Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Article in English | MEDLINE | ID: mdl-37711119

ABSTRACT

INTRODUCTION: Glutaric acidemia type 1 (GA1) is a rare autosomal recessive disorder characterized by a deficiency of glutaryl-CoA dehydrogenase, resulting in the accumulation of glutaric acid (GA), 3-hydroxyglutaric acid, and glutarylcarnitine, especially in the brain. GA1-affected children are clinically characterized by macrocephaly. Neurological abnormalities usually appear between 6 and 18 months of age, often triggered by a catabolic event. On the other hand, several biochemically affected individuals may remain asymptomatic or experience an insidious onset of mild neurological abnormalities. METHODS: Retrospective study of GA1 patients followed at a Portuguese Hereditary Metabolic Disease Center, to characterize the phenotypic and genotypic variations associated with GA1. Therefore, we analyzed the clinical, neuroradiological, biochemical, and genetic information from 14 patients. RESULTS: 14 patients (four months-27 years old) were identified in the last 26 years, 9 were male, 1 was from a consanguineous family. 11 were diagnosed by newborn screening (NBS), and 3 identified following clinical symptoms (later diagnosed, LD). There were 3 phenotypic presentations: 6 asymptomatic, 3 with a motor disability after encephalopathic crisis (EC), and 5 with insidious onset. Acute EC occurred in 1/3 of the LD patients and in 2/11 NBS-identified patients. About urinary GA concentrations: 5 were low excretors (LE), 9 were high excretors (HE). All LE showed symptoms, and 2 had EC. Concerning HE, 3 showed symptoms and 1 had EC. GCDH analysis showed: 6 compound heterozygotes and 8 homozygotes. most frequent variant was c.1204C>T (p.R402W). All of them received appropriate therapy from the time of diagnosis, with a mean age of 23.3 months in LD patients and 13.3 days in NBS-identified patients. CONCLUSION: The outcomes were different between the two groups: all the LD patients presented motor dysfunction however in the NBS-identified patients only 5 developed this symptom. Patients identified by NBS had better outcomes showing that NBS enables an early diagnosis, and treatment, and consequently improves the clinical outcomes for these patients. No correlation was observed with clinical phenotype between LE and HE, as both groups can suffer the most severe neurological manifestations. These conclusions are in agreement with previous cohorts described in the literature.

2.
Orphanet J Rare Dis ; 18(1): 215, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37496092

ABSTRACT

BACKGROUND: Glutaric acidemia type 1 (GA1) is a rare autosomal recessive inherited metabolic disorder caused by variants in the gene encoding the enzyme glutaryl-CoA dehydrogenase (GCDH). The estimated prevalence of GA1 and the mutational spectrum of the GCDH gene vary widely according to race and region. The aim of this study was to assess the acylcarnitine profiles and genetic characteristics of patients with GA1 in Fujian Province, southeastern China. RESULTS: From January 2014 to December 2022, a total of 1,151,069 newborns (631,016 males and 520,053 females) were screened using MS/MS in six newborn screening (NBS) centers in Fujian Province and recruited for this study. Through NBS, 18 newborns (13 females and 5 males) were diagnosed with GA1. Thus, the estimated incidence of GA1 was 1 in 63,948 newborns in Fujian province. In addition, 17 patients with GA1 were recruited after clinical diagnosis. All but one patient with GA1 had a remarkable increase in glutarylcarnitine (C5DC) concentrations. The results of urinary organic acid analyses in 33 patients showed that the concentration of glutaric acid (GA) increased in all patients. The levels of C5DC and GA in patients identified via NBS were higher than those in patients identified via clinical diagnosis (P < 0.05). A total of 71 variants of 70 alleles were detected in patients with GA1, with 19 different pathogenic variants identified. The three most prevalent variants represented 73.23% of the total and were c.1244-2 A > C, p.(?) (63.38%), c.1261G > A, p.Ala421Thr (5.63%), and c.406G > T, p.Gly136Cys (4.22%). The most abundant genotype observed was c.[1244-2 A > C]; [1244-2 A > C] (18/35, 52.43%) and its phenotype corresponded to high excretors (HE, GA > 100 mmol/mol Cr). CONCLUSIONS: In conclusion, we investigated the biochemical and molecular features of 35 unrelated patients with GA1. C5DC concentrations in dried blood spots and urinary GA are effective indicators for a GA1 diagnosis. Our study also identified a GCDH variant spectrum in patients with GA1 from Fujian Province, southeastern China. Correlation analysis between genotypes and phenotypes provides preliminary and valuable information for genetic counseling and management.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Female , Humans , Male , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/epidemiology , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/epidemiology , Brain Diseases, Metabolic/genetics , China/epidemiology , East Asian People , Glutaryl-CoA Dehydrogenase/genetics , Tandem Mass Spectrometry/methods , Infant, Newborn
3.
Mol Neurobiol ; 59(8): 4839-4853, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35639256

ABSTRACT

Patients with glutaric aciduria type 1 (GA1), a neurometabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase (GCDH) activity, commonly manifest acute encephalopathy associated with severe striatum degeneration and progressive cortical and striatal injury whose pathogenesis is still poorly known. We evaluated redox homeostasis, inflammatory response, mitochondrial biogenesis and dynamics, endoplasmic reticulum (ER)-mitochondria crosstalk, and ER stress in the brain of GCDH-deficient (Gcdh-/-) and wild-type (Gcdh+/+) mice fed a high Lys chow, which better mimics the human neuropathology mainly characterized by striatal lesions. Increased lipid peroxidation and altered antioxidant defenses, including decreased concentrations of reduced glutathione and increased activities of superoxide dismutase, catalase, and glutathione transferase, were observed in the striatum and cerebral cortex of Gcdh-/- mice. Augmented Iba-1 staining was also found in the dorsal striatum and neocortex, whereas the nuclear content of NF-κB was increased, and the cytosolic content of IκBα decreased in the striatum of the mutant animals, indicating a pro-inflammatory response. Noteworthy, in vivo treatment with the pan-PPAR agonist bezafibrate normalized these alterations. It was also observed that the ER-mitochondria crosstalk proteins VDAC1 and IP3R were reduced, whereas the ER stress protein DDIT3 was augmented in Gcdh-/- striatum, signaling disturbances of these processes. Finally, DRP1 content was elevated in the striatum of Gcdh-/- mice, indicating activated mitochondrial fission. We presume that some of these novel pathomechanisms may be involved in GA1 neuropathology and that bezafibrate should be tested as a potential adjuvant therapy for GA1.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Neuroprotective Agents , Amino Acid Metabolism, Inborn Errors/metabolism , Animals , Bezafibrate/pharmacology , Brain/metabolism , Brain Diseases, Metabolic , Endoplasmic Reticulum/metabolism , Glutaryl-CoA Dehydrogenase/deficiency , Homeostasis , Humans , Mice , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Dynamics , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidation-Reduction
4.
Clin Chim Acta ; 530: 113-118, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35367405

ABSTRACT

BACKGROUND: Glutaric acidemia type 1 (GA1) is a treatable neurometabolic disorder caused by biallelic variants in the glutaryl-CoA dehydrogenase (GCDH) gene. There are few large-scale reports describing newborn screening (NBS) for GA1 in China. We report the NBS results, genotypes, and clinical features of patients diagnosed through NBS. METHODS: From January 2009 to August 2021, 4,202,587 newborns were screened by tandem mass spectrometry. Newborns with increased glutarylcarnitine (C5DC) concentrations were recalled for repeated test, and confirmatory examinations were performed if the second test was still positive. The pathogenicity of novel variants was predicted using computational programs. RESULTS: A total of 693 had increased C5DC concentrations, and 19 patients were diagnosed with GA1. Thus, the estimated incidence of GA1 in Zhejiang Province was 1 in 221,053 newborns. All the 19 patients had markedly increased C5DC concentrations and C5DC/octanoylcarnitine (C8) ratios; one had a slightly low free carnitine concentration. Seventeen (17/18, 94.4%) patients had increased GA concentrations, 15 were of high excretor phenotype and 3 were of low excretor phenotype. Twenty-three distinct GCDH variants were detected, of which 2were novel. Novel variants were predicted to be potentially pathogenic by computational programs. c.1244-2A > C was the most common variant, with an allelic frequency of 14.7%, followed by c.914C > T (p.S305L) (8.8%). The most common clinical symptom was movement disorder, followed by seizure, macrocephaly, and failure to thrive. Sylvian fissures widening was the most common MRI finding. CONCLUSIONS: Nineteen GA1 patients were diagnosed through the large-scale NBS in Zhejiang Province, with an estimated incidence of 1 in 221,053 newborns. The GCDH mutational spectrum is heterogenous, with the c.1244-2A > C variant being the most frequent variant in this population. NBS for GA1 should be promoted to achieve timely diagnosis and treatment.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/diagnosis , Brain Diseases, Metabolic/genetics , China , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/genetics , Humans , Infant, Newborn , Neonatal Screening
5.
Clin Case Rep ; 9(9): e04749, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34512980

ABSTRACT

Our findings revealed the mutation c.536T>C (p. Leu179Pro) in GCDH gene although has not been reported so far, but the in-silico analysis and clinical symptoms of the patient indicated that the mutation is pathogenic full stop. Also, it can be diagnosed and prevented in families affected by the disease.

6.
Orphanet J Rare Dis ; 16(1): 339, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34344405

ABSTRACT

BACKGROUND: Glutaric acidemia type 1 (GA1) is a treatable disorder affecting cerebral organic acid metabolism caused by a defective glutaryl-CoA dehydrogenase (GCDH) gene. GA1 diagnosis reports following newborn screening (NBS) are scarce in the Chinese population. This study aimed to assess the acylcarnitine profiles and genetic characteristics of patients with GA1 identified through NBS. RESULTS: From January 2014 to September 2020, 517,484 newborns were screened by tandem mass spectrometry, 102 newborns with elevated glutarylcarnitine (C5DC) levels were called back. Thirteen patients were diagnosed with GA1, including 11 neonatal GA1 and two maternal GA1 patients. The incidence of GA1 in the Quanzhou region was estimated at 1 in 47,044 newborns. The initial NBS results showed that all but one of the patients had moderate to markedly increased C5DC levels. Notably, one neonatal patient with low free carnitine (C0) level suggest primary carnitine deficiency (PCD) but was ultimately diagnosed as GA1. Nine neonatal GA1 patients underwent urinary organic acid analyses: eight had elevated GA and 3HGA levels, and one was reported to be within the normal range. Ten distinct GCDH variants were identified. Eight were previously reported, and two were newly identified. In silico prediction tools and protein modeling analyses suggested that the newly identified variants were potentially pathogenic. The most common variant was c.1244-2 A>C, which had an allelic frequency of 54.55% (12/22), followed by c.1261G>A (p.Ala421Thr) at 9.09% (2/22). CONCLUSIONS: Neonatal GA1 patients with increased C5DC levels can be identified through NBS. Maternal GA1 patients can also be detected using NBS due to the low C0 levels in their infants. Few neonatal GA1 patients may have atypical acylcarnitine profiles that are easy to miss during NBS; therefore, multigene panel testing should be performed in newborns with low C0 levels. This study indicates that the GCDH variant spectra were heterogeneous in this southern Chinese cohort.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/diagnosis , Brain Diseases, Metabolic/genetics , China , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/genetics , Humans , Infant , Infant, Newborn , Neonatal Screening
7.
Arch Biochem Biophys ; 709: 108970, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34181873

ABSTRACT

Glutaric acidemia type 1 (GA1) is caused by glutaryl-CoA dehydrogenase deficiency that leads to a blockage in the metabolic route of the amino acids lysine and tryptophan and subsequent accumulation of glutaric acid (GA), 3-hydroxyglutaric acids and glutarylcarnitine (C5DC). Patients predominantly manifest neurological symptoms, associated with acute striatal degeneration, as well as progressive cortical and striatum injury whose pathogenesis is not yet fully established. Current treatment includes protein/lysine restriction and l-carnitine supplementation of (L-car). The aim of this work was to evaluate behavior parameters and pro-inflammatory factors (cytokines IL-1ß, TNF-α and cathepsin-D levels), as well as the anti-inflammatory cytokine IL10 in striatum of knockout mice (Gcdh-/-) and wild type (WT) mice submitted to a normal or a high Lys diet. The potential protective effects of L-car treatment on these parameters were also evaluated. Gcdh-/- mice showed behavioral changes, including lower motor activity (decreased number of crossings) and exploratory activity (reduced number of rearings). Also, Gcdh-/- mice had significantly higher concentrations of glutarylcarnitine (C5DC) in blood and cathepsin-D (CATD), interleukin IL-1ß and tumor factor necrosis alpha (TNF-α) in striatum than WT mice. Noteworthy, L-car treatment prevented most behavioral alterations, normalized CATD levels and attenuated IL-1ß levels in striatum of Gcdh-/- mice. Finally, IL-1ß was positively correlated with CATD and C5DC levels and L-car was negatively correlated with CATD. Our results demonstrate behavioral changes and a pro-inflammatory status in striatum of the animal model of GA1 and, most importantly, L-car showed important protective effects on these alterations.


Subject(s)
Amino Acid Metabolism, Inborn Errors/drug therapy , Brain Diseases, Metabolic/drug therapy , Carnitine/therapeutic use , Glutaryl-CoA Dehydrogenase/deficiency , Inflammation/drug therapy , Neuroprotective Agents/therapeutic use , Amino Acid Metabolism, Inborn Errors/genetics , Animals , Brain Diseases, Metabolic/genetics , Carnitine/analogs & derivatives , Carnitine/metabolism , Cathepsin D/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Glutaryl-CoA Dehydrogenase/genetics , Grooming/drug effects , Inflammation/genetics , Interleukin-1beta/metabolism , Locomotion/drug effects , Lysine/pharmacology , Mice, Knockout , Open Field Test/drug effects , Transforming Growth Factor beta/metabolism
8.
Pediatr Radiol ; 51(6): 1029-1043, 2021 May.
Article in English | MEDLINE | ID: mdl-33999244

ABSTRACT

Genetic disorders are in the differential diagnosis when young children present with unexplained fractures or intracranial hemorrhage. For medical and legal reasons, it is imperative to make the correct diagnosis and provide clear, evidence-based explanations of how alternative diagnoses were ruled out. A genetics consultation in cases of suspected child physical abuse should synthesize the history of present illness, medical history, family history, physical examination, and radiologic and laboratory findings in consultation with other specialists. The medical geneticist highlights how these disorders truly present. When the natural history of a genetic disorder is understood, it becomes clear that genetic disorders are not mysterious or difficult to diagnose. As highlighted in this case-based review, mainstream medical practice allows for differentiation among the intracranial and skeletal manifestations of osteogenesis imperfecta, Menkes disease, glutaric acidemia type 1 and child physical abuse. This review also highlights how a genetic disorder, Ehlers-Danlos syndrome, can be misused in a courtroom. Finally, this review summarizes when genetic testing is appropriate in cases of suspected child physical abuse.


Subject(s)
Child Abuse , Ehlers-Danlos Syndrome , Fractures, Bone , Osteogenesis Imperfecta , Child , Child Abuse/diagnosis , Child, Preschool , Fractures, Bone/diagnostic imaging , Fractures, Bone/genetics , Hematoma, Subdural/diagnostic imaging , Hematoma, Subdural/genetics , Humans , Infant , Osteogenesis Imperfecta/diagnostic imaging , Osteogenesis Imperfecta/genetics
9.
Am J Med Genet A ; 185(6): 1854-1857, 2021 06.
Article in English | MEDLINE | ID: mdl-33686767

ABSTRACT

The COVID-19 pandemic has affected the health and healthcare of individuals of all ages worldwide. There have been multiple reports and reviews documenting a milder effect and decreased morbidity and mortality in the pediatric population, but there have only been a small number of reports discussing the SARS-CoV-2 infection in the setting of an inborn error of metabolism (IEM). Here, we report two patients with underlying metabolic disorders, propionic acidemia and glutaric aciduria type 1, and discuss their clinical presentation, as well as their infectious and metabolic management. Our report demonstrates that individuals with an underlying IEM are at risk of metabolic decompensation in the setting of a COVID-19 infection. The SARS-CoV-2 virus does not appear to cause a more severe metabolic deterioration than is typical.


Subject(s)
Amino Acid Metabolism, Inborn Errors/complications , Brain Diseases, Metabolic/complications , COVID-19/complications , Glutaryl-CoA Dehydrogenase/deficiency , Propionic Acidemia/complications , SARS-CoV-2 , Acidosis/etiology , Acidosis/therapy , Acidosis, Lactic/etiology , Blood Component Transfusion , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Combined Modality Therapy , Dietary Proteins/administration & dosage , Disease Management , Disease Susceptibility , Energy Intake , Enteral Nutrition , Female , Fluid Therapy , Glucose/administration & dosage , Glucose/adverse effects , Humans , Hyperammonemia/etiology , Hyperammonemia/therapy , Hyperglycemia/chemically induced , Hyperglycemia/drug therapy , Infant , Insulin/therapeutic use , Intensive Care Units, Pediatric , Oxygen Inhalation Therapy , Pancytopenia/etiology , Pancytopenia/therapy , Renal Dialysis , Systemic Inflammatory Response Syndrome/diagnosis
10.
Genet Med ; 23(1): 13-21, 2021 01.
Article in English | MEDLINE | ID: mdl-32981931

ABSTRACT

PURPOSE: Glutaric aciduria type 1 (GA1), a rare inherited neurometabolic disorder, results in a complex movement disorder (MD) with predominant dystonia if untreated. Implementation into newborn screening (NBS) programs and adherence to recommended therapy are thought to improve the neurological outcome. METHODS: Systematic literature search for articles published from 2000 to 2019 was performed using the PRISMA protocol. Studies reporting on more than one individual identified by NBS were included. We investigated effects of interventional and noninterventional variables on neurological outcome. RESULTS: Fifteen publications reporting on 647 GA1 patients were included. In the NBS group (n = 261 patients), 195 patients remained asymptomatic (74.7%), while 66 patients (25.3%) developed a MD. Compared with the NBS group, a much higher proportion of patients (349/386; 90.4%; p < 0.0001) diagnosed after the manifestation of neurologic symptoms had a MD and an abnormal motor development (285/349; 81.7%; p < 0.0001). For NBS patients, deviations from the recommended diet increased the risk of insidious onset MD, while delayed start of emergency treatment increased the risk of acute onset MD. CONCLUSIONS: This meta-analysis demonstrates that NBS programs for GA1 have an overall positive effect on the neurological outcome of affected individuals but their success critically depends on the quality of therapy.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Brain Diseases, Metabolic/diagnosis , Brain Diseases, Metabolic/genetics , Brain Diseases, Metabolic/therapy , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/genetics , Humans , Infant, Newborn , Neonatal Screening
11.
J Inherit Metab Dis ; 44(3): 629-638, 2021 05.
Article in English | MEDLINE | ID: mdl-33274439

ABSTRACT

Glutaric aciduria type 1 (GA1) is a rare neurometabolic disorder, caused by inherited deficiency of glutaryl-CoA dehydrogenase, mostly affecting the brain. Early identification by newborn screening (NBS) significantly improves neurologic outcome. It has remained unclear whether recommended therapy, particular low lysine diet, is safe or negatively affects anthropometric long-term outcome. This national prospective, observational, multi-centre study included 79 patients identified by NBS and investigated effects of interventional and non-interventional parameters on body weight, body length, body mass index (BMI) and head circumference as well as neurological parameters. Adherence to recommended maintenance and emergency treatment (ET) had a positive impact on neurologic outcome and allowed normal anthropometric development until adulthood. In contrast, non-adherence to ET, resulting in increased risk of dystonia, had a negative impact on body weight (mean SDS -1.07; P = .023) and body length (mean SDS -1.34; P = -.016). Consistently, longitudinal analysis showed a negative influence of severe dystonia on weight and length development over time (P < .001). Macrocephaly was more often found in female (mean SDS 0.56) than in male patients (mean SDS -0.20; P = .049), and also in individuals with high excreter phenotype (mean SDS 0.44) compared to low excreter patients (mean SDS -0.68; P = .016). In GA1, recommended long-term treatment is effective and allows for normal anthropometric long-term development up to adolescence, with gender- and excreter type-specific variations. Delayed ET and severe movement disorder result in poor anthropometric outcome.


Subject(s)
Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/therapy , Brain Diseases, Metabolic/diagnosis , Brain Diseases, Metabolic/therapy , Glutaryl-CoA Dehydrogenase/deficiency , Adolescent , Anthropometry , Body Height , Body Mass Index , Body Weight , Child , Child, Preschool , Dystonia/pathology , Emergency Treatment , Female , Germany , Humans , Infant , Infant, Newborn , Male , Megalencephaly/pathology , Neonatal Screening , Prospective Studies , Sex Factors , Young Adult
12.
Metab Brain Dis ; 36(2): 205-212, 2021 02.
Article in English | MEDLINE | ID: mdl-33064266

ABSTRACT

Glutaric aciduria type 1 (GA-1) is a rare but treatable inherited disease caused by deficiency of glutaryl-CoA dehydrogenase activity due to GCDH gene mutations. In this study, we report 24 symptomatic GA-1 Brazilian patients, and present their clinical, biochemical, and molecular findings. Patients were diagnosed by high levels of glutaric and/or 3-hydroxyglutaric and glutarylcarnitine. Diagnosis was confirmed by genetic analysis. Most patients had the early-onset severe form of the disease and the main features were neurological deterioration, seizures and dystonia, usually following an episode of metabolic decompensation. Despite the early symptomatology, diagnosis took a long time for most patients. We identified 13 variants in the GCDH gene, four of them were novel: c.91 + 5G > A, c.167T > G, c.257C > T, and c.10A > T. The most common mutation was c.1204C > T (p.R402W). Surprisingly, the second most frequent mutation was the new mutation c.91 + 5G > A (IVS1 ds G-A + 5). Our results allowed a complete characterization of the GA-1 Brazilian patients. Besides, they expand the mutational spectrum of GA-1, with the description of four new mutations. This work reinforces the importance of awareness of GA-1 among doctors in order to allow early diagnosis and treatment in countries like Brazil where the disease has not been included in newborn screening programs.


Subject(s)
Amino Acid Metabolism, Inborn Errors/diagnosis , Brain Diseases, Metabolic/diagnosis , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/genetics , Mutation , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/genetics , Brazil , DNA Mutational Analysis , Female , Humans , Infant , Infant, Newborn , Male
13.
Nutrients ; 12(10)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081139

ABSTRACT

Glutaric aciduria type 1 (GA-1) is a cerebral organic aciduria characterized by striatal injury and progressive movement disorder. Nutrition management shifted from a general restriction of intact protein to targeted restriction of lysine and tryptophan. Recent guidelines advocate for a low-lysine diet using lysine-free, tryptophan-reduced medical foods. GA-1 guideline recommendations for dietary management of patients over the age of six are unclear, ranging from avoiding excessive intake of intact protein to counting milligrams of lysine intake. A 22-question survey on the nutrition management of GA-1 was developed with the goal of understanding approaches to diet management for patients identified by newborn screening under age six years compared to management after diet liberalization, as well as to gain insight into how clinicians define diet liberalization. Seventy-six responses (25% of possible responses) to the survey were received. Nutrition management with GA-1 is divergent among surveyed clinicians. There was congruency among survey responses to the guidelines, but there is still uncertainty about how to counsel patients on diet optimization and when diet liberalization should occur. Ongoing clinical research and better understanding of the natural history of this disease will help establish stronger recommendations from which clinicians can best counsel families.


Subject(s)
Amino Acid Metabolism, Inborn Errors/diet therapy , Brain Diseases, Metabolic/diet therapy , Child Nutritional Physiological Phenomena/physiology , Diet Therapy/methods , Dietary Proteins/administration & dosage , Glutaryl-CoA Dehydrogenase/deficiency , Infant Nutritional Physiological Phenomena/physiology , Lysine/adverse effects , Tryptophan/adverse effects , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Practice Guidelines as Topic , Recommended Dietary Allowances , Surveys and Questionnaires
14.
Metab Brain Dis ; 34(4): 1231-1241, 2019 08.
Article in English | MEDLINE | ID: mdl-31062211

ABSTRACT

Glutaric acidemia type 1 (GA1) is an inherited metabolic autosomal recessive disorder that is caused by a deficiency in glutaryl-CoA dehydrogenase (GCDH). Untreated patients suffer primarily from severe striatal damage. More than 250 variants in the GCDH gene have been reported with a variable frequency among different ethnic groups. In this study, we aimed to characterize 89 Egyptian patients with GA1 and identify the variants in the 41 patients who were available for genotyping. All of our patients demonstrated clinical, neuroradiological, and biochemical characteristics that are consistent with a diagnosis of GA1. All patients presented with variable degrees of developmental delay ranging from mild to severe. Most of the 89 patients presented with acute onset type (71.9%), followed by insidious (19%) and asymptomatic (9%). A delay in diagnosis was inversely associated with macrocephaly. The prevalence rate ratio (PR) for macrocephaly that was associated with each 6-month delay was 0.95 (95%CI 0.91-0.99). However, high body weight was associated with a higher likelihood of having macrocephaly (PR 1.16, 95%CI 1.06-1.26 per 1 SD increment of Z score weight). However, body weight was inversely associated with the morbidity score. Consanguinity level was 64% among our patient's cohort and was positively associated with the C5DC level (ß (95%CI) 1.06 (0.12-1.99)). Forty-one patients were available for genotyping and were sequenced for the GCDH gene. We identified a total of 25 variants, of which the following six novel variants were identified: three missense variants, c.320G > T (p.Gly107Val), c.481C > T (p.Arg161Trp) and c.572 T > G (p.Met191Arg); two deletions, c.78delG (p.Ala27Argfs34) and c.1035delG (p.Gly346Alafs*11); and one indel, c.272_331del (p.Val91_Lys111delinsGlu). All of the novel variants were absent in the 300 normal chromosomes. The most common variant, c.*165A > G, was detected in 42 alleles, and the most commonly detected missense variant, c.1204C > T (p.Arg402Trp), was identified in 29 mutated alleles in 15/41 (34.2%) of patients. Our findings suggest that GA1 is not uncommon organic acidemia disease in Egypt; therefore, there is a need for supporting neonatal screening programs in Egypt.


Subject(s)
Amino Acid Metabolism, Inborn Errors/diagnosis , Brain Diseases, Metabolic/diagnosis , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/genetics , Amino Acid Metabolism, Inborn Errors/diagnostic imaging , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Body Weight/physiology , Brain/diagnostic imaging , Brain Diseases, Metabolic/diagnostic imaging , Brain Diseases, Metabolic/genetics , Brain Diseases, Metabolic/metabolism , Child , Child, Preschool , Egypt , Female , Genotype , Glutaryl-CoA Dehydrogenase/metabolism , Humans , Magnetic Resonance Imaging , Male , Mutation, Missense , Severity of Illness Index , Symptom Assessment
15.
Mol Neurobiol ; 56(11): 7694-7707, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31104295

ABSTRACT

Glutaric acidemia I (GA-I) is an inherited neurometabolic childhood disease characterized by bilateral striatal neurodegeneration upon brain accumulation of millimolar concentrations of glutaric acid (GA) and related metabolites. Vascular dysfunction, including abnormal cerebral blood flow and blood-brain barrier damage, is an early pathological feature in GA-I, although the affected cellular targets and underlying mechanisms remain unknown. In the present study, we have assessed the effects of GA on capillary pericyte contractility in cerebral cortical slices and pericyte cultures, as well as on the survival, proliferation, and migration of cultured pericytes. GA induced a significant reduction in capillary diameter at distances up to ~ 10 µm from the center of pericyte somata. However, GA did not affect the contractility of cultured pericytes, suggesting that the response elicited in slices may involve GA evoking pericyte contraction by acting on other cellular components of the neurovascular unit. Moreover, GA indirectly inhibited migration of cultured pericytes, an effect that was dependent on soluble glial factors since it was observed upon application of conditioned media from GA-treated astrocytes (CM-GA), but not upon direct GA addition to the medium. Remarkably, CM-GA showed increased expression of cytokines and growth factors that might mediate the effects of increased GA levels not only on pericyte migration but also on vascular permeability and angiogenesis. These data suggest that some effects elicited by GA might be produced by altering astrocyte-pericyte communication, rather than directly acting on pericytes. Importantly, GA-evoked alteration of capillary pericyte contractility may account for the reduced cerebral blood flow observed in GA-I patients.


Subject(s)
Amino Acid Metabolism, Inborn Errors/pathology , Brain Diseases, Metabolic/pathology , Cell Movement/drug effects , Glutarates/pharmacology , Glutaryl-CoA Dehydrogenase/deficiency , Pericytes/pathology , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Capillaries/drug effects , Cells, Cultured , Cerebral Cortex/pathology , Culture Media, Conditioned/pharmacology , Cytokines/metabolism , Pericytes/drug effects , Pericytes/metabolism , Rats, Sprague-Dawley , Vasoconstriction/drug effects
16.
JIMD Rep ; 38: 7-12, 2018.
Article in English | MEDLINE | ID: mdl-28411331

ABSTRACT

BACKGROUND: Glutaric acidemia Type 1 (GA-1) is an autosomal recessively inherited metabolic disorder which is associated with GCDH gene mutations which alters the glutaryl-CoA dehydrogenase, an enzyme playing role in the catabolic pathways of the amino acids lysine, hydroxylysine, and tryptophan. Clinical findings are often encephalopathic crises, dystonia, and extrapyramidal symptoms. CASE REPORT: A 9-month-old male infant referred to our department with focal tonic-clonic seizures during rotavirus infection and acute infarcts in MRI. Clinical manifestation, MRI findings, and metabolic investigations directed thoughts towards GA-I. Molecular genetic testing revealed a homozygous c.572T>C (p.M191T) mutation in GCDH gene which confirmed the diagnosis. Application of protein restricted diet, carnitine and riboflavin supplementations prevented the progression of Magnetic Resonance Imaging (MRI) and clinical pathologic findings during the 1 year of follow-up period. CONCLUSION: This case is of great importance since it shows possibility of infantile stroke in GA-1, significance of early diagnosis and phenotypic variability of disease.

17.
JIMD Rep ; 40: 85-90, 2018.
Article in English | MEDLINE | ID: mdl-29086383

ABSTRACT

Glutaric acidemia type 1 (GA-1, OMIM no. 231670) is an autosomal recessive disorder caused by the deficiency of glutaryl-CoA dehydrogenase (GCDH). The subsequent accumulation of the amino acids lysine, hydroxylysine, and tryptophan and their breakdown intermediates can be neurotoxic and particularly cause injury to the basal ganglia.Roughly 1 of 100,000 infants is affected with GA-1, and a common feature at birth is macrocephaly. Stress, such as in febrile illnesses, can precipitate encephalopathic crises in children generally less than 2 years with variable recovery. Many infants develop dystonia with complex movement disorders and subtle cognitive and fine motor deficits. Common neuroradiologic findings include hypoplasia of temporal and frontal lobes, striatal lesions, white matter changes, and subdural effusions.There are three previous reports of subependymal nodules found on neuroimaging in GA-1 patients who were diagnosed as adults and untreated for GA-1. We present a unique case of an adult female who was diagnosed at age 2 months and managed prior to any metabolic decompensation. Her initial diagnosis was made based on biochemical and enzymatic analysis, and then later confirmed with genetic sequencing. She started experiencing frequent headaches at age 12 years. Neuroimaging in adulthood revealed common features seen in GA-1 in addition to the finding of subependymal nodules.This case may provide some insight into the natural progression of the disease despite early treatment. Though subependymal nodules are typically seen in tuberous sclerosis, the significance of these lesions in GA-1 is not well understood. Disease courses of more early diagnosed and treated patients with GA-1 need to be documented.

SELECTION OF CITATIONS
SEARCH DETAIL