Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Article in English | MEDLINE | ID: mdl-37711119

ABSTRACT

INTRODUCTION: Glutaric acidemia type 1 (GA1) is a rare autosomal recessive disorder characterized by a deficiency of glutaryl-CoA dehydrogenase, resulting in the accumulation of glutaric acid (GA), 3-hydroxyglutaric acid, and glutarylcarnitine, especially in the brain. GA1-affected children are clinically characterized by macrocephaly. Neurological abnormalities usually appear between 6 and 18 months of age, often triggered by a catabolic event. On the other hand, several biochemically affected individuals may remain asymptomatic or experience an insidious onset of mild neurological abnormalities. METHODS: Retrospective study of GA1 patients followed at a Portuguese Hereditary Metabolic Disease Center, to characterize the phenotypic and genotypic variations associated with GA1. Therefore, we analyzed the clinical, neuroradiological, biochemical, and genetic information from 14 patients. RESULTS: 14 patients (four months-27 years old) were identified in the last 26 years, 9 were male, 1 was from a consanguineous family. 11 were diagnosed by newborn screening (NBS), and 3 identified following clinical symptoms (later diagnosed, LD). There were 3 phenotypic presentations: 6 asymptomatic, 3 with a motor disability after encephalopathic crisis (EC), and 5 with insidious onset. Acute EC occurred in 1/3 of the LD patients and in 2/11 NBS-identified patients. About urinary GA concentrations: 5 were low excretors (LE), 9 were high excretors (HE). All LE showed symptoms, and 2 had EC. Concerning HE, 3 showed symptoms and 1 had EC. GCDH analysis showed: 6 compound heterozygotes and 8 homozygotes. most frequent variant was c.1204C>T (p.R402W). All of them received appropriate therapy from the time of diagnosis, with a mean age of 23.3 months in LD patients and 13.3 days in NBS-identified patients. CONCLUSION: The outcomes were different between the two groups: all the LD patients presented motor dysfunction however in the NBS-identified patients only 5 developed this symptom. Patients identified by NBS had better outcomes showing that NBS enables an early diagnosis, and treatment, and consequently improves the clinical outcomes for these patients. No correlation was observed with clinical phenotype between LE and HE, as both groups can suffer the most severe neurological manifestations. These conclusions are in agreement with previous cohorts described in the literature.

2.
Enzyme Microb Technol ; 171: 110307, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37659171

ABSTRACT

Product inhibition caused by organic acids is a serious issue in establishing economical biochemical production systems. Herein, for enhanced production of glutaric acid by overcoming product inhibition triggered by glutaric acid, a whole-cell bioconversion system equipped with biocatalyst recycling process and in situ product recovery by adsorption was developed successfully. From the whole-cell bioconversion reaction, we found that both dissociated and undissociated forms of glutaric acid acted as an inhibitor in the whole-cell bioconversion reaction, wherein bioconversion was hindered beyond 200 mM glutaric acid regardless of reaction pH. Therefore, as the promising solution for the inhibition issue by glutaric acid, the biocatalyst-recycled bioconversion process integrated with in situ product recovery by adsorption was introduced in the whole-cell bioconversion. As a result, 592 mM glutaric acid was produced from 1000 mM 5-aminovaleric acid with 59.2% conversion. We believe that our system will be a promising candidate for economically producing organic acids with high titer.

3.
Int J Biol Macromol ; 243: 125246, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37301340

ABSTRACT

To investigate the effect of electron beam irradiation (EBI) pretreatment on the multiscale structure and physicochemical properties of esterified starch, this study used EBI pretreatment to prepare glutaric anhydride (GA) esterified proso millet starch. GA starch did not show the corresponding distinct thermodynamics peaks. However, it had a high pasting viscosity and transparency (57.46-74.25 %). EBI pretreatment increased the degree of glutaric acid esterification (0.0284-0.0560) and changed its structure and physicochemical properties. EBI pretreatment disrupted its short-range ordering structure, reducing the crystallinity, molecular weight and pasting viscosity of glutaric acid esterified starch. Moreover, it produced more short chains and increased the transparency (84.28-93.11 %) of glutaric acid esterified starch. This study could offer a rationale for using EBI pretreatment technology to maximize the functional properties of GA modified starch and enlarge its implementation in modified starch.


Subject(s)
Panicum , Starch , Starch/chemistry , Panicum/chemistry , Electrons , Viscosity
4.
Bioprocess Biosyst Eng ; 46(5): 717-725, 2023 May.
Article in English | MEDLINE | ID: mdl-36882675

ABSTRACT

As an important five-carbon platform chemical to synthesize polyesters and polyamides, glutaric acid is widely used in numerous biochemical fields such as consumer goods, textile, and footwear industries. However, the application of glutaric acid is limited by the low yield of its bio-production. In this study, a metabolically engineered Escherichia coli LQ-1 based on 5-aminovalerate (AMV) pathway was used for glutaric acid fed-batch fermentation. Given the significance of nitrogen source in the bio-production of glutaric acid by AMV pathway, a novel nitrogen source feeding strategy feedbacked by real-time physiological parameters was proposed after evaluating the effects of nitrogen source feeding (such as ammonia and ammonium sulfate) on glutaric acid bio-production. Under the proposed nitrogen source feeding strategy, a significantly improved glutaric acid production of 53.7 g L-1 was achieved in a 30 L fed-batch fermentation by the metabolically engineered E. coli LQ-1, which was an improvement of 52.1% over pre-optimization. Additionally, a higher conversion rate of 0.64 mol mol-1 (glutaric acid/glucose) was obtained compared with the previously reported bio-production of glutaric acid with E. coli. These results indicated that the nitrogen source feeding strategy proposed in this study will be useful for achieving the efficient and sustainable bio-based production of glutaric acid.


Subject(s)
Escherichia coli , Nitrogen , Escherichia coli/genetics , Escherichia coli/metabolism , Nitrogen/metabolism , Glutarates/metabolism , Fermentation , Metabolic Engineering/methods
5.
J Vet Diagn Invest ; 34(5): 854-858, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35762109

ABSTRACT

1,2-o-dilauryl-rac-glycero-3-glutaric acid-(6'-methylresorufin) ester (DGGR) lipase assays are used to measure lipase activity in the diagnosis of pancreatitis. The effect of hepatic lipases released from damaged hepatocytes on serum DGGR lipase activity has not been reported, to our knowledge. We identified dogs with histologically confirmed liver lesions and concurrent unremarkable pancreatic histology, and dogs with no histologic evidence of hepatic or pancreatic disease. Dogs with relevant comorbidities were excluded. The hepatopathy group (n = 7) included 4 dogs with inflammatory hepatopathies, 2 with hepatic neoplasia, and 1 with unspecified (non-inflammatory, non-neoplastic) hepatopathy. The control group (n = 5) included one dog each with enteritis, subcutaneous hemangiosarcoma, hydrocephalus, myelomalacia, and tetanus. A Mann-Whitney U test compared selected biochemical parameters including serum DGGR lipase, alkaline phosphatase, alanine aminotransferase, and amylase activities, with statistical significance defined as p ≤ 0.05. Data are presented as median and range. Serum DGGR lipase activity (RI: <44 IU/L) was not different between the hepatopathy (52 IU/L; range: 27-85 IU/L) and control (37 IU/L, 25-105 IU/L; p = 0.947) groups. Serum amylase activity (RI: 256-1,610 IU/L) was significantly higher in the hepatopathy group (830 IU/L; 711-1,210 IU/L) than the control group (541 IU/L, 336-695 IU/L; p = 0.028). No association or correlation between serum DGGR lipase activity and hepatic lesions (based on histologic or biochemical findings) was identified, suggesting that clinically relevant changes in serum DGGR lipase activity may not be expected secondary to hepatopathy alone.


Subject(s)
Dog Diseases , Liver Diseases , Pancreatitis , Amylases , Animals , Dog Diseases/diagnosis , Dogs , Lipase , Liver Diseases/veterinary , Pancreatitis/diagnosis , Pancreatitis/veterinary , Pilot Projects , Retrospective Studies
6.
Enzyme Microb Technol ; 159: 110053, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35537377

ABSTRACT

In the bioproduction of glutaric acid, an emerging bioplastic monomer, α-ketoglutaric acid (α-KG) is required as an amine acceptor for 4-aminobutyrate aminotransferase (GabT)-driven conversion of 5-aminovalerate (5-AVA) to glutarate semialdehyde. Herein, instead of using expensive α-KG, an indirect α-KG supply system was developed using a relatively cheap alternative, monosodium glutamate (MSG), for l-glutamate oxidase (Gox)-based whole-cell conversion. Using 200 mM 5-AVA and 30 mM MSG initially with Gox, 67.1 mM of glutaric acid was produced. By applying the stepwise feeding strategy of MSG, the glutaric acid production capability was increased to 159.1 mM glutaric acid with a conversion yield of 79.6%. In addition, a buffer-free one-pot reaction from l-lysine was also applied in a 5 L bioreactor to evaluate its industrial applicability, resulting in a conversion yield of 54.2%. The system developed herein might have great potential for the large-scale, economically feasible production of glutaric acid by whole-cell conversion.


Subject(s)
Escherichia coli , Sodium Glutamate , Glutarates , Ketoglutaric Acids
7.
Chembiochem ; 23(11): e202200098, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35352865

ABSTRACT

Pimelic acid is an important seven-carbon dicarboxylic acid, which is broadly applied in various fields. The industrial production of pimelic acid is mainly through a chemical method, which is complicated and environmentally unfriendly. Herein, we found that pimelic acid could be biosynthesized by the reverse adipate-degradation pathway (RADP), a typical Claisen condensation reaction that could be applied to the arrangement of C-C bond. In order to strengthen the supply of glutaryl-CoA precursor, PA5530 protein was used to transport glutaric acid. Subsequently, we discovered that the enzymes in the BIOZ pathway are isoenzyme of the RADP pathway enzymes. By combining the isoenzymes of the two pathways, the titer of pimelic acid reached 36.7 mg ⋅ L-1 under the optimal combination, which was increased by 382.9 % compared with the control strain B-3. It was also the highest titer of pimelic acid biosynthesized by Claisen condensation reaction, laying the foundation for the production of pimelic acid and its derivatives.


Subject(s)
Adipates , Isoenzymes , Adipates/metabolism , Pimelic Acids/metabolism
8.
Z Naturforsch C J Biosci ; 77(7-8): 317-330, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35245421

ABSTRACT

Although Z-2-oxo-4-methyl-3-pentene-1,5-dioic acid (Z-OMPD) has been identified as a major dicarboxylic acid in tulip tissues, its biosynthetic pathway has not been elucidated. Herein, Z-OMPD was isolated from tulip leaves and chemically synthesized. Comparisons of these samples revealed that Z-OMPD exists as a tautomeric mixture at physiological pH. As a regioisomer of Z-OMPD, we enzymatically and chemically prepared 4-methylene-2-oxo-glutaric acid (4-MEOG) for the first time. Using these compounds as standards, the occurrence of Z-OMPD and 4-MEOG in various tissues of the tulip cultivar "Murasakizuisho" was evaluated directly and by 2,4-dinitrophenylhydrazone derivatization. Z-OMPD was found to be abundant in the aerial tissues, whereas 4-MEOG was almost absent from all tissues. Stability analyses of Z-OMPD and 4-MEOG revealed that no double bond isomerization occurred at physiological pH, suggesting that enzyme systems are responsible for Z-OMPD biosynthesis in tulip tissues.


Subject(s)
Tulipa , Alkenes , Glutarates , Oxotremorine/analogs & derivatives
9.
Anal Biochem ; 645: 114604, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35217005

ABSTRACT

Low molecular-mass aliphatic carboxylic acids are critically important for intermediate metabolism and may serve as important biomarkers for metabolic homeostasis. Here in, we focused on multiplexed method development of aliphatic carboxylic analytes, including methylsuccinic acid (MSA), ethylmalonic acid (EMA), and glutaric acid (GA). Also assessed was their utility in a population's health as well as metabolic disease screening in both plasma and urine matrices. MSA, EMA, and GA are constitutional isomers of dicarboxylic acid with high polarity and poor ionization efficiency, resulting in such challenges as poor signal intensity and retention, particularly in reversed-phase liquid chromatography with electrospray mass spectrometry (RP-LC-ESI-MS/MS). Derivatization using n-butanol was performed in the sample preparation to enhance the signal intensity accompanied with a positive charge from ionization in complicated biomatrices as well as to improve the separation of these isomers with optimal retention. Fit-for-purpose method validation results demonstrated quantitative ranges for MSA/EMA/GA from 5/10/20 ng/mL to 400 ng/mL in plasma analysis, and 100/200/100 ng/mL to 5000/10000/5000 ng/mL in urine analysis. This validated method demonstrates future utility when exploring population health analysis and biomarker development in metabolic diseases.


Subject(s)
Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Glutarates , Malonates , Spectrometry, Mass, Electrospray Ionization/methods , Succinates , Tandem Mass Spectrometry/methods
10.
ACS Synth Biol ; 10(10): 2661-2671, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34609846

ABSTRACT

Building autonomous switches is an effective approach for rewiring metabolic flux during microbial synthesis of chemicals. However, current autonomous switches largely rely on metabolite-responsive biosensors or quorum-sensing circuits. In this study, a stationary phase promoter (SPP) and a protein degradation tag (PDT) were combined with the CRISPR interference (CRISPRi) system to construct an autonomous repression system that could shut down multiple-gene expression depending on the cellular physiological state. With this autonomous CRISPRi system to regulate one target gene, a fermenter-scale titer of shikimic acid reached 21 g/L, which was the highest titer ever reported by Escherichia coli in a minimal medium without any chemical inducers. With three target genes repressed, 26 g/L glutaric acid could be achieved with decreased byproduct accumulation. These results highlight the applicability of the autonomous CRISPRi system for microbial production of value-added chemicals.


Subject(s)
CRISPR-Cas Systems , Escherichia coli/metabolism , Metabolic Engineering/methods , Promoter Regions, Genetic , Quorum Sensing , Shikimic Acid/metabolism
11.
Int J Neonatal Screen ; 7(2)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207159

ABSTRACT

Glutaric aciduria type I (GA-1) is a rare autosomal-recessive disorder of the degradation of the amino acids lysine and tryptophan caused by mutations of the GCDH gene encoding glutaryl-CoA-dehydrogenase. Newborn screening (NBS) for this condition is based on elevated levels of glutarylcarnitine (C5DC) in dried blood spots (DBS). Here we report four cases from three families in whom a correctly performed NBS did not detect the condition. Glutarylcarnitine concentrations were either normal (slightly below) or slightly above the cut-off. Ratios to other acylcarnitines were also not persistently elevated. Therefore, three cases were defined as screen negative, and one case was defined as normal, after a normal control DBS sample. One patient was diagnosed after an acute encephalopathic crisis, and the other three patients had an insidious onset of the disease. GA-1 was genetically confirmed in all cases. Despite extensive efforts to increase sensitivity and specificity of NBS for GA-1, by adjusting cut-offs and introducing various ratios, the biological diversity still leads to false-negative NBS results for GA-1.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 258: 119790, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-33946015

ABSTRACT

Tropospheric aerosols are usually complex mixtures of inorganic and organic components, which show non-ideal behavior in hygroscopicity, mass transfer, and partitioning between gas and aerosols. In this study, we applied a novel approach based on a combination of a pulse RH controlling system and a rapid scan vacuum FTIR spectrometer to investigate the mass transfer limit of magnesium sulfate/glutaric acid (GA) mixture aerosol particles. The liquid water band area of the aerosols is used to reveal the mass transfer limit during the rapid pulse RH downward and upward processes. Partitioning equilibrium between the aerosol particles and water gas phase is observed at the higher RH range (73-50%). When the RH is lower than 40%, there is a hysteresis for the liquid water content changing with the RH, indicating the limited water mass transfer in the aerosols.

13.
Acta Pharm Sin B ; 11(1): 258-270, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33532191

ABSTRACT

Liposomes have made remarkable achievements as drug delivery vehicles in the clinic. Liposomal products mostly benefited from remote drug loading techniques that succeeded in amphipathic and/or ionizable drugs, but seemed impracticable for nonionizable and poorly water-soluble therapeutic agents, thereby impeding extensive promising drugs to hitchhike liposomal vehicles for disease therapy. In this study, a series of weak acid drug derivatives were designed by a simplistic one step synthesis, which could be remotely loaded into liposomes by pH gradient method. Cabazitaxel (CTX) weak acid derivatives were selected to evaluate regarding its safety profiles, pharmacodynamics, and pharmacokinetics. CTX weak acid derivative liposomes were superior to Jevtana® in terms of safety profiles, including systemic toxicity, hematological toxicity, and potential central nerve toxicity. Specifically, it was demonstrated that liposomes had capacity to weaken potential toxicity of CTX on cortex and hippocampus neurons. Significant advantages of CTX weak acid derivative-loaded liposomes were achieved in prostate cancer and metastatic cancer therapy resulting from higher safety and elevated tolerated doses.

14.
Mol Genet Metab ; 132(2): 139-145, 2021 02.
Article in English | MEDLINE | ID: mdl-33483254

ABSTRACT

The glutaric acidurias are a group of inborn errors of metabolism with different etiologies. Glutaric aciduria type 3 (GA3) is a biochemical phenotype with uncertain clinical relevance caused by a deficiency of succinyl-CoA:glutarate-CoA transferase (SUGCT). SUGCT catalyzes the succinyl-CoA-dependent conversion of glutaric acid into glutaryl-CoA preventing urinary loss of the organic acid. Here, we describe the presence of a GA3 trait in mice of 129 substrains due to SUGCT deficiency, which was identified by screening of urine organic acid profiles obtained from different inbred mouse strains including 129S2/SvPasCrl. Molecular and biochemical analyses in an F2 population of the parental C57BL/6J and 129S2/SvPasCrl strains (B6129F2) confirmed that the GA3 trait occurred in Sugct129/129 animals. We evaluated the impact of SUGCT deficiency on metabolite accumulation in the glutaric aciduria type 1 (GA1) mouse model. We found that GA1 mice with SUGCT deficiency have decreased excretion of urine 3-hydroxyglutaric acid and decreased levels glutarylcarnitine in urine, plasma and kidney. Our work demonstrates that SUGCT contributes to the production of glutaryl-CoA under conditions of low and pathologically high glutaric acid levels. Our work also highlights the notion that unexpected biochemical phenotypes can occur in widely used inbred animal lines.


Subject(s)
Acyltransferases/genetics , Amino Acid Metabolism, Inborn Errors/genetics , Metabolic Diseases/genetics , Mice, Inbred Strains/genetics , Oxidoreductases/deficiency , Transferases/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/pathology , Animals , Disease Models, Animal , Glutarates/metabolism , Humans , Lysine/metabolism , Metabolic Diseases/metabolism , Metabolic Diseases/pathology , Mice , Oxidoreductases/genetics , Oxidoreductases/metabolism , Phenotype
15.
J Agric Food Chem ; 68(49): 14698-14708, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33236890

ABSTRACT

The hop (Humulus lupulus L.) is an important specialty crop used in beer production. Untargeted UPLC-QTof-MSE metabolomics was used to determine metabolite changes in the leaves of hop plants under varying degrees of drought stress. Principal component analysis revealed that drought treatments produced qualitatively distinct changes in the overall chemical composition of three out of four genotypes tested (i.e., Cascade, Sultana, and a wild var. neomexicanus accession but not Aurora), although differences among treatments were smaller than differences among genotypes. A total of 14 compounds consistently increased or decreased in response to drought stress, and this effect was generally progressive as the severity of drought increased. A total of 10 of these marker compounds were tentatively identified as follows: five glycerolipids, glutaric acid, pheophorbide A, abscisic acid, roseoside, and dihydromyricetin. Some of the observed metabolite changes likely occur across all plants under drought conditions, while others may be specific to hops or to the type of drought treatments performed.


Subject(s)
Humulus/metabolism , Plant Leaves/chemistry , Secondary Metabolism , Abscisic Acid/analysis , Abscisic Acid/metabolism , Chromatography, High Pressure Liquid , Droughts , Genotype , Glucosides/analysis , Glucosides/metabolism , Glutarates/analysis , Glutarates/metabolism , Humulus/chemistry , Humulus/genetics , Mass Spectrometry , Metabolomics , Norisoprenoids/analysis , Norisoprenoids/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Water/analysis , Water/metabolism
16.
Proc Natl Acad Sci U S A ; 117(48): 30328-30334, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33199604

ABSTRACT

There is increasing industrial demand for five-carbon platform chemicals, particularly glutaric acid, a widely used building block chemical for the synthesis of polyesters and polyamides. Here we report the development of an efficient glutaric acid microbial producer by systems metabolic engineering of an l-lysine-overproducing Corynebacterium glutamicum BE strain. Based on our previous study, an optimal synthetic metabolic pathway comprising Pseudomonas putida l-lysine monooxygenase (davB) and 5-aminovaleramide amidohydrolase (davA) genes and C. glutamicum 4-aminobutyrate aminotransferase (gabT) and succinate-semialdehyde dehydrogenase (gabD) genes, was introduced into the C. glutamicum BE strain. Through system-wide analyses including genome-scale metabolic simulation, comparative transcriptome analysis, and flux response analysis, 11 target genes to be manipulated were identified and expressed at desired levels to increase the supply of direct precursor l-lysine and reduce precursor loss. A glutaric acid exporter encoded by ynfM was discovered and overexpressed to further enhance glutaric acid production. Fermentation conditions, including oxygen transfer rate, batch-phase glucose level, and nutrient feeding strategy, were optimized for the efficient production of glutaric acid. Fed-batch culture of the final engineered strain produced 105.3 g/L of glutaric acid in 69 h without any byproduct. The strategies of metabolic engineering and fermentation optimization described here will be useful for developing engineered microorganisms for the high-level bio-based production of other chemicals of interest to industry.


Subject(s)
Corynebacterium glutamicum/metabolism , Glutarates/metabolism , Lysine/biosynthesis , Metabolic Engineering , Systems Biology , Batch Cell Culture Techniques , Biosynthetic Pathways , Fermentation , Metabolic Flux Analysis , Transcriptome/genetics
17.
Brain Res ; 1749: 147145, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33035499

ABSTRACT

Degeneration of striatal neurons and cortical atrophy are pathological characteristics of glutaric acidemia type I (GA-I), a disease characterized by accumulation of glutaric acid (GA). The mechanisms that lead to neuronal loss and cognitive impairment are still unclear. The purpose of this study was to verify if acute exposure to GA during the neonatal period is sufficient to trigger apoptotic processes and lead to learning delay in early and late period. Besides, whether N-acetylcysteine (NAC) would protect against impairment induced by GA. Pups mice received a dose of GA (2.5 µmol/ g) or saline, 12 hs after birth, and were treated with NAC (250 mg/kg) or saline, up to 21th day of life. Although GA exhibited deficits in the procedural and working memories in 21 and 40-day-old mice, NAC protected against cognitive impairment. In striatum and cortex, NAC prevented glial cells activation (GFAP and Iba-1), decreased NGF, Bcl-2 and NeuN, the increase of lipid peroxidation and PARP induced by GA in both ages. NAC protected against increased p75NTR induced by GA, but not in cortex of 21-day-old mice. Thus, we showed that the integrity of striatal and cortical pathways has an important role for learning and suggested that sustained glial reactivity in neonatal period can be an initial trigger for delay of cognitive development. Furthermore, NAC protected against cognitive impairment induced by GA. This work shows that early identification of the alterations induced by GA is important to avoid future clinical complications and suggest that NAC could be an adjuvant treatment for this acidemia.


Subject(s)
Acetylcysteine/pharmacology , Cerebral Cortex/drug effects , Corpus Striatum/drug effects , Glutarates/pharmacology , Maze Learning/drug effects , Receptors, Nerve Growth Factor/metabolism , Animals , Apoptosis/drug effects , Cerebral Cortex/metabolism , Cognition/drug effects , Corpus Striatum/metabolism , Lipid Peroxidation/drug effects , Male , Mice , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects
18.
Front Genet ; 11: 496, 2020.
Article in English | MEDLINE | ID: mdl-32508882

ABSTRACT

Direct mutation analysis is the major method for glutaric acidemia I (GA-I) prenatal diagnosis, while systemic application of a biochemical strategy is rare. We describe our experiences with metabolite measurement together with mutation analysis in GA-I prenatal diagnosis at a single center over 10 years. The data of genetic analysis and metabolite measurement using gas chromatography/mass spectrometry(GC/MS) and tandem mass spectrometry(MS/MS) in amniotic fluid samples of 44 fetuses from 42 GA-I families referred to our center from 2009 to 2019 were retrospectively analyzed. Among these 44 fetuses, genetic and biochemical results were both available in 39 fetuses. Of these, 6 fetuses were judged as affected and 33 fetuses as unaffected by mutation analysis. The levels of glutarylcarnitine (C5DC), C5DC/octanoylcarnitine (C8), and glutaric acid in the supernatant of amniotic fluid from affected fetuses were significantly higher than those in unaffected fetuses [1.73µmol/L (0.89-4.19) vs. 0.16µmol/L (0.06-0.37), 26.26 (12.4-55.55) vs. 2.23 (1.04-8.44), and 103.94 mmol/mol creatinine (30.37-148.31) vs. 1.01mmol/mol creatinine (0-9.81), respectively; all P < 0.0001]. Among all families, two were found to have one causative mutation in the proband, in four pregnancies from these two families, three fetuses were judged as "unaffected" and one was judged as "affected" according to metabolites results. Postnatal follow-up showed a normal phenotype in all unaffected fetuses judged by mutation or metabolite analysis. C5DC, C5DC/C8, and glutaric acid levels in the supernatant of amniotic fluid showed significant differences and no overlap between the affected and unaffected fetuses. Biochemical strategy could be implemented as a quick and convenient method for the prenatal diagnosis of GA-I.

19.
J Inherit Metab Dis ; 43(6): 1154-1164, 2020 11.
Article in English | MEDLINE | ID: mdl-32567100

ABSTRACT

Glutaric aciduria type 1 (GA1) is an inborn error of lysine degradation characterized by acute encephalopathy that is caused by toxic accumulation of lysine degradation intermediates. We investigated the efficacy of substrate reduction through inhibition of 2-aminoadipic semialdehyde synthase (AASS), an enzyme upstream of the defective glutaryl-CoA dehydrogenase (GCDH), in a cell line and mouse model of GA1. We show that loss of AASS function in GCDH-deficient HEK-293 cells leads to an approximately fivefold reduction in the established GA1 clinical biomarker glutarylcarnitine. In the GA1 mouse model, deletion of Aass leads to a 4.3-, 3.8-, and 3.2-fold decrease in the glutaric acid levels in urine, brain, and liver, respectively. Parallel decreases were observed in urine and brain 3-hydroxyglutaric acid levels, and plasma, urine, and brain glutarylcarnitine levels. These in vivo data demonstrate that the saccharopine pathway is the main source of glutaric acid production in the brain and periphery of a mouse model for GA1, and support the notion that pharmacological inhibition of AASS may represent an attractive strategy to treat GA1.


Subject(s)
2-Aminoadipic Acid/analogs & derivatives , Amino Acid Metabolism, Inborn Errors/metabolism , Brain Diseases, Metabolic/metabolism , Brain/metabolism , Glutarates/metabolism , Glutaryl-CoA Dehydrogenase/deficiency , Liver/metabolism , 2-Aminoadipic Acid/genetics , 2-Aminoadipic Acid/metabolism , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Animals , Brain/pathology , Brain Diseases, Metabolic/genetics , Brain Diseases, Metabolic/therapy , CRISPR-Cas Systems , Disease Models, Animal , Female , Glutaryl-CoA Dehydrogenase/genetics , Glutaryl-CoA Dehydrogenase/metabolism , HEK293 Cells , Humans , Liver/pathology , Male , Mice , Mice, Knockout
20.
J Ind Microbiol Biotechnol ; 47(3): 311-318, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32140931

ABSTRACT

Glutaric acid is an important organic acid applied widely in different fields. Most previous researches have focused on the production of glutaric acid in various strains using the 5-aminovaleric acid (AMV) or pentenoic acid synthesis pathways. We previously utilized a five-step reversed adipic acid degradation pathway (RADP) in Escherichia coli BL21 (DE3) to construct strain Bgl146. Herein, we found that malonyl-CoA was strictly limited in this strain, and increasing its abundance could improve glutaric acid production. We, therefore, constructed a malonic acid uptake pathway in E. coli using matB (malonic acid synthetase) and matC (malonic acid carrier protein) from Clover rhizobia. The titer of glutaric acid was improved by 2.1-fold and 1.45-fold, respectively, reaching 0.56 g/L and 4.35 g/L in shake flask and batch fermentation following addition of malonic acid. Finally, the highest titer of glutaric acid was 6.3 g/L in fed-batch fermentation at optimized fermentation conditions.


Subject(s)
Escherichia coli/metabolism , Glutarates/metabolism , Malonates/metabolism , Adipates/metabolism , Amino Acids, Neutral/metabolism , Biosynthetic Pathways , Escherichia coli/genetics , Fermentation , Malonyl Coenzyme A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL