Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters











Publication year range
1.
J Ginseng Res ; 48(4): 384-394, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39036736

ABSTRACT

Background: Herpes simplex virus type 1 (HSV-1), known to latently infect the host's trigeminal ganglion, can lead to severe herpes encephalitis or asymptomatic infection, potentially contributing to neurodegenerative diseases like Alzheimer's. The virus generates reactive oxygen species (ROS) that significantly impact viral replication and induce chronic inflammation through NF-κB activation. Nuclear factor E2-related factor 2 (Nrf2), an oxidative stress regulator, can prevent and treat HSV-1 infection by activating the passive defense response in the early stages of infection. Methods and results: Our study investigated the antiviral effects of ginsenoside Rg5, an Nrf2 activator, on HSV-1 replication and several host cell signaling pathways. We found that HSV-1 infection inhibited Nrf2 activity in host cells, induced ROS/NF-κB signaling, and triggered inflammatory cytokines. However, treatment with ginsenoside Rg5 inhibited ROS/NF-κB signaling and reduced inflammatory cytokines through NRF2 induction. Interestingly, the Nrf2 inhibitor ML385 suppressed the expression of NAD(P)H quinone oxidoreductase 1(NQO1) and enhanced the expression of KEAP1 in HSV-1 infected cells. This led to the reversal of VP16 expression inhibition, a protein factor associated with HSV-1 infection, thereby promoting HSV-1 replication. Conclusion: These findings suggest for the first time that ginsenoside Rg5 may serve as an antiviral against HSV-1 infection and could be a novel therapeutic agent for HSV-1-induced neuroinflammation.

2.
Nutrients ; 16(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542753

ABSTRACT

The primary objective of this investigation was to elucidate the manner in which ginsenoside Rg5 (Rg5) ameliorates nonalcoholic fatty liver disease (NAFLD) via the modulation of the gut microbiota milieu. We administered either a standard diet (ND) or a high-fat diet (HFD), coupled with 12-week treatment employing two distinct doses of Rg5 (50 and 100 mg/kg/d), to male C57BL/6J mice. In comparison to the HFD cohort, the Rg5-treated group demonstrated significant enhancements in biochemical parameters, exemplified by a substantial decrease in lipid concentrations, as well as the reduced expression of markers indicative of oxidative stress and liver injury. This signifies a mitigation of hepatic dysfunction induced by an HFD. Simultaneously, Rg5 demonstrates the capacity to activate the LKB1/AMPK/mTOR signaling pathway, instigating energy metabolism and consequently hindering the progression of NAFLD. Furthermore, we underscored the role of Rg5 in the treatment of NAFLD within the gut-microbiota-liver axis. Analysis via 16S rRNA sequencing unveiled that Rg5 intervention induced alterations in gut microbiota composition, fostering an increase in beneficial bacteria, such as Bacteroides and Akkermansia, while concurrently reducing the relative abundance of detrimental bacteria, exemplified by Olsenella. Furthermore, employing fecal microbiota transplantation (FMT) experiments, we observed analogous outcomes in mice subjected to fecal bacterial transplants, providing additional verification of the capacity of Rg5 to mitigate NAFLD in mice by actively participating in the restoration of gut microbiota via FMT. Drawing from these data, the regulation of the gut microbiota is recognized as an innovative strategy for treating or preventing NAFLD and metabolic syndrome. Consequently, these research findings suggest that Rg5 holds promise as a potential therapeutic agent for NAFLD management.


Subject(s)
Gastrointestinal Microbiome , Ginsenosides , Non-alcoholic Fatty Liver Disease , Humans , Male , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , AMP-Activated Protein Kinases/metabolism , Ginsenosides/metabolism , Diet, High-Fat/adverse effects , RNA, Ribosomal, 16S/metabolism , Mice, Inbred C57BL , Liver/metabolism , Bacteria , TOR Serine-Threonine Kinases/metabolism , Signal Transduction
3.
Pharmacol Rep ; 76(2): 287-306, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526651

ABSTRACT

Cancer remains one of the leading causes of death in the world. Despite the considerable success of conventional treatment strategies, the incidence and mortality rates are still high, making developing new effective anticancer therapies an urgent priority. Ginsenoside Rg5 (Rg5) is a minor ginsenoside constituent obtained exclusively from ginseng species and is known for its broad spectrum of pharmacological activities. This article aimed to comprehensively review the anticancer properties of Rg5, focusing on action mechanisms, structure-activity relationship (SAR), and pharmacokinetics attributes. The in vitro and in vivo activities of Rg5 have been proven against several cancer types, such as breast, liver, lung, bone, and gastrointestinal (GI) cancers. The modulation of multiple signaling pathways critical for cancer growth and survival mediates these activities. Nevertheless, human clinical studies of Rg5 have not been addressed before, and there is still considerable ambiguity regarding its pharmacokinetics properties. In addition, a significant shortage in the structure-activity relationship (SAR) of Rg5 has been identified. Therefore, future efforts should focus on further optimization by performing extensive SAR studies to uncover the structural features essential for the potent anticancer activity of Rg5. Thus, this review highlights the value of Rg5 as a potential anticancer drug candidate and identifies the research areas requiring more investigation.


Subject(s)
Antineoplastic Agents , Ginsenosides , Neoplasms , Humans , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Structure-Activity Relationship
4.
Hum Exp Toxicol ; 43: 9603271241229140, 2024.
Article in English | MEDLINE | ID: mdl-38289222

ABSTRACT

OBJECTIVE: Ginsenoside Rg5 (Rg5) is a minor ginsenoside of ginseng and has a strong anti-tumor potential. This study focused on deciphering the function of Rg5 in non-small cell lung cancer (NSCLC) and investigating its related mechanism. METHODS: After treating human NSCLC cell lines (H1650 and A549) and bronchial epithelial cells (BEAS-2B) with increasing concentration of Rg5, cell viability was examined using methyl thiazolyl tetrazolium (MTT) assay. NSCLC cell proliferation and apoptosis were evaluated by colony formation assay and flow cytometry, respectively. The levels of proteins associated with cell cycle progression, cell apoptosis, and autophagy as well as the key markers in the PI3K/Akt/mTOR pathway were measured using western blot. A xenograft nude mouse model was established to explore the function of Rg5 in vivo. RESULTS: NSCLC cell viability was dose- and time-dependently suppressed after Rg5 treatment. Rg5 restrained NSCLC cell proliferation by inducing G2/M phase arrest via regulation of cell cycle-related genes including p21, cyclin B1, and Cdc2. Additionally, Rg5 promoted caspase-dependent apoptosis in NSCLC cells by regulating the intrinsic mitochondrial signaling pathway. Rg5 induced autophagy via the regulation of autophagy-related proteins. The in vivo experiments revealed the inhibitory impact of Rg5 on xenograft growth. Rg5 also inactivated the PI3K/Akt/mTOR signaling pathway in NSCLC cells and mouse tumors. CONCLUSION: Rg5 induced autophagy and caspase-dependent apoptosis in NSCLC cells by inhibiting the PI3K/Akt/mTOR signaling pathway, suggesting that Rg5 might become a promising and novel anti-tumor agent for the clinical treatment of NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Ginsenosides , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Lung Neoplasms/drug therapy , Signal Transduction , TOR Serine-Threonine Kinases , Autophagy , Apoptosis , Disease Models, Animal
5.
Orthop Surg ; 16(2): 462-470, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086608

ABSTRACT

OBJECTIVE: Osteosarcoma is a primary malignancy originating from mesenchymal tissue characterized by rapid growth, early metastasis and poor prognosis. Ginsenoside Rg5 (G-Rg5) is a minor ginsenoside extracted from Panax ginseng C.A. Meyer which has been discovered to possess anti-tumor properties. The objective of current study was to explore the mechanism of G-Rg5 in the treatment of osteosarcoma by network pharmacology and molecular docking technology. METHODS: Pharmmapper, SwissTargetPrediction and similarity ensemble approach databases were used to obtain the pharmacological targets of G-Rg5. Related genes of osteosarcoma were searched for in the GeneCards, OMIM and DrugBank databases. The targets of G-Rg5 and the related genes of osteosarcoma were intersected to obtain the potential target genes of G-Rg5 in the treatment of osteosarccoma. The STRING database and Cytoscape 3.8.2 software were used to construct the protein-protein interaction (PPI) network, and the Database for Annotation, Visualization and Integrated Discovery (DAVID) platform was used to perform gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. AutoDock vina software was used to perform molecular docking between G-Rg5 and hub targets. The hub genes were imported into the Kaplan-Meier Plotter online database for survival analysis. RESULTS: A total of 61 overlapping targets were obtained. The related signaling pathways mainly included PI3K-Akt signaling pathway, Proteoglycans in cancer, Lipid and atherosclerosis and Kaposi sarcoma-associated herpesvirus infection. Six hub targets including PIK3CA, SRC, TP53, MAPK1, EGFR, and VEGFA were obtained through PPI network and targets-pathways network analyses. The results of molecular docking showed that the binding energies were all less than -7 kcal/mol. And the results of survival analysis showed TP53 and VEGFA affect the prognosis of sarcoma patients. CONCLUSION: This study explored the possible mechanism of G-Rg5 in the treatment of osteosarcoma using network pharmacology method, suggesting that G-Rg5 has the characteristics of multi-targets and multi-pathways in the treatment of osteosarcoma, which lays a foundation for the follow-up experimental and clinical researches on the therapeutic effects of G-Rg5 on osteosarcoma.


Subject(s)
Bone Neoplasms , Drugs, Chinese Herbal , Ginsenosides , Osteosarcoma , Humans , Molecular Docking Simulation , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Network Pharmacology , Phosphatidylinositol 3-Kinases , Osteosarcoma/drug therapy , Bone Neoplasms/drug therapy
6.
J Ginseng Res ; 47(6): 784-794, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38107390

ABSTRACT

Background: ginsenoside Rg5 is a rare ginsenoside with known hypoglycemic effects in diabetic mice. This study aimed to explore the effects of ginsenoside Rg5 on skin wound-healing in the Leprdb/db mutant (db/db) mice (C57BL/KsJ background) model and the underlying mechanisms. Methods: Seven-week-old male C57BL/6J, SLC7A11-knockout (KO), the littermate wild-type (WT), and db/db mice were used for in vivo and ex vivo studies. Results: Ginsenoside Rg5 provided through oral gavage in db/db mice significantly alleviated the abundance of apoptotic cells in the wound areas and facilitated skin wound healing. 50 µM ginsenoside Rg5 treatment nearly doubled the efferocytotic capability of bone marrow-derived dendritic cells (BMDCs) from db/db mice. It also reduced NF-κB p65 and SLC7A11 expression in the wounded areas of db/db mice dose-dependently. Ginsenoside Rg5 physically interacted with SLC7A11 and suppressed the cystine uptake and glutamate secretion of BMDCs from db/db and SLC7A11-WT mice but not in BMDCs from SLC7A11-KO mice. In BMDCs and conventional type 1 dendritic cells (cDC1s), ginsenoside Rg5 reduced their glycose storage and enhanced anaerobic glycolysis. Glycogen phosphorylase inhibitor CP-91149 almost abolished the effect of ginsenoside Rg5 on promoting efferocytosis. Conclusion: ginsenoside Rg5 can suppress the expression of SLC7A11 and inhibit its activity via physical binding. These effects collectively alleviate the negative regulations of SLC7A11 on anaerobic glycolysis, which fuels the efferocytosis of dendritic cells. Therefore, ginsenoside Rg5 has a potential adjuvant therapeutic reagent to support patients with wound-healing problems, such as diabetic foot ulcers.

7.
Molecules ; 28(21)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37959741

ABSTRACT

Ginsenoside Rg5, a relatively uncommon secondary ginsenoside, exhibits notable pharmacological activity and is commonly hypothesized to originate from the dehydration of Rg3. In this work, we compared different conversion pathways using Rb1, R-Rg3 and S-Rg3 as the raw material under simple acid catalysis. Interestingly, the results indicate that the conversion follows this reaction activity order Rb1 > S-Rg3 > R-Rg3, which is contrary to the common understanding of Rg5 obtained from Rg3 by dehydration. Our experimental results have been fully confirmed by theoretical calculations and a NOESY analysis. The DFT analysis reveals that the free energies of S-Rg3 and R-Rg3 in generating carbocation are 7.56 mol/L and 7.57 mol/L, respectively, which are significantly higher than the free energy of 1.81 mol/L when Rb1 generates the same carbocation. This finding aligns with experimental evidence suggesting that Rb1 is more prone to generating Rg5 than Rg3. The findings from the nuclear magnetic resonance (NMR) analysis suggest that the fatty chains (C22-C27) in R-Rg3 and S-Rg3 adopt a Gauche conformation and an anti conformation with C16-C17 and C13-C17, respectively, due to the relatively weak repulsive van der Waals force. Therefore, the configuration of R-Rg3 is more conducive to the formation of intramolecular hydrogen bonds between 20C-OH and 12C-OH, whereas S-Rg3 lacks this capability. Consequently, this also explains the fact that S-Rg3 is more prone to dehydration to generate Rg5 than R-Rg3. Additionally, our research reveals that the synthetic route of Rg5 derived from protopanaxadiol (PPD)-type ginsenosides (including Rb1, Rb2, Rb3, Rc and Rd) exhibits notable advantages in terms of efficacy, purity and yield when compared to the pathway originating from Rg3. Moreover, this study presents a highly effective and practical approach for the extensive synthesis of Rg5, thereby facilitating the exploration of its pharmacological properties and potential application in drug discovery.


Subject(s)
Ginsenosides , Panax , Ginsenosides/chemistry , Dehydration , Molecular Conformation , Magnetic Resonance Spectroscopy , Panax/metabolism
8.
Biomed Pharmacother ; 168: 115634, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37879211

ABSTRACT

Peripheral arterial disease (PAD) has been historically neglected, which has resulted in a lack of effective drugs in clinical practice. However, with the increasing prevalence of diseases like atherosclerosis and diabetes, the incidence of PAD is rising and cannot be ignored. Researchers are exploring the potential of promoting angiogenesis through exogenous compounds to improve PAD. This paper focuses on the therapeutic effect of natural products (Salidroside, Astragaloside IV, etc.) and synthetic compounds (Cilostazol, Dapagliflozin, etc.). Specifically, it examines how they can promote autocrine secretion of vascular endothelial cells, enhance cell paracrine interactions, and regulate endothelial progenitor cell function. The activation of these effects may be closely related to PI3K, AMPK, and other pathways. Overall, these exogenous compounds have promising therapeutic potential for PAD. This study aims to summarize the potential active compounds, provide a variety of options for the search for drugs for the treatment of PAD, and bring light to the treatment of patients.


Subject(s)
Biological Products , Diabetes Mellitus , Peripheral Arterial Disease , Humans , Endothelial Cells , Biological Products/pharmacology , Diabetes Mellitus/drug therapy , Peripheral Arterial Disease/drug therapy
9.
Am J Chin Med ; 51(7): 1845-1864, 2023.
Article in English | MEDLINE | ID: mdl-37667863

ABSTRACT

Sleep deprivation (SD) has become a universal social problem. There is a causal relationship between SD and energy metabolism disorder. Phytochemicals have been demonstrated to have excellent sleep-promoting effects, and studies have shown that ginsenoside Rg5 (Rg5) exerts sedative and hypnotic effects. The present study aimed to investigate the role of Rg5 in regulating energy metabolism and explore the potential mechanism of improving sleep. Sleep-deprived rats were randomly divided into a control group (Ctrl), SD model group (SD), Rg5 group (GRg5), and melatonin group (MT). Sleep-deprived model rats were generated by housing rats in an SD box for 4 weeks. The Ctrl and SD groups were given equal volumes of saline. The Rg5 groups were given 25[Formula: see text]mg/kg Rg5 or 50[Formula: see text]mg/kg Rg5, and the MT group was given 0.27[Formula: see text]g/kg MT. A Western blot analysis and ELISA were used to detect the metabolic levels, mitochondrial functional proteins, AMPK pathway proteins, clock-related proteins, adenosine receptors, and neurotransmitter receptors. The results showed that Rg5 corrected abnormal glucose and lipid metabolism as well as improved ATP levels. In addition, Rg5 alleviated mitochondrial structural damage and improved the expression of proteins involved in mitochondrial biosynthesis, fission, and fusion. Moreover, Rg5 improved the expression of AMPK/PGC-1/Nrf-1 pathway proteins, regulated mitochondrial biological functions, and affected the rhythm characteristics of circadian clock-related proteins. Further, Rg5 improved the expression of A1R and A[Formula: see text]R as well as regulated the expression levels of GABAA1[Formula: see text] and mGluR5 to improve sleep in SD rats.

10.
Foods ; 12(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37372560

ABSTRACT

BACKGROUND: Ginsenoside Rg5 has been proven to possess numerous health benefits. However, Rg5 is difficult to prepare using the current methods, and the poor stability and solubility of Rg5 are intractable properties that limit its application. We try to establish and optimize a new method for preparing Rg5. METHODS: Different amino acids acted as catalysts, and reaction conditions were investigated to transform Rg5 in GSLS. Different CDs and reaction conditions were investigated for the preparation of CD-Rg5 based on yield and purity; ESI-MS, FT-IR, XRD and SEM analyses were used to prove the formation of the CD-Rg5 inclusion complex. Both the stability and bioactivity of ß-CD-Rg5 were investigated. RESULTS: The content of Rg5 reached 140.8 mg/g after transformation of GSLS using Asp as a catalyst. The yield of ß-CD-Rg5 reached a maximum of 12% and a purity of 92.5%. The results showed that the ß-CD-Rg5 inclusion complex can improve its stability of Rg5 against light and temperature. Antioxidant activity analyses against DPPH, ABTS+, and Fe2+ chelation showed enhanced antioxidant activity of the ß-CD-Rg5 inclusion complex. CONCLUSIONS: A novel and effective strategy for the separation of Rg5 from ginseng stem-leaf saponins (GSLS) was developed to improve the stability, solubility, and bioactivity of Rg5.

11.
Int Immunopharmacol ; 120: 110408, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37276830

ABSTRACT

Increased level of Angiotensin II (Ang II) contributes to hypertensive heart failure via -hemodynamic and non-hemodynamic actions. Ginsenoside Rg5 (Rg5) occurs naturally in ginseng, which has shown various benefits for cardiovascular diseases. This study evaluated Rg5's effects on Ang II-caused cardiac remodeling and heart failure. C57BL/6 mice developed hypertensive cardiac failure after four weeks of Ang II infusion. The mice were administered Rg5 via oral gavage for the last two weeks to investigate the potential mechanism of Rg5. RNA sequencing of heart tissues was performed for mechanistic studies. It was discovered that Rg5 inhibited cardiac inflammation, myocardial fibrosis, and hypertrophy, and prevented cardiac malfunction in mice challenged with Ang II, without altering blood pressure. RNA sequencing showed that Rg5's cardioprotective effect involves the JNK/AP-1 signaling pathway. Rg5 diminished inflammation in mice hearts and cultured cardiomyocytes by blocking Ang II-activated JNK/AP-1 pathway. In the absence of JNK or AP-1 in cardiomyocytes, the anti-inflammatory effects of Rg5 were nullified. The study found that Rg5 preserved the hearts of Ang II-induced mice by reducing JNK-mediated inflammatory responses, suggesting that Rg5 is an effective therapy for hypertensive heart failure.


Subject(s)
Heart Failure , Hypertension , Mice , Animals , Transcription Factor AP-1/metabolism , Angiotensin II , Mice, Inbred C57BL , Heart Failure/drug therapy , Heart Failure/metabolism , Myocytes, Cardiac/metabolism , Hypertension/chemically induced , Hypertension/drug therapy , Arrhythmias, Cardiac
12.
Chem Biol Drug Des ; 101(6): 1348-1355, 2023 06.
Article in English | MEDLINE | ID: mdl-36762503

ABSTRACT

Ginsenoside Rg5 has been implicated in a variety of diseases. However, it is unknown whether Ginsenoside Rg5 can protect against hypoxia-induced neonatal rat cardiomyocytes (NRMs). The purpose of this study was to look into the effect of Ginsenoside Rg5 on hypoxia-induced NRMs apoptosis as well as the underlying molecular mechanism. In this study, following isolation and culture of ventricular myocardial cells from neonatal rats, the appropriate concentration of Rg5 was determined using the MTT assay, the effect of Rg5 on apoptosis was assessed employing TUNEL staining and flow cytometry assays. Levels of apoptosis-related proteins and phosphorylated level of Akt (ser 473 and ser 308) were analyzed using the western blot analysis. Finally, the experimental results shown that Ginsenoside Rg5 significantly inhibited hypoxia-induced NRMs apoptosis, decreased the expression pro-apoptotic protein Bax, increased the expression of anti-apoptotic protein Bcl-2 ratio and the level of cleaved caspase 3. Akt signaling activation was found to be the mechanism of Ginsenoside Rg5s protective effect on hypoxia-induced NRMs apoptosis, as an Akt inhibitor eliminated the anti-apoptotic effects of Ginsenoside Rg5. Various analyses were performed and verified, ginsenoside Rg5 suppressed hypoxia-induced apoptosis in NRMs via activation of the Akt signaling.


Subject(s)
Ginsenosides , Proto-Oncogene Proteins c-akt , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Ginsenosides/pharmacology , Myocytes, Cardiac/metabolism , Apoptosis , Hypoxia/metabolism
13.
J Ginseng Res ; 47(1): 97-105, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36644392

ABSTRACT

Background: Hyperactivated airway mucosa cells overproduce mucin and cause severe breathing complications. Here, we aimed to identify the effects of saponins derived from Panax ginseng on inflammation and mucin overproduction. Methods: NCI-H292 cells were pre-incubated with 16 saponins derived from P. ginseng, and mucin overproduction was induced by treatment with phorbol 12-myristate 13-acetate (PMA). Mucin protein MUC5AC was quantified by enzyme-linked immunosorbent assay, and mRNA levels were analyzed using quantitative polymerase chain reaction (qPCR). Moreover, we performed a transcriptome analysis of PMA-treated NCI-H292 cells in the absence or presence of Rg5, and differential gene expression was confirmed using qPCR. Phosphorylation levels of signaling molecules, and the abundance of lipid droplets, were measured by western blotting, flow cytometry, and confocal microscopy. Results: Ginsenoside Rg5 effectively reduced MUC5AC secretion and decreased MUC5AC mRNA levels. A systematic functional network analysis revealed that Rg5 upregulated cholesterol and glycerolipid metabolism, resulting in the production of lipid droplets to clear reactive oxygen species (ROS), and modulated the mitogen-activated protein kinase and nuclear factor (NF)-κB signaling pathways to regulate inflammatory responses. Rg5 induced the accumulation of lipid droplets and decreased cellular ROS levels, and N-acetyl-l-cysteine, a ROS inhibitor, reduced MUC5AC secretion via Rg5. Furthermore, Rg5 hampered the phosphorylation of extracellular signal-regulated kinase and p38 proteins, affecting the NF-κB signaling pathway and pro-inflammatory responses. Conclusion: Rg5 alleviated inflammatory responses by reducing mucin secretion and promoting lipid droplet-mediated ROS clearance. Therefore, Rg5 may have potential as a therapeutic agent to alleviate respiratory disorders caused by hyperactivation of mucosa cells.

14.
Journal of Pharmaceutical Analysis ; (6): 1296-1308, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1023119

ABSTRACT

Ginsenoside Rg5 is a rare ginsenoside showing promising tumor-suppressive effects.This study aimed to explore its radio-sensitizing effects and the underlying mechanisms.Human lung adenocarcinoma cell lines A549 and Calu-3 were used for in vitro and in vivo analysis.Bioinformatic molecular docking prediction and following validation by surface plasmon resonance(SPR)technology,cellular thermal shift assay(CETSA),and isothermal titration calorimetry(ITC)were conducted to explore the binding between ginsenoside Rg5 and 90 kD heat shock protein alpha(HSP90α).The effects of ginsenoside Rg5 on HSP90-cell division cycle 37(CDC37)interaction,the client protein stability,and the downstream regulations were further explored.Results showed that ginsenoside Rg5 could induce cell-cycle arrest at the G1 phase and enhance irradiation-induced cell apoptosis.It could bind to HSP90α with a high affinity,but the affinity was drastically decreased by HSP90α Y61A mutation.Co-immunoprecipitation(Co-IP)and ITC assays confirmed that ginsenoside Rg5 disrupts the HSP90-CDC37 interaction in a dose-dependent manner.It reduced irradiation-induced upre-gulation of the HSP90-CDC37 client proteins,including SRC,CDK4,RAF1,and ULK1 in A549 cell-derived xenograft(CDX)tumors.Ginsenoside Rg5 or MRT67307(an IKKe/TBK1 inhibitor)pretreatment suppressed irradiation-induced elevation of the LC3-Ⅱ/β ratio and restored irradiation-induced downregulation of p62 expression.In A549 CDX tumors,ginsenoside Rg5 treatment suppressed LC3 expression and enhanced irradiation-induced DNA damage.In conclusion,ginsenoside Rg5 may be a potential radiosensitizer for lung adenocarcinoma.It interacts with HSP90α and reduces the binding between HSP90 and CDC37,thereby increasing the ubiquitin-mediated proteasomal degradation of the HSP90-CDC37 client proteins.

15.
J Pharm Anal ; 13(11): 1296-1308, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38174116

ABSTRACT

Ginsenoside Rg5 is a rare ginsenoside showing promising tumor-suppressive effects. This study aimed to explore its radio-sensitizing effects and the underlying mechanisms. Human lung adenocarcinoma cell lines A549 and Calu-3 were used for in vitro and in vivo analysis. Bioinformatic molecular docking prediction and following validation by surface plasmon resonance (SPR) technology, cellular thermal shift assay (CETSA), and isothermal titration calorimetry (ITC) were conducted to explore the binding between ginsenoside Rg5 and 90 kD heat shock protein alpha (HSP90α). The effects of ginsenoside Rg5 on HSP90-cell division cycle 37 (CDC37) interaction, the client protein stability, and the downstream regulations were further explored. Results showed that ginsenoside Rg5 could induce cell-cycle arrest at the G1 phase and enhance irradiation-induced cell apoptosis. It could bind to HSP90α with a high affinity, but the affinity was drastically decreased by HSP90α Y61A mutation. Co-immunoprecipitation (Co-IP) and ITC assays confirmed that ginsenoside Rg5 disrupts the HSP90-CDC37 interaction in a dose-dependent manner. It reduced irradiation-induced upregulation of the HSP90-CDC37 client proteins, including SRC, CDK4, RAF1, and ULK1 in A549 cell-derived xenograft (CDX) tumors. Ginsenoside Rg5 or MRT67307 (an IKKε/TBK1 inhibitor) pretreatment suppressed irradiation-induced elevation of the LC3-II/ß ratio and restored irradiation-induced downregulation of p62 expression. In A549 CDX tumors, ginsenoside Rg5 treatment suppressed LC3 expression and enhanced irradiation-induced DNA damage. In conclusion, ginsenoside Rg5 may be a potential radiosensitizer for lung adenocarcinoma. It interacts with HSP90α and reduces the binding between HSP90 and CDC37, thereby increasing the ubiquitin-mediated proteasomal degradation of the HSP90-CDC37 client proteins.

16.
Am J Chin Med ; 50(8): 2033-2056, 2022.
Article in English | MEDLINE | ID: mdl-36222119

ABSTRACT

Ginsenoside Rg5 (G-Rg5) is a rare ginsenoside isolated from ginseng (Panax ginseng C.A. Meyer), and this compound is increasingly known for its potent pharmacological activities. This study aimed to provide a comprehensive review of the main activities and mechanisms of G-Rg5 by adopting network pharmacological analysis combined with a summary of published articles. The 100 target genes of G-Rg5 were searched through available database, subjected to protein-protein interaction (PPI) network generation and then core screening. The results showed that G-Rg5 has promising anticancer and neuroprotective effects. By summarizing these two pharmacological activities, we found that G-Rg5 exerts its therapeutic effects mainly through PI3K/AKT, MAPK signaling pathways, and the regulation of apoptosis and cell cycle. And these results were corroborated by KEGG analysis. Likewise, molecular docking of the related proteins was performed, and the binding energies were all less than [Formula: see text]7.0[Formula: see text]kJ/mol, indicating that these proteins had excellent binding capacity with G-Rg5. The network pharmacology results revealed many potential G-Rg5 mechanisms, which need to be further explored. We expect that the network pharmacology approach and molecular docking techniques can help us gain a deeper understanding of the therapeutic mechanisms of different ginsenosides and even the ginseng plant, for further developing their therapeutic potential as well as clinical applications.


Subject(s)
Ginsenosides , Panax , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Neuroprotection , Molecular Docking Simulation , Network Pharmacology , Panax/chemistry
17.
Front Immunol ; 13: 918476, 2022.
Article in English | MEDLINE | ID: mdl-36032109

ABSTRACT

Background: Deep venous thrombosis (DVT) highly occurs in patients with severe COVID-19 and probably accounted for their high mortality. DVT formation is a time-dependent inflammatory process in which NETosis plays an important role. However, whether ginsenoside Rg5 from species of Panax genus could alleviate DVT and its underlying mechanism has not been elucidated. Methods: The interaction between Rg5 and P2RY12 was studied by molecular docking, molecular dynamics, surface plasmon resonance (SPR), and molecular biology assays. The preventive effect of Rg5 on DVT was evaluated in inferior vena cava stasis-induced mice, and immunocytochemistry, Western blot, and calcium flux assay were performed in neutrophils from bone marrow to explore the mechanism of Rg5 in NETosis via P2RY12. Results: Rg5 allosterically interacted with P2RY12, formed stable complex, and antagonized its activity via residue E188 and R265. Rg5 ameliorated the formation of thrombus in DVT mice; accompanied by decreased release of Interleukin (IL)-6, IL-1ß, and tumor necrosis factor-α in plasma; and suppressed neutrophil infiltration and neutrophil extracellular trap (NET) release. In lipopolysaccharide- and platelet-activating factor-induced neutrophils, Rg5 reduced inflammatory responses via inhibiting the activation of ERK/NF-κB signaling pathway while decreasing cellular Ca2+ concentration, thus reducing the activity and expression of peptidyl arginine deiminase 4 to prevent NETosis. The inhibitory effect on neutrophil activity was dependent on P2RY12. Conclusions: Rg5 could attenuate experimental DVT by counteracting NETosis and inflammatory response in neutrophils via P2RY12, which may pave the road for its clinical application in the prevention of DVT-related disorders.


Subject(s)
COVID-19 , Venous Thrombosis , Animals , Ginsenosides , Mice , Molecular Docking Simulation , Neutrophils
18.
BMC Complement Med Ther ; 22(1): 44, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35172794

ABSTRACT

BACKGROUND: Ginseng (Panax ginseng C.A. Mey.) has been used as a valuable ingredient in traditional medicine for thousands of years mostly in Asian countries due to its therapeutic effects in various diseases. Among the processed ginseng products, black ginseng is produced by a repeated steaming and drying process of ginseng roots and has been known for its superior efficacy based on high accumulation of minor ginsenosides as recently discovered. Despite its popularity and increasing use, the toxicity information on black ginseng still remained largely lacking, raising safety concerns. This study was therefore carried out to determine the repeated oral toxicity of black ginseng extract (BGE; CJ EnerG) with evaluation of cytotoxic activity as validation of its pharmacological activity for toxicity testing. METHODS: Prior to the toxicity test, we examined the cytotoxicity of BGE in six cancer cell lines derived from distinct human tissues in comparison with red ginseng extract (RGE), ginsenosides Rg5 and 20(S)-Rg3, and then assessed 28-day repeated oral toxicity in Sprague-Dawley (SD) rats using daily administration of up to 2000 mg/kg BGE. RESULTS: BGE showed higher cytotoxicity than RGE in all the cell lines used in this study. Interestingly, the efficacy of BGE closely resembled the cytotoxic pattern of Rg5, suggesting Rg5 as the main effector in the cytotoxic activity of BGE. During the toxicity study, BGE-treated groups showed no noticeable abnormality in clinical signs, body weight gain, food and water consumption and urinalysis. Furthermore, hematological, serum biochemical and histopathological analyses did not find any BGE-related toxicity. CONCLUSION: Our findings demonstrated that BGE has broad-spectrum in vitro cytotoxic activity, and that NOAEL of BGE in SD rats is > 2000 mg/kg, providing the essential safety information for human consumption.


Subject(s)
Antineoplastic Agents , Neoplasms , Panax , Animals , Cell Line , Humans , Neoplasms/drug therapy , Plant Extracts/pharmacology , Rats , Rats, Sprague-Dawley
19.
Pharmacol Res ; 177: 106099, 2022 03.
Article in English | MEDLINE | ID: mdl-35092819

ABSTRACT

Neurodegenerative diseases (NDDs) are leading causes of death and morbidity in the elderly worldwide. From the mechanistic/pathological view, oxidative stress, inflammation, and apoptosis are responsible for the etiology of neuronal diseases, and play detrimental roles in neuronal cell death and neurodegenerative processes. The diverse pathophysiological pathways influencing NDDs necessitate the discovery of pivotal dysregulated signaling mediators. The current review describes essential functions of protein kinase B (Akt)/cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) pathway as possible therapeutic targets in the pathogenesis of NDDs. Consequently, finding new multi-target agents in regulating Akt/CREB/BDNF and thus associated downstream pathways is a critical factor in combating NDDs. Because of their neuroprotective properties, dietary phytochemicals have shown to be popular nutritional therapy methods. Ginsenosides, the most active ingredient of ginseng, and a secondary metabolite of steroid glycosides and triterpene saponins have been found to have a number of protective effects on the central nervous system (CNS). The protective roles of ginsenosides in CNS are potentially passing through Akt/CREB/BDNF pathway towards neuroprotective responses. In the present study, Akt/CREB/BDNF pathway is targeted by ginsenosides and associated nanoformulations towards potential neuroprotective effects.


Subject(s)
Ginsenosides , Neurodegenerative Diseases , Aged , Brain-Derived Neurotrophic Factor/metabolism , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Humans , Neurodegenerative Diseases/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
20.
J Ethnopharmacol ; 287: 114927, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-34954265

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng root has been used as tonic in traditional Chinese medicine (TCM) and traditional Japanese Kampo medicine. Steam processing of Panax ginseng root is carried out to enhance its nourishing effects on qi. AIM OF THE STUDY: In order to explore the mechanism of these beneficial effects behind the steam processing of the P. ginseng root, we evaluated effectiveness of processing on the granulocyte-colony stimulating factor (G-CSF) secretion in intestinal epithelial cell-like MCE301 cells. MATERIALS AND METHODS: We collected P. ginseng root samples in the markets of China and Japan. Fresh or dried samples were steamed for different time lengths and subsequently dried and extracted. MCE301 cells were incubated with the medium containing various P. ginseng root extracts, while the concentration of G-CSF in the medium was measured. We also investigated the active ingredients by size exclusion HPLC. RESULTS: The extracts of fresh P. ginseng hairy root samples steamed for more than 6 h significantly induced G-CSF secretion, and the maximum activity was recorded at a 9-h steaming. The same activity was noted when already dried P. ginseng hairy root samples were steamed. The extracts of fresh P. ginseng hairy root without steam processing and those of fresh P. ginseng root body samples with steam processing exhibited no activities. The active ingredients of steamed P. ginseng hairy root samples were high-molecular-weight compounds with an average molecular weight of 758 kDa, and the activity was mediated by the toll-like receptor (TLR) 9. CONCLUSIONS: Our results shed on more light on the mechanism underlying the appearance of immunostimulatory activity of the P. ginseng hairy root induced by steam processing.


Subject(s)
Intestinal Mucosa/drug effects , Panax/chemistry , Plant Extracts/pharmacology , Steam , Animals , Cell Line , Chromatography, High Pressure Liquid , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Granulocyte Colony-Stimulating Factor/metabolism , Intestinal Mucosa/cytology , Mice , Plant Extracts/chemistry , Plant Roots
SELECTION OF CITATIONS
SEARCH DETAIL