Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Fish Biol ; 104(6): 1990-2007, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561641

ABSTRACT

The lamprey genus Geotria Gray, 1851 currently includes only two species: G. australis and G. macrostoma. However, taxonomic relationships within the genus have traditionally been ambiguous and difficult to establish due to the extreme changes in morphology, dentition, and coloration that lampreys undergo during their life cycles, particularly during upstream migration and sexual maturation. Consequently, several lamprey specimens held in museum collections have remained unidentified, especially those from Argentina. In this study, a series of morphometric characters were subjected to discriminant function analysis (DFA) to identify the lamprey species collected during 1867-2004 from the de la Plata River and Patagonia. These specimens are housed at the Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" in Buenos Aires, the Museo de Historia Natural de Montevideo, and the Naturhistoriska riksmuseet in Stockholm. Based on the proportions of the length of the oral disc, prebranchial, and pre-caudal body regions, and the depth of the trunk, DFA provided conclusive evidence that the specimens corresponded to the recently revalidated G. macrostoma (Burmeister, 1868), which was originally incorrectly named as Petromyzon macrostomus Burmeister, 1868, Exomegas macrostomus (Berg, 1899), Geotria chilensis (Berg, 1895), and Geotria macrostoma f. gallegensis Smitt, 1901, as well as other nontype museum individuals of uncertain taxonomic status. The identifications of these long-preserved museum specimens provided key information on the historical geographic range of Argentinian lampreys and suggest that the disappearance of the species reported from northern localities (the Pampean Region) can be attributed to the degradation of their critical habitats, primarily caused by anthropogenic impact and climate change.


Subject(s)
Lampreys , Animals , Lampreys/anatomy & histology , Argentina , Discriminant Analysis , Museums , Animal Distribution
2.
J Fish Biol ; 100(3): 831-834, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34882797

ABSTRACT

The lamprey genus Exomegas Gill, 1883, was erected on the assumption that it was distinguishable from Geotria Gray, 1851, by possessing three rather than two cusps on the transverse lingual lamina (TLL). Based on literature review and examination of holotypes and new data, the authors reaffirm that the TLL of Geotria possesses two or three cusps in the adult stage. The reduction or disappearance of the middle cusp at the beginning or during the spawning run constitutes a key feature of Geotria. The resurrection of Exomegas by Firpo Lacoste, Fernández and Scioscia, Journal of Fish Biology, 2021, 1-6, 1507-1512, is therefore unjustified and not supported.


Subject(s)
Gills , Lampreys , Animals , Fishes
3.
J Comp Neurol ; 529(9): 2265-2282, 2021 06.
Article in English | MEDLINE | ID: mdl-33336375

ABSTRACT

Lampreys are extant members of the agnathan (jawless) vertebrates that diverged ~500 million years ago, during a critical stage of vertebrate evolution when image-forming eyes first emerged. Among lamprey species assessed thus far, the retina of the southern hemisphere pouched lamprey, Geotria australis, is unique, in that it possesses morphologically distinct photoreceptors and expresses five visual photopigments. This study focused on determining the number of different photoreceptors present in the retina of G. australis and whether each cell type expresses a single opsin class. Five photoreceptor subtypes were identified based on ultrastructure and differential expression of one of each of the five different visual opsin classes (lws, sws1, sws2, rh1, and rh2) known to be expressed in the retina. This suggests, therefore, that the retina of G. australis possesses five spectrally and morphologically distinct photoreceptors, with the potential for complex color vision. Each photoreceptor subtype was shown to have a specific spatial distribution in the retina, which is potentially associated with changes in spectral radiance across different lines of sight. These results suggest that there have been strong selection pressures for G. australis to maintain broad spectral sensitivity for the brightly lit surface waters that this species inhabits during its marine phase. These findings provide important insights into the functional anatomy of the early vertebrate retina and the selection pressures that may have led to the evolution of complex color vision.


Subject(s)
Cone Opsins/biosynthesis , Cone Opsins/ultrastructure , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/ultrastructure , Rod Opsins/biosynthesis , Rod Opsins/ultrastructure , Animals , Cone Opsins/analysis , Fluorescent Dyes/analysis , Lampreys , Photoreceptor Cells, Vertebrate/chemistry , Rod Opsins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL