification using gene stacking methods and editing techniques.


Subject(s)
Chromosomes, Artificial , Genetic Engineering/methods , Plants/genetics , Transgenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL