Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Nutrients ; 16(16)2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39203879

ABSTRACT

Sulforaphane is considered the bioactive metabolite of glucoraphanin after dietary consumption of broccoli sprouts. Although both molecules pass through the gut lumen to the large intestine in stable form, their biological impact on the first intestinal tract is poorly described. In celiac patients, the function of the small intestine is affected by celiac disease (CD), whose severe outcomes are controlled by gluten-free dietary protocols. Nevertheless, pathological signs of inflammation and oxidative stress may persist. The aim of this study was to compare the biological activity of sulforaphane with its precursor glucoraphanin in a cellular model of gliadin-induced inflammation. Human intestinal epithelial cells (CaCo-2) were stimulated with a pro-inflammatory combination of cytokines (IFN-γ, IL-1ß) and in-vitro-digested gliadin, while oxidative stress was induced by H2O2. LC-MS/MS analysis confirmed that sulforaphane from broccoli sprouts was stable after simulated gastrointestinal digestion. It inhibited the release of all chemokines selected as inflammatory read-outs, with a more potent effect against MCP-1 (IC50 = 7.81 µM). On the contrary, glucoraphanin (50 µM) was inactive. The molecules were unable to counteract the oxidative damage to DNA (γ-H2AX) and catalase levels; however, the activity of NF-κB and Nrf-2 was modulated by both molecules. The impact on epithelial permeability (TEER) was also evaluated in a Transwell® model. In the context of a pro-inflammatory combination including gliadin, TEER values were recovered by neither sulforaphane nor glucoraphanin. Conversely, in the context of co-culture with activated macrophages (THP-1), sulforaphane inhibited the release of MCP-1 (IC50 = 20.60 µM) and IL-1ß (IC50 = 1.50 µM) only, but both molecules restored epithelial integrity at 50 µM. Our work suggests that glucoraphanin should not merely be considered as just an inert precursor at the small intestine level, thus suggesting a potential interest in the framework of CD. Its biological activity might imply, at least in part, molecular mechanisms different from sulforaphane.


Subject(s)
Brassica , Celiac Disease , Glucosinolates , Imidoesters , Isothiocyanates , Oxidative Stress , Oximes , Sulfoxides , Humans , Isothiocyanates/pharmacology , Sulfoxides/pharmacology , Glucosinolates/pharmacology , Glucosinolates/metabolism , Celiac Disease/drug therapy , Celiac Disease/diet therapy , Celiac Disease/metabolism , Caco-2 Cells , Oximes/pharmacology , Oxidative Stress/drug effects , Imidoesters/pharmacology , Brassica/chemistry , Gliadin/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Interleukin-1beta/metabolism , Chemokine CCL2/metabolism , Cytokines/metabolism , Interferon-gamma/metabolism
2.
Plants (Basel) ; 13(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38794399

ABSTRACT

Broccoli is a rich source of diverse bioactive compounds, but how their contents are influenced by different growing seasons and variations in broccoli head sizes remains elusive. To address this question, we quantified sixteen known bioactive compounds and seven minerals in broccoli with varying head sizes obtained in two different growing seasons. Our results suggest that the contents of vitamin C, total phenols, carotenoids, and glucoraphanin were significantly higher in samples from the summer-autumn season, showing increases of 157.46%, 34.74%, 51.80%, and 17.78%, respectively, compared with those from the winter-spring season. Moreover, chlorogenic acid is a phenolic compound with relatively high contents among the six detected, while beta-sitosterol is the sterol with relatively high contents. Further, principal component analysis was conducted to rank the comprehensive scores of the profiles of phenolic compounds, phytosterols, and minerals, demonstrating that the broccoli samples grown during the summer-autumn season achieved the highest composite scores. Our results indicate that broccoli heads from the summer-autumn season are richer in a combination of bioactive compounds and minerals than those from the winter-spring season based on the composite score. This study extends our understanding of the nutrition profiles in broccoli and also lays the foundation for breeding broccoli varieties with improved nutrition quality.

3.
J Agric Food Chem ; 72(23): 13217-13227, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38809571

ABSTRACT

Myrosinase (Myr) catalyzes the hydrolysis of glucosinolates, yielding biologically active metabolites. In this study, glucoraphanin (GRA) extracted from broccoli seeds was effectively hydrolyzed using a Myr-obtained cabbage aphid (Brevicoryne brassicae) (BbMyr) to produce (R)-sulforaphane (SFN). The gene encoding BbMyr was successfully heterologously expressed in Escherichia coli, resulting in the production of 1.6 g/L (R)-SFN, with a remarkable yield of 20.8 mg/gbroccoli seeds, achieved using recombination E. coli whole-cell catalysis under optimal conditions (pH 4.5, 45 °C). Subsequently, BbMyr underwent combinatorial simulation-driven mutagenesis, yielding a mutant, DE9 (N321D/Y426S), showing a remarkable 2.91-fold increase in the catalytic efficiency (kcat/KM) compared with the original enzyme. Molecular dynamics simulations demonstrated that the N321D mutation in loopA of mutant DE9 enhanced loopA stability by inducing favorable alterations in hydrogen bonds, while the Y426S mutation in loopB decreased spatial resistance. This research lays a foundation for the environmentally sustainable enzymatic (R)-SFN synthesis.


Subject(s)
Aphids , Brassica , Glycoside Hydrolases , Isothiocyanates , Sulfoxides , Sulfoxides/chemistry , Sulfoxides/metabolism , Animals , Isothiocyanates/metabolism , Isothiocyanates/chemistry , Aphids/enzymology , Aphids/genetics , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/chemistry , Brassica/genetics , Brassica/enzymology , Brassica/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Glucosinolates/metabolism , Glucosinolates/chemistry , Kinetics , Molecular Dynamics Simulation , Oximes/chemistry , Oximes/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Directed Molecular Evolution , Imidoesters/metabolism , Imidoesters/chemistry
4.
Plants (Basel) ; 13(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38611524

ABSTRACT

Lepidium draba (hoary cress) is a perennial plant belonging to the Brassicaceae family that produces two dominant glucosinolates (GLSs): glucoraphanin (GRN) and sinalbin (SBN). They represent the stored form, which is converted upon the myrosinase (Myr) hydrolysis activity to active compounds, mainly isothiocyanates (ITCs) such as sulforaphane (SFN) or p-hydroxybenzyl isothiocyanate (pHBITC). Research on ITCs that have proven anticancer, antimicrobial, and chemoprotective properties is usually conducted with pure commercially available compounds. However, these are chemically reactive, making it difficult to use them directly for preventive purposes in dietary supplements. Efforts are currently being made to prepare dietary supplements enriched with GLS and/or Myr. In this study, we report a simple but efficient chromatographic procedure for the isolation and purification of GLSs from MeOH extract from hoary cress based on a combination of ion exchange and gel permeation chromatography on DEAE-Sephadex A-25 and Sephadex LH-20. To obtain the Myr required for efficient hydrolysis of GLSs into antibacterial ITCs, we developed a rapid method for its extraction from the seeds of Lepidium sativum (garden cress). The yields of GLSs were 22.9 ± 1.2 mg GRN (purity 96%) and 10.4 ± 1.1 mg SBN (purity 92%) from 1 g of dry plant material. Both purified GLSs were used as substrates for the Myr. Analysis of the composition of hydrolysis products (HPs) revealed differences in their hydrolysis rates and in the degree of conversion from GLSs to individual ITCs catalyzed by Myr. When GRNs were cleaved, SFNs were formed in an equimolar ratio, but the formation of pHBITCs was only half that of cleaved SBNs. The decrease in pHBITC content is due to its instability compared to SFN. While SFN is stable in aqueous media during the measurement, pHBITC undergoes non-enzymatic hydrolysis to p-hydroxybenzyl alcohol and thiocyanate ions. Testing of the antimicrobial effects of the HPs formed from GRN by Myr under premix or in situ conditions showed inhibition of the growth of model prokaryotic and eukaryotic microorganisms. This observation could serve as the jumping-off point for the design of a two-component mixture, based on purified GLSs and Myr that is, usable in food or the pharmaceutical industry in the future.

5.
Mol Nutr Food Res ; 68(9): e2300856, 2024 May.
Article in English | MEDLINE | ID: mdl-38676466

ABSTRACT

SCOPE: Obesity and its metabolic comorbidities pose a major global challenge for public health. Glucoraphanin (GRN) is a natural bioactive compound enriched in broccoli that is known to have potential health benefits against various human chronic diseases. METHODS AND RESULTS: This study investigats the effects of broccoli GRN supplementation on body weight, metabolic parameters, gut microbiome and metabolome associated with obesity. The study is conducted on an obese-related C57BL/6J mouse model through the treatment of normal control diet, high-fat diet (HFD)and GRN-supplemented HFD (HFD-GRN) to determine the metabolic protection of GRN. The results shows that GRN treatment alleviates obesity-related traits leading to improved glucose metabolism in HFD-fed animals. Mechanically, the study noticed that GRN significantly shifts the gut microbial diversity and composition to an eubiosis status. GRN supplement also significantly alters plasma metabolite profiles. Further integrated analysis reveal a complex interaction between the gut microbes and host metabolism that may contribute to GRN-induced beneficial effects against HFD. CONCLUSION: These results indicate that beneficial effects of broccoli GRN on reversing HFD-induced adverse metabolic parameters may be attributed to its impacts on reprogramming microbial community and metabolites. Identification of the mechanistic functions of GRN further warrants it as a dietary candidate for obesity prevention.


Subject(s)
Brassica , Diet, High-Fat , Dietary Supplements , Gastrointestinal Microbiome , Glucosinolates , Imidoesters , Metabolome , Mice, Inbred C57BL , Obesity , Oximes , Sulfoxides , Gastrointestinal Microbiome/drug effects , Animals , Obesity/microbiology , Obesity/drug therapy , Diet, High-Fat/adverse effects , Brassica/chemistry , Glucosinolates/pharmacology , Male , Metabolome/drug effects , Sulfoxides/pharmacology , Imidoesters/pharmacology , Oximes/pharmacology , Mice
6.
Food Chem X ; 21: 101065, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38187949

ABSTRACT

Sulfur containing compounds including glucosinolates (GLS), sulforaphane (SFN) and S-methyl-l-cysteine sulfoxide (SMCSO) have been proposed to be partly responsible for the beneficial health effects of cruciferous vegetables. As such, greater understanding of their measurements within foods is important to estimate intake in humans and to inform dietary intervention studies. Herein is described a simple and sensitive method for simultaneous analysis of 20 GLS, SFN and SMCSO by liquid chromatography mass spectrometry. Analytes were effectively retained and resolved on an Xbridge C18 column. Detection can be achieved using high resolution or unit resolution mass spectrometry; the latter making the method more applicable to large studies. Quantitative analysis using calibration standards was demonstrated for 10 GLS, SFN and SMCSO. A further 10 GLS were tentatively identified using high resolution mass spectrometry. The use of surrogate GLS standards was shown to be unreliable, with closely related GLS displaying significantly different ionisation efficiencies.

7.
Diabetol Int ; 15(1): 86-98, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38264234

ABSTRACT

Genetic and pharmacological activation of the transcription factor nuclear factor, erythroid derived 2, like 2 (Nrf2) alleviates high-fat diet (HFD)-induced obesity in mice; however, synthetic Nrf2 activators are not clinically available due to safety concerns. Dietary glucoraphanin (GR), a naturally occurring compound found in cruciferous vegetables that activates Nrf2 and induces its target antioxidant genes. We previously demonstrated that GR increased thermogenesis and mitigated HFD-induced obesity in lean healthy mice. In this study, we investigated the therapeutic effects of GR on pre-existing obesity and associated metabolic disorders, such as hepatic steatosis, with or without low-fat dietary intervention. Eight-week-old male C57BL/6J mice were fed an HFD for 9 weeks to induce obesity. Subsequently, these obese mice were fed either the HFD or a normal chow diet, supplemented with or without GR, for an additional 11 weeks. GR supplementation did not decrease the body weight of HFD-fed mice; however, it significantly reduced plasma alanine aminotransferase and aspartate aminotransferase levels and hepatic triglyceride accumulation. These improvements in liver damage by GR were associated with decreased expression levels of fatty acid synthesis genes and proinflammatory chemokine genes, suppressed c-Jun N-terminal kinase activation, and reduced proinflammatory phenotypes of macrophages in the liver. Moreover, metabolome analysis identified increased hepatic levels of adenosine 5'-monophosphate (AMP) in HFD-GR mice compared with those in HFD mice, which agreed with increased phosphorylation levels of AMP-activated protein kinase. Our results show that GR may have a therapeutic potential for treating obesity-associated hepatic steatosis. Supplementary Information: The online version contains supplementary material available at 10.1007/s13340-023-00658-6.

8.
Front Oncol ; 13: 1251895, 2023.
Article in English | MEDLINE | ID: mdl-38074675

ABSTRACT

Objectives: This paper presents a systematic review aimed at assessing the therapeutic potential of sulforaphane (SFN) in the treatment of diverse cancer types. Methods: Following Cochrane guidelines for systematic reviews, we conducted an exhaustive search of electronic databases up to May 12, 2023, encompassing PubMed, Cochrane, Embase, Web of Science, Google Scholar, Natural Medicines, ProQuest, ClinicalTrials.gov, and ICTRP. Studies were included if they were human-based RCTs involving cancer patients where SFN was the primary experimental treatment. The Cochrane Risk of Bias tool for RCTs (RoB2) was used for quality assessment. Results: Eight studies investigating the efficacy and safety of SFN in prostate cancer (PCa), breast cancer, pancreatic cancer, and melanoma were identified and included in the review. The dosing regimens were variable and inconsistent across the studies. SFN treatment led to statistically significant alterations in several vital genes and histological biomarkers across the studies. However, it did not impact some other key genes. Although not statistically significant, SFN improved overall survival in pancreatic cancer patients. The results on prostate-specific antigen (PSA) were inconsistent in PCa. None of the studies reported significant differences between SFN and comparative controls in terms of adverse events. Conclusion: SFN has emerged as a promising and safe therapeutic agent for diverse cancer types. Nevertheless, the high levels of methodological and clinical heterogeneity across the included studies precluded the possibility of conducting meta-analyses. Further robust clinical investigations to conclusively ascertain the chemotherapeutic potential of SFN in the management of various cancer forms are needed. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022323788, identifier CRD42022323788.

9.
Front Nutr ; 10: 1245355, 2023.
Article in English | MEDLINE | ID: mdl-38089924

ABSTRACT

Background and aims: Observational data indicate that diets rich in fruits and vegetables have a positive effect on inflammatory status, improve metabolic resilience and may protect against the development of non-communicable diseases. Nevertheless, experimental evidence demonstrating a causal relationship between nutrient intake (especially whole foods) and changes in metabolic health is scarce. This study investigated the pleiotropic effects of sulforaphane from broccoli sprouts, compared to pea sprouts, on biomarkers of endothelial function, inflammation and metabolic stress in healthy participants subjected to a standardized caloric challenge. Methods: In this double-blind, crossover, randomized, placebo-controlled trial 12 healthy participants were administered 16 g broccoli sprouts, or pea sprouts (placebo) followed by the standardized high-caloric drink PhenFlex given to disturb healthy homeostasis. Levels of inflammatory biomarkers and metabolic parameters were measured in plasma before and 2 h after the caloric overload. Results: Administration of broccoli sprouts promoted an increase in levels of CCL-2 induced by caloric load (p = 0.017). Other biomarkers (sICAM-1, sVCAM-1, hs-CRP, and IL-10) individually showed insignificant tendencies toward increase with administration of sulforaphane. Combining all studied biomarkers into the systemic low-grade inflammation score further confirmed upregulation of the inflammatory activity (p = 0.087) after sulforaphane. No significant effects on biomarkers of metabolic stress were detected. Conclusion: This study has demonstrated that sulforaphane facilitated development of a mild pro-inflammatory state during the caloric challenge, which could be suggestive of the onset of the hormetic response induced by this phytonutrient. The use of integrative outcomes measures such as the systemic low-grade inflammation score can be viewed as a more robust approach to study the subtle and pleiotropic effects of phytonutrients.Clinical trial registration:www.clinicaltrials.gov, identifier NCT05146804.

10.
mSystems ; 8(6): e0068823, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37942948

ABSTRACT

IMPORTANCE: To our knowledge, IL-10-KO mice have not previously been used to investigate the interactions of host, microbiota, and broccoli, broccoli sprouts, or broccoli bioactives in resolving symptoms of CD. We showed that a diet containing 10% raw broccoli sprouts increased the plasma concentration of the anti-inflammatory compound sulforaphane and protected mice to varying degrees against disease symptoms, including weight loss or stagnation, fecal blood, and diarrhea. Younger mice responded more strongly to the diet, further reducing symptoms, as well as increased gut bacterial richness, increased bacterial community similarity to each other, and more location-specific communities than older mice on the diet intervention. Crohn's disease disrupts the lives of patients and requires people to alter dietary and lifestyle habits to manage symptoms. The current medical treatment is expensive with significant side effects, and a dietary intervention represents an affordable, accessible, and simple strategy to reduce the burden of symptoms.


Subject(s)
Brassica , Crohn Disease , Enterocolitis , Inflammatory Bowel Diseases , Humans , Mice , Animals , Inflammatory Bowel Diseases/microbiology , Crohn Disease/prevention & control , Diet
11.
mSystems ; 8(5): e0053223, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37702510

ABSTRACT

IMPORTANCE: Evaluating bacterial communities across different locations in the gut provides a greater insight than fecal samples alone and provides an additional metric by which to evaluate beneficial host-microbe interactions. Here, we show that 10% steamed broccoli sprouts in the diet protects mice from the negative effects of dextran sodium sulfate-induced colitis, that colitis erases biogeographic patterns of bacterial communities in the gut, and that the cecum is not likely to be a significant contributor to colonic bacteria of interest in the DSS mouse model of ulcerative colitis. Mice fed the broccoli sprout diet during colitis performed better than mice fed the control diet while receiving DSS. The identification of accessible dietary components and concentrations that help maintain and correct the gut microbiome may provide universal and equitable approaches to IBD prevention and recovery, and broccoli sprouts represent a promising strategy.


Subject(s)
Brassica , Colitis , Gastrointestinal Microbiome , Mice , Animals , Colitis/chemically induced , Inflammation
12.
Food Res Int ; 170: 112995, 2023 08.
Article in English | MEDLINE | ID: mdl-37316021

ABSTRACT

Glucoraphanin (GRA) is an aliphatic glucosinolate (GSL), and its hydrolysis product has powerful anticancer activity. ALKENYL HYDROXALKYL PRODUCING 2 (AOP2) gene, encodes a 2-oxoglutarate-dependent dioxygenase, which can catalyze GRA to form gluconapin (GNA). However, GRA only present in trace amounts in Chinese kale. To increase the content of GRA in Chinese kale, three copies of BoaAOP2 were isolated and edited using CRISPR/Cas9 system. The content of GRA was 11.71- to 41.29-fold (0.082-0.289 µmol g-1 FW) higher in T1 generation of boaaop2 mutants than in wild-type plants, and this was accompanied by an increase in the GRA/GNA ratio and reductions in the content of GNA and total aliphatic GSLs. BoaAOP2.1 is an effective gene for the alkenylation of aliphatic GSLs in Chinese kale. Overall, targeted editing of CRISPR/Cas9-mediated BoaAOP2s altered aliphatic GSL side-chain metabolic flux and enhanced the GRA content in Chinese kale, suggesting that metabolic engineering of BoaAOP2s has huge potential in improving nutritional quality of Chinese kale.


Subject(s)
Brassica , Brassica/genetics , Glucosinolates , CRISPR-Cas Systems
13.
Front Plant Sci ; 14: 1132302, 2023.
Article in English | MEDLINE | ID: mdl-37346118

ABSTRACT

Glucosinolates (GSLs), precursors of isothiocyanates (ITCs), are present in Brassicaceae plants have been found to have health benefits. Sulforaphane (4-(methylsulfinyl)butyl ITC) is an ITC stored in the form of 4-(methylsulfinyl)butyl GSL (glucoraphanin, 4MSOB) in Brassica vegetables, such as broccoli and kale. Sulforaphane activates Nrf2 expression, a transcription factor responsible for inducing physiological activities such as detoxification in the human body, and it represents a functional component unique to cruciferous vegetables. Raphanobrassica is an inter-generic hybrid between radish and kale, and it contains a high amount of 4MSOB. However, Raphanobrassica contains as much 4-methylsulfinyl-3-butenyl GSL (glucoraphenin, 4MSO3B) as it does 4MSOB. GLUCORAPHASATIN SYNTHASE 1 (GRS1) is an enzyme present in radish that synthesizes 4-methylthio-3-butenyl GSL (glucoraphasatin, 4MT3B), a precursor of 4MSO3B, using 4-(methylthio)butyl GSL (glucoerucin, 4MTB) as a substrate. Since the precursor of 4MSOB is also 4MTB, it was considered that both 4MSOB and 4MSO3B accumulate owing to competition in Raphanobrassica. We hypothesized that owing to the impaired function of GRS1 in Raphanobrassica, it may be possible to breed Raphanobrassica cultivars containing a high 4MSOB content. In this study, we generated Raphanobrassica populations with functional and defective GRS1 and compared the GSL composition in the two populations using high-performance liquid chromatography. The mean 4MSOB content in leaves of the defective-type populations was higher than that in the functional-type population, and the defective/functional ratio ranged from 2.02 to 2.51-fold, supporting this hypothesis. Furthermore, leaves, flower buds, stems, and roots contained higher amounts of 4MSOB in the defective population than in the functional population. The leaf 4MSOB content of defective Raphanobrassica grown in this study was comparable to that of previously studied vegetables (such as broccoli sprouts) with high 4MSOB content. Raphanobrassica with defective GRS1 represents a new leafy vegetable with high 4MSOB content which exhibits anti-cancerous and anti-inflammatory potentials.

14.
Food Chem X ; 18: 100668, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37091516

ABSTRACT

Myrosinase is a key tool for the fast and efficient preparation of sulforaphane which is one of the prominent natural ingredients found in brassicaceous vegetables. Here, the glucoraphanin-hydrolyzing activity of a Yarrowia lipolytica 20-8 harboring myrosinase reached 73.28 U/g dry cell weight, indicating that it had a potential application in sulforaphane preparation from glucoraphanin. An efficient and reusable process for sulforaphane preparation via myrosinase produced by Y. lipolytica 20-8 was constructed. In detail, as high as 10.32 mg sulforaphane could be produced from 1 g broccoli seed under the reaction of 40 U yeast whole-cell catalyst within 15 min with the conversion efficiency of 99.86%. Moreover, when the yeast whole-cell catalyst was reused 7 and 10 times, as high as 92.53% and 87.56% of sulforaphene yield of the initial level could be retained, respectively. Therefore, this yeast whole-cell is a potent biocatalyst for the efficient and reusable preparation of sulforaphane.

15.
bioRxiv ; 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-36747766

ABSTRACT

Crohn's Disease (CD) is a presentation of Inflammatory Bowel Disease (IBD) that manifests in childhood and adolescence, and involves chronic and severe enterocolitis, immune and gut microbiome dysregulation, and other complications. Diet and gut-microbiota-produced metabolites are sources of anti-inflammatories which could ameliorate symptoms. However, questions remain on how IBD influences biogeographic patterns of microbial location and function in the gut, how early life transitional gut communities are affected by IBD and diet interventions, and how disruption to biogeography alters disease mediation by diet components or microbial metabolites. Many studies on diet and IBD use a chemically induced ulcerative colitis model, despite the availability of an immune-modulated CD model. Interleukin-10-knockout (IL-10-KO) mice on a C57BL/6 background, beginning at age 4 or 7 weeks, were fed a control diet or one containing 10% (w/w) raw broccoli sprouts, which was high in the sprout-sourced anti-inflammatory sulforaphane. Diets began 7 days prior to, and for 2 weeks after inoculation with Helicobacter hepaticus, which triggers Crohn's-like symptoms in these immune-impaired mice. The broccoli sprout diet increased sulforaphane in plasma; decreased weight stagnation, fecal blood, and diarrhea associated; and increased microbiota richness in the gut, especially in younger mice. Sprout diets resulted in some anatomically specific bacteria in younger mice, and reduced the prevalence and abundance of pathobiont bacteria which trigger inflammation in the IL-10-KO mouse, for example; Escherichia coli and Helicobacter. Overall, the IL-10-KO mouse model is responsive to a raw broccoli sprout diet and represents an opportunity for more diet-host-microbiome research.

16.
Plant Sci ; 328: 111580, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36587585

ABSTRACT

The loss of characteristic nutrient glucoraphanin during the shelf life seriously affects the nutritional quality of broccoli. Here, we monitored the changes in the levels of sulfur donors (cysteine and glutathione) required for glucoraphanin biosynthesis. Similar to glucoraphanin, cysteine content decreased sharply. Continuous down-regulation of BoCysK1 and BoCysK2 genes encoding cysteine synthase might account for cysteine loss. Contrarily, glutathione content accumulated steadily, which might owe to the up-regulation of biosynthetic gene (BoEC1). Additionally, the change of malondialdehyde content was positively correlated with glutathione, implying that oxidative stress might stimulate glutathione accumulation. Nevertheless, the expression of BoGSTF11 gene encoding glutathione S-transferases was down-regulated, which blocked the supply of glutathione. The increase in the content of raphanusamic acid (degradation product) indicated that insufficient supply of sulfur donors not only could constrain the biosynthesis of glucoraphanin but also triggered its degradation.


Subject(s)
Brassica , Brassica/genetics , Brassica/metabolism , Cysteine/metabolism , Glucosinolates/metabolism , Sulfur/metabolism , Glutathione/metabolism
17.
J Agric Food Chem ; 71(2): 1100-1112, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36604158

ABSTRACT

Glucoraphanin, rich in broccoli seed extract (BSE), is generally inert but can be biotransformed into active sulforaphane by gut bacteria. This study aimed to screen probiotics with glucoraphanin-metabolizing ability and explore the effect of a combination of strain and BSE on colitis induced by dextran sulfate sodium (DSS) in mice. Bifidobacterium longum CCFM1206 was isolated from healthy adult feces. Ultra-high-performance liquid chromatography Q Exactive mass spectrometry analysis revealed the presence of sulforaphane, sulforaphane-l-cysteine, and erucin in the BSE supernatant fermented by B. longum CCFM1206 in vitro. Combined and individual interventions of BSE and B. longum CCFM1206 were applied to explore the effects on DSS-induced colitis. The results suggested that the combination of B. longum CCFM1206 and BSE could ameliorate colitis symptoms, relieve colonic inflammatory reactions and oxidative stress, and protect the intestinal barrier in DSS-induced mice. In comparison to the BSE intervention alone, the combined intervention of B. longum CCFM1206 and BSE promoted the generation of sulforaphane and sulforaphane-N-acetylcysteine in mice colon from 220.88 ± 19.81 to 333.99 ± 36.46 nmol/g and from 232.04 ± 26.48 to 297.50 ± 40.08 nmol/g dry weight feces, respectively. According to quantitative reverse transcription polymerase chain reaction and immunohistochemical analysis, B. longum CCFM1206 and BSE effectively activated the transcription and expression of genes related to the Nrf2 signaling pathway. These results were intended to elucidate that probiotics could elevate the bioactivity of dietary phytochemicals in vivo, and the combination had potential for therapeutic treatment of colitis.


Subject(s)
Bifidobacterium longum , Colitis , Mice , Animals , Bifidobacterium longum/metabolism , Dextrans/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/microbiology , Colon/metabolism , Biotransformation , Sulfates/metabolism , Sodium/metabolism , Dextran Sulfate/metabolism , Disease Models, Animal , Mice, Inbred C57BL
18.
J Nutr Biochem ; 113: 109238, 2023 03.
Article in English | MEDLINE | ID: mdl-36442719

ABSTRACT

Inflammatory Bowel Diseases (IBD) are chronic, reoccurring, and debilitating conditions characterized by inflammation in the gastrointestinal tract, some of which can lead to more systemic complications and can include autoimmune dysfunction, a change in the taxonomic and functional structure of microbial communities in the gut, and complicated burdens in a person's daily life. Like many diseases based in chronic inflammation, research on IBD has pointed towards a multifactorial origin involving factors of the person's lifestyle, immune system, associated microbial communities, and environmental conditions. Treatment currently exists only as palliative care, and seeks to disrupt the feedback loop of symptoms by reducing inflammation and allowing as much of a return to homeostasis as possible. Various anti-inflammatory options have been explored, and this review focuses on the use of diet as an alternative means of improving gut health. Specifically, we highlight the connection between the role of sulforaphane from cruciferous vegetables in regulating inflammation and in modifying microbial communities, and to break down the role they play in IBD.


Subject(s)
Brassica , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Gastrointestinal Microbiome/physiology , Inflammation , Diet , Brassica/chemistry
19.
J Sci Food Agric ; 103(4): 1749-1760, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36495024

ABSTRACT

BACKGROUND: Broccoli has received widespread attention because of its anti-inflammatory and antioxidant effects. The present study aimed to explore the composition of broccoli seed extract (BSE) and its effect on colitis induced by dextran sulfate sodium (DSS). RESULTS: BSE mainly comprises glucoraphanin and polysaccharides composed of arabinose, galactose, glucose and mannose. Animal experiments suggested that BSE intervention effectively reversed body weight loss, suppressed the levels of proinflammatory interleukin-6, tumor necrosis factor-α and interleukin-1ß, and elevated the levels of anti-inflammatory interleukin-10 and the activities of superoxide dismutase and glutathione in DSS-induced colitis mice. According to histopathologic and immunohistochemical analysis of colon tissue, BSE intervention may repair the intestinal barrier by upregulating mRNA levels and the expression of tight junction proteins (claudin-1, occludin and zonula occludens-1). Gas chromatography-mass spectrometry (MS) analysis demonstrated that cecal short-chain fatty acids in mice with BSE administration were significantly increased compared with the model group. Sulforaphane and sulforaphane-N-acetylcysteine were only detected in BSE group mice by ultra-performance liquid chromatography-MS analysis. In addition, BSE intervention evidently increased the abundance of Alistipeds, Coriobacteriaceae UCG-002 and Bifidobacterium and decreased the abundance of Escheichia-Shinella, Lachnospiraceae others, Parabacteroides, Ruminococcaceae others and Turicibacter, which possibly promoted carbohydrate metabolism and short-chain fatty acid production. CONCLUSION: The present study aimed to elucidate the effect of BSE on colitis and found that BSE, as a novel food ingredient, has great potential for the improvement of colitis. © 2022 Society of Chemical Industry.


Subject(s)
Brassica , Colitis , Gastrointestinal Microbiome , Animals , Mice , Colitis/chemically induced , Colitis/drug therapy , Colon , Anti-Inflammatory Agents/pharmacology , Polysaccharides/metabolism , Plant Extracts/metabolism , Dextran Sulfate/adverse effects , Mice, Inbred C57BL , Disease Models, Animal
20.
Plants (Basel) ; 13(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38202414

ABSTRACT

To investigate the mechanism of melatonin (MT)-mediated glutathione (GSH) in promoting glucoraphanin (GRA) and sulforaphane (SF) synthesis, the gene expression pattern and protein content of hairy broccoli roots under MT treatment were analyzed by a combination of RNA-seq and tandem mass spectrometry tagging (TMT) techniques in this study. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that both proteins and mRNAs with the same expression trend were enriched in the "Glutathione metabolism (ko00480)" and "Proteasome (ko03050)" pathways, and most of the differentially expressed genes (DEGs) and differentially abundant proteins (DAPs) regulating the two pathways were downregulated. The results showed that endogenous GSH concentration and GR activity were increased in hairy roots after MT treatment. Exogenous GSH could promote the biosynthesis of GRA and SF, and both exogenous MT and GSH could upregulate the expression of the GSTF11 gene related to the sulfur transport gene, thus promoting the biosynthesis of GRA. Taken together, this study provides a new perspective to explore the complex molecular mechanisms of improving GRA and SF synthesis levels by MT and GSH regulation.

SELECTION OF CITATIONS
SEARCH DETAIL