Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 199
Filter
1.
J Gastrointest Oncol ; 15(3): 1002-1019, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38989407

ABSTRACT

Background: Tumor cell inhibition is a pivotal focus in anti-cancer research, and extensive investigations have been conducted regarding the role of p53. Numerous studies have highlighted its close association with reactive oxygen species (ROS). However, the precise impact of the antioxidant glutathione (GSH) in this context remains inadequately elucidated. Here, we will elucidate the anti-cancer mechanisms mediated by p53 following treatment with GSH. Methods: In this study, we employed a p53 gene knockout approach in SW480 colorectal cells and conducted comprehensive analyses of 20 amino acids and proteomics using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Results: These analyses unveiled profound alterations in amino acids and proteins triggered by GSH treatment, shedding light on novel phenomena and delineating the intricate interplay between GSH and cellular proteins. The deletion of the p53 gene exerts a profound influence on tumor cell proliferation. Moreover, tumor cell proliferation is significantly affected by elevated GSH levels. Importantly, in the absence of the p53 gene, cells exhibit heightened sensitivity to GSH, leading to inhibited cell growth. The combined therapeutic approach involving GSH and p53 gene deletion expedites the demise of tumor cells. It is noteworthy that this treatment leads to a marked decline in amino acid metabolism, particularly affecting the down-regulation of methionine (Met) and phenylalanine (Phe) amino acids. Among the 41 proteins displaying significant changes, 8 exhibit consistent alterations, with 5 experiencing decreased levels and 3 demonstrating increased quantities. These proteins primarily participate in crucial cellular metabolic processes and immune functions. Conclusions: In conclusion, the concurrent administration of GSH treatment and p53 gene deletion triggers substantial modifications in the amino acid and protein metabolism of tumor cells, primarily characterized by down-regulation. This, in turn, compromises cell metabolic activity and immune function, ultimately culminating in the demise of tumor cells. These newfound insights hold promising implications and could pave the way for the development of straightforward and efficacious anti-cancer treatments.

2.
Cancers (Basel) ; 16(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39001381

ABSTRACT

Glioblastoma (GBM) is the most prevalent and advanced malignant primary brain tumor in adults. GBM frequently harbors epidermal growth factor receptor (EGFR) wild-type (EGFRwt) gene amplification and/or EGFRvIII activating mutation. EGFR-driven GBM relies on the thioredoxin (Trx) and/or glutathione (GSH) antioxidant systems to withstand the excessive production of reactive oxygen species (ROS). The impact of EGFRwt or EGFRvIII overexpression on the response to a Trx/GSH co-targeting strategy is unknown. In this study, we investigated Trx/GSH co-targeting in the context of EGFR overexpression in GBM. Auranofin is a thioredoxin reductase (TrxR) inhibitor, FDA-approved for rheumatoid arthritis. L-buthionine-sulfoximine (L-BSO) inhibits GSH synthesis by targeting the glutamate-cysteine ligase catalytic (GCLC) enzyme subunit. We analyzed the mechanisms of cytotoxicity of auranofin and the interaction between auranofin and L-BSO in U87MG, U87/EGFRwt, and U87/EGFRvIII GBM isogenic GBM cell lines. ROS-dependent effects were assessed using the antioxidant N-acetylsteine. We show that auranofin decreased TrxR1 activity and increased ROS. Auranofin decreased cell vitality and colony formation and increased protein polyubiquitination through ROS-dependent mechanisms, suggesting the role of ROS in auranofin-induced cytotoxicity in the three cell lines. ROS-dependent PARP-1 cleavage was associated with EGFRvIII downregulation in U87/EGFRvIII cells. Remarkably, the auranofin and L-BSO combination induced the significant depletion of intracellular GSH and synergistic cytotoxicity regardless of EGFR overexpression. Nevertheless, molecular mechanisms associated with cytotoxicity were modulated to a different extent among the three cell lines. U87/EGFRvIII exhibited the most prominent ROS increase, P-AKT(Ser-473), and AKT decrease along with drastic EGFRvIII downregulation. U87/EGFRwt and U87/EGFRvIII displayed lower basal intracellular GSH levels and synergistic ROS-dependent DNA damage compared to U87MG cells. Our study provides evidence for ROS-dependent synergistic cytotoxicity of auranofin and L-BSO combination in GBM in vitro. Unraveling the sensitivity of EGFR-overexpressing cells to auranofin alone, and synergistic auranofin and L-BSO combination, supports the rationale to repurpose this promising pro-oxidant treatment strategy in GBM.

3.
J Biomater Sci Polym Ed ; : 1-30, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38944817

ABSTRACT

Innovation chemotherapeutic nano drug delivery systems (NDDSs) with various pharmacological achievement have become one of the hopeful therapeutic strategies in cancer therapy. This study focused on low pH, and high levels of glutathione (GSH) as two prominent characteristics of the tumor microenvironment (TME) to design a novel TME-targeted pH/redox dual-responsive P (AMA-co-DMAEMA)-b-PCL-SS-PCL-b-P (AMA-co-DMAEMA) nanoparticles (NPs) for deep tumor penetration and targeted anti-tumor therapy. The positively charged NPs exhibit strong electrostatic interactions with negatively charged cell membranes, significantly enhancing cellular uptake. Moreover, these NPs possess the unique size-shrinkable property, transitioning from 98.24 ± 27.78 to 45.56 ± 20.62 nm within the TME. This remarkable size change fosters an impressive uptake of approximately 100% by MDA-MB-231 cells within just 30 min, thereby greatly improving drug delivery efficiency. This size switchability enables passive targeting through the enhanced permeability and retention (EPR) effect, facilitating deep penetration into tumors. The NPs also demonstrate improved pH/redox-triggered drug release (∼70% at 24 h) within the TME and exhibit no toxicity in cell viability test. The cell cycle results of treated cells with docetaxel (DTX)-loaded NPs revealed G2/M (84.6 ± 1.16%) arrest. The DTX-loaded NPs showed more apoptosis (62.6 ± 3.7%) than the free DTX (51.8 ± 3.2%) in treated cells. The western blot and RT-PCR assays revealed that apoptotic genes and proteins expression of treated cells were significantly upregulated with the DTX-loaded NPs vs. the free DTX (Pvalue<.001). In conclusion, these findings suggest that this novel-engineered NPs holds promise as a TME-targeted NDDS.

4.
Proc Natl Acad Sci U S A ; 121(21): e2400740121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38743629

ABSTRACT

The biogenesis of iron-sulfur (Fe/S) proteins entails the synthesis and trafficking of Fe/S clusters, followed by their insertion into target apoproteins. In eukaryotes, the multiple steps of biogenesis are accomplished by complex protein machineries in both mitochondria and cytosol. The underlying biochemical pathways have been elucidated over the past decades, yet the mechanisms of cytosolic [2Fe-2S] protein assembly have remained ill-defined. Similarly, the precise site of glutathione (GSH) requirement in cytosolic and nuclear Fe/S protein biogenesis is unclear, as is the molecular role of the GSH-dependent cytosolic monothiol glutaredoxins (cGrxs). Here, we investigated these questions in human and yeast cells by various in vivo approaches. [2Fe-2S] cluster assembly of cytosolic target apoproteins required the mitochondrial ISC machinery, the mitochondrial transporter Atm1/ABCB7 and GSH, yet occurred independently of both the CIA system and cGrxs. This mechanism was strikingly different from the ISC-, Atm1/ABCB7-, GSH-, and CIA-dependent assembly of cytosolic-nuclear [4Fe-4S] proteins. One notable exception to this cytosolic [2Fe-2S] protein maturation pathway defined here was yeast Apd1 which used the CIA system via binding to the CIA targeting complex through its C-terminal tryptophan. cGrxs, although attributed as [2Fe-2S] cluster chaperones or trafficking proteins, were not essential in vivo for delivering [2Fe-2S] clusters to either CIA components or target apoproteins. Finally, the most critical GSH requirement was assigned to Atm1-dependent export, i.e. a step before GSH-dependent cGrxs function. Our findings extend the general model of eukaryotic Fe/S protein biogenesis by adding the molecular requirements for cytosolic [2Fe-2S] protein maturation.


Subject(s)
Cytosol , Glutaredoxins , Glutathione , Iron-Sulfur Proteins , Mitochondria , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cytosol/metabolism , Iron-Sulfur Proteins/metabolism , Humans , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Glutathione/metabolism , Mitochondria/metabolism , Glutaredoxins/metabolism , Glutaredoxins/genetics , ATP-Binding Cassette Transporters/metabolism , Mitochondrial Proteins/metabolism
5.
Anal Chim Acta ; 1304: 342552, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38637053

ABSTRACT

BACKGROUND: Rapid and accurate detection of glutathione content in human blood plays an important role in real-time tracking of related diseases. Currently, surface-enhanced Raman scattering/spectroscopy (SERS) combined with nanozyme material has been proven to have excellent properties in the detection applications compared to many other methods because of it combines the advantages of trace detection capability of SERS and efficient catalytic activity of nanozymes. However, there are still existing problems in real sample detection, and to achieve quantitative detection is still challenging. RESULTS: In this study, gold nanoparticles (AuNPs) were synthesized in situ on the surface of two-dimensional Cu-porphyrin metal-organic framework (MOF) nanosheets to produce the AuNPs@Cu-porphyrin MOF nanozyme, which exhibited both oxidase-like activity and SERS detection ability. On one hand, the intrinsic oxidase-like activity of the nanozyme could be inhibited due to the chelation of glutathione (GSH) and Cu, which thus led to the visual color change of the solution. On the other hand, the abundant Raman "hot spots" at the nanogap generated by Au NPs and the internal standard (IS) signal provided by Cu-meso-tetra (4-carboxyphenyl) porphine (Cu-TCPP) MOF improved the sensitivity and quantitative accuracy of detection. SIGNIFICANCE AND NOVELTY: A dual-mode signal output sensor based on the nanozyme was thus established, which could be used in the trace detection of GSH. Such a dual-mode sensor possesses excellent detection performance, with the advantage of both wide detection range from 1 to 300 µM in the colorimetric detection mode and high sensitivity with LOD of 5 nM in the SERS detection mode, and can be applied to GSH detection in actual serum samples with reliable results.


Subject(s)
Metal Nanoparticles , Metal-Organic Frameworks , Humans , Gold/chemistry , Metal-Organic Frameworks/chemistry , Colorimetry , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Oxidoreductases , Glutathione
6.
Plant Cell Rep ; 43(4): 108, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557872

ABSTRACT

KEY MESSAGE: The CcGRXS12 gene protects plants from cellular oxidative damage that are caused by both biotic and abiotic stresses. The protein possesses GSH-disulphide oxidoreductase property but lacks Fe-S cluster assembly mechanism. Glutaredoxins (Grxs) are small, ubiquitous and multi-functional proteins. They are present in different compartments of plant cells. A chloroplast targeted Class I GRX (CcGRXS12) gene was isolated from Capsicum chinense during the pepper mild mottle virus (PMMoV) infection. Functional characterization of the gene was performed in Nicotiana benthamiana transgenic plants transformed with native C. chinense GRX (Nb:GRX), GRX-fused with GFP (Nb:GRX-GFP) and GRX-truncated for chloroplast sequences fused with GFP (Nb:Δ2MGRX-GFP). Overexpression of CcGRXS12 inhibited the PMMoV-I accumulation at the later stage of infection, accompanied with the activation of salicylic acid (SA) pathway pathogenesis-related (PR) transcripts and suppression of JA/ET pathway transcripts. Further, the reduced accumulation of auxin-induced Glutathione-S-Transferase (pCNT103) in CcGRXS12 overexpressing lines indicated that the protein could protect the plants from the oxidative stress caused by the virus. PMMoV-I infection increased the accumulation of pyridine nucleotides (PNs) mainly due to the reduced form of PNs (NAD(P)H), and it was high in Nb:GRX-GFP lines compared to other transgenic lines. Apart from biotic stress, CcGRXS12 protects the plants from abiotic stress conditions caused by H2O2 and herbicide paraquat. CcGRXS12 exhibited GSH-disulphide oxidoreductase activity in vitro; however, it was devoid of complementary Fe-S cluster assembly mechanism found in yeast. Overall, this study proves that CcGRXS12 plays a crucial role during biotic and abiotic stress in plants.


Subject(s)
Capsicum , Tobamovirus , Capsicum/genetics , Capsicum/metabolism , Glutaredoxins/genetics , Glutaredoxins/metabolism , Hydrogen Peroxide , Oxidation-Reduction , Disulfides
7.
Theriogenology ; 223: 1-10, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38642435

ABSTRACT

Heat stress reduces the number of Sertoli cells, which is closely related to an imbalanced redox status. Glutamate functions to maintain the equilibrium of redox homeostasis. However, the role of glutamate in heat treated Sertoli cells remains unclear. Herein, Sertoli cells from 3-week-old piglets were treated at 44 °C for 30 min (heat stress). Glutamate levels increased significantly following heat stress treatment, followed by a gradual decrease during recovery, while glutathione (GSH) showed a gradual increase. The addition of exogenous glutamate (700 µM) to Sertoli cells before heat stress significantly reduced the heat stress-induced apoptosis rate, mediated by enhanced levels of antioxidant substances (superoxide dismutase (SOD), total antioxidant capacity (TAC), and GSH) and reduced levels of oxidative substances (reactive oxygen species (ROS) and malondialdehyde (MDA)). Glutamate addition to Sertoli cells before heat stress upregulated the levels of glutamate-cysteine ligase, modifier subunit (Gclm), glutathione synthetase (Gss), thioredoxin (Trx1) and B-cell leukemia/lymphoma 2 (Bcl-2), and the ratio of phosphorylated Akt (protein kinase B)/total Akt. However, it decreased the levels of Bcl2-associated X protein (Bax) and cleaved-caspase 3. Addition of the inhibitor of glutaminase (Gls1), Bptes (Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide, 30 µM)to Sertoli cells before heat stress reversed these effects. These results inferred that glutamate rescued heat stress-induced apoptosis in Sertoli cells by enhancing activity of antioxidant enzymes and activating the Trx1-Akt pathway. Thus, glutamate supplementation might represent a novel strategy to alleviate the negative effect of heat stress.


Subject(s)
Antioxidants , Apoptosis , Glutamic Acid , Heat-Shock Response , Proto-Oncogene Proteins c-akt , Sertoli Cells , Signal Transduction , Animals , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Male , Apoptosis/drug effects , Glutamic Acid/metabolism , Antioxidants/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Heat-Shock Response/drug effects , Signal Transduction/drug effects , Swine , Thioredoxins/metabolism , Cells, Cultured
8.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673745

ABSTRACT

Age-related macular degeneration (AMD) is a chronic disease that usually develops in older people. Pathogenetic changes in this disease include anatomical and functional complexes. Harmful factors damage the retina and macula. These changes may lead to partial or total loss of vision. The disease can occur in two clinical forms: dry (the progression is slow and gentle) and exudative (wet-progression is acute and severe), which usually starts in the dry form; however, the coexistence of both forms is possible. The etiology of AMD is not fully understood, and the precise mechanisms of the development of this illness are still unknown. Extensive genetic studies have shown that AMD is a multi-factorial disease and that genetic determinants, along with external and internal environmental and metabolic-functional factors, are important risk factors. This article reviews the role of glutathione (GSH) enzymes engaged in maintaining the reduced form and polymorphism in glutathione S-transferase theta-1 (GSTT1) and glutathione S-transferase mu-1 (GSTM1) in the development of AMD. We only chose papers that confirmed the influence of the parameters on the development of AMD. Because GSH is the most important antioxidant in the eye, it is important to know the influence of the enzymes and genetic background to ensure an optimal level of glutathione concentration. Numerous studies have been conducted on how the glutathione system works till today. This paper presents the current state of knowledge about the changes in GSH, GST, GR, and GPx in AMD. GST studies clearly show increased activity in ill people, but for GPx, the results relating to activity are not so clear. Depending on the research, the results also suggest higher and lower GPx activity in patients with AMD. The analysis of polymorphisms in GST genes confirmed that mutations lead to weaker antioxidant barriers and may contribute to the development of AMD; unfortunately, a meta-analysis and some research did not confirm that connection. Unspecific results of many of the parameters that make up the glutathione system show many unknowns. It is so important to conduct further research to understand the exact mechanism of defense functions of glutathione against oxidative stress in the human eye.


Subject(s)
Glutathione , Macular Degeneration , Animals , Humans , Glutathione/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Macular Degeneration/metabolism , Macular Degeneration/genetics , Macular Degeneration/pathology , Oxidative Stress
9.
Methods Mol Biol ; 2785: 115-142, 2024.
Article in English | MEDLINE | ID: mdl-38427192

ABSTRACT

MRS is a noninvasive technique to measure different metabolites in the brain. Changes in the levels of certain metabolites can be used as surrogate markers for Alzheimer's disease. They can potentially be used for diagnosis, prediction of prognosis, or even assessing response to treatment.There are different techniques for MRS acquisitions including STimulated Echo Acquisition Mode (STEAM) and Point Resolved Spectroscopy (PRESS). In terms of localization, single or multi-voxel methods can be used. Based on current data: 1. NAA, marker of neuronal integrity and viability, reduces in AD with longitudinal changes over the time as the disease progresses. There are data claiming that reduction of NAA is associated with tau accumulation, early neurodegenerative processes, and cognitive decline. Therefore, it can be used as a stage biomarker for AD to assess the severity of the disease. With advancement of disease modifying therapies, there is a potential role for NAA in the future to be used as a marker of response to treatment. 2. mI, marker of glial cell proliferation and activation, is associated with AB pathology and has early changes in the course of the disease. The NAA/mI ratio can be predictive of AD development with high specificity and can be utilized in the clinical setting to stratify cases for further evaluation with PET for potential treatments. 3. The changes in the level of other metabolites such as Chol, Glu, Gln, and GABA are controversial because of the lack of standardization of MRS techniques, current technical limitations, and possible region specific changes. 4. Ultrahigh field MRS and more advanced techniques can overcome many of these limitations and enable us to measure more metabolites with higher accuracy. 5. Standardization of MRS techniques, validation of metabolites' changes against PET using PET-guided technique, and longitudinal follow-ups to investigate the temporal changes of the metabolites in relation to other biomarkers and cognition will be crucial to confirm the utility of MRS as a potential noninvasive biomarker for AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Magnetic Resonance Spectroscopy , Brain/metabolism , Cognition , Biomarkers/metabolism
10.
Int J Mol Sci ; 25(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38256132

ABSTRACT

Glutaredoxin 2 (Grx2; Glrx2) is a glutathione-dependent oxidoreductase located in mitochondria, which is central to the regulation of glutathione homeostasis and mitochondrial redox, and plays a crucial role in highly metabolic tissues. In response to mitochondrial redox signals and oxidative stress, Grx2 can catalyze the oxidation and S-glutathionylation of membrane-bound thiol proteins in mitochondria. Therefore, it can have a significant impact on cancer development. To investigate this further, we performed an immunohistochemical analysis of Grx2 protein expression in colon adenocarcinoma samples collected from patients with primary colon adenocarcinoma (stage I and II) and patients with metastasis to regional lymph nodes (stage III). The results of our study revealed a significant relationship between the immunohistochemical expression of Grx2 and tumor histological grade, depth of invasion, regional lymph node involvement, angioinvasion, staging, and PCNA immunohistochemical expression. It was found that 87% of patients with stage I had high levels of Grx2 expression. In contrast, only 33% of patients with stage II and 1% of patients with stage III had high levels of Grx2 expression. Moreover, the multivariate analysis revealed that the immunohistochemical expression of Grx2 protein apart from the grade of tumor differentiation was an independent prognostic factors for the survival of patients with colon adenocarcinoma. Studies analyzing Grx2 levels in patients' blood confirmed that the highest levels of serum Grx2 protein was also found in stage I patients, which was reflected in the survival curves. A higher level of Grx2 in the serum has been associated with a more favorable outcome. These results were supported by in vitro analysis conducted on colorectal cancer cell lines that corresponded to stages I, II, and III of colorectal cancer, using qRT-PCR and Western Blot.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Glutaredoxins , Humans , Adenocarcinoma/genetics , Colonic Neoplasms/genetics , Glutaredoxins/genetics , Glutathione , Glutathione Reductase , Membrane Proteins , Prognosis
11.
J Cell Mol Med ; 28(1): e18015, 2024 01.
Article in English | MEDLINE | ID: mdl-37938877

ABSTRACT

Insulin resistance is a significant contributor to the development of type 2 diabetes (T2D) and is associated with obesity, physical inactivity, and low maximal oxygen uptake. While intense and prolonged exercise may have negative effects, physical activity can have a positive influence on cellular metabolism and the immune system. Moderate exercise has been shown to reduce oxidative stress and improve antioxidant status, whereas intense exercise can increase oxidative stress in the short term. The impact of exercise on pro-inflammatory cytokine production is complex and varies depending on intensity and duration. Exercise can also counteract the harmful effects of ageing and inflamm-ageing. This review aims to examine the molecular pathways altered by exercise in non-obese individuals at higher risk of developing T2D, including glucose utilization, lipid metabolism, mitochondrial function, inflammation and oxidative stress, with the potential to improve insulin sensitivity. The focus is on understanding the potential benefits of exercise for improving insulin sensitivity and providing insights for future targeted interventions before onset of disease.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Diabetes Mellitus, Type 2/metabolism , Obesity/metabolism , Antioxidants/metabolism , Oxidative Stress , Exercise , Insulin/metabolism
12.
Cureus ; 15(11): e49177, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38130554

ABSTRACT

Arsenic exposure is a significant public health issue, with harmful effects caused by its use in commercial products such as car batteries, pesticides, and herbicides. Arsenic has three main compounds: inorganic, organic, and arsine gas. Inorganic arsenic compounds in water are highly toxic. The daily intake of arsenic from food and beverages is between 20 and 300 mcg/day. Arsenic is known for its carcinogenic properties and is classified as a human carcinogen by different institutions. Exposure can lead to oxidative stress, DNA damage, and epigenetic deregulation, which can cause endocrine disorders, altered signal transduction pathways, and cell proliferation. In addition, arsenic can easily cross the placenta, making it a critical concern for maternal and fetal health. Exposure can lead to complications such as gestational diabetes, anemia, low birth weight, miscarriage, and congenital anomalies. Female babies are particularly vulnerable to the negative impact of arsenic exposure, with a higher risk of low weight for gestational age and congenital cardiac anomalies. Therefore, it is crucial to monitor and regulate the levels of arsenic in drinking water and food sources to prevent these adverse health outcomes. Further research is necessary to fully understand the impact of arsenic exposure on human health, especially during pregnancy and infancy, by implementing preventative measures and monitoring the levels of arsenic in the environment.

13.
Pharmaceutics ; 15(9)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37765262

ABSTRACT

Nanotechnology, an emerging and promising therapeutic tool, may improve the effectiveness of phototherapy (PT) in antitumor therapy because of the development of nanomaterials (NMs) with light-absorbing properties. The tumor-targeted PTs, such as photothermal therapy (PTT) and photodynamic therapy (PDT), transform light energy into heat and produce reactive oxygen species (ROS) that accumulate at the tumor site. The increase in ROS levels induces oxidative stress (OS) during carcinogenesis and disease development. Because of the localized surface plasmon resonance (LSPR) feature of copper (Cu), a vital trace element in the human body, Cu-based NMs can exhibit good near-infrared (NIR) absorption and excellent photothermal properties. In the tumor microenvironment (TME), Cu2+ combines with H2O2 to produce O2 that is reduced to Cu1+ by glutathione (GSH), causing a Fenton-like reaction that reduces tumor hypoxia and simultaneously generates ROS to eliminate tumor cells in conjunction with PTT/PDT. Compared with other therapeutic modalities, PTT/PDT can precisely target tumor location to kill tumor cells. Moreover, multiple treatment modalities can be combined with PTT/PDT to treat a tumor using Cu-based NMs. Herein, we reviewed and briefly summarized the mechanisms of actions of tumor-targeted PTT/PDT and the role of Cu, generated from Cu-based NMs, in PTs. Furthermore, we described the Cu-based NMs used in PTT/PDT applications.

14.
J Biomol Struct Dyn ; : 1-9, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37491862

ABSTRACT

In the pursuit of developing novel anti-leishmanial agents, we conducted an extensive computational study to screen inhibitors from the FDA-approved ZINC database against Leishmania donovani glutathione synthetase. The three-dimensional structure of Leishmania donovani glutathione synthetase was constructed by homology modeling, using the crystallographic structure of Trypanosoma brucei glutathione synthetase as a template. Subsequently, molecular docking studies were carried out for a large number of compounds using AutoDock Vina. Among the screened compounds, we selected the top five with strong binding affinity to Leishmania donovani glutathione synthetase but having a very low affinity to its human homolog. Further investigations on protein-ligand complexes were done by conducting molecular dynamics (MD) simulation and MM/PBSA analysis. The results revealed that Olysio (Simeprevir) exhibited the lowest binding energy (-89.21 kcal/mol), followed by Telithromycin (-45.34 kcal/mol). These findings showed that these compounds have the potential to act as inhibitors of glutathione synthetase. Hence, our study provides valuable insights for the development of a novel therapeutic strategy against Leishmania donovani by targeting the glutathione synthetase enzyme.Communicated by Ramaswamy H. Sarma.

15.
Food Chem ; 427: 136672, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37392627

ABSTRACT

Accurate determination of glutathione (GSH) in food and vegetable is significant to instruct the appropriate supplementation of GSH in the human body. Light-responsive enzyme mimics have been widely used in detecting GSH due to controllable temporal and spatial accuracy. However, exploring a potential organic mimic enzyme with excellent catalytic efficiency keeps challenging. Herein, a benzobisthiazole organic oxidase mimic was successfully prepared by a simple and low-cost method. Based on its high light-responsive oxidase-like activity, it was used for high reliable colorimetric determination of GSH in food and vegetable for only 1 min with a large linear range of 0.02-30 µM and a low detection limit of 5.3 nM. This study provides a novel strategy to obtain powerful light-responsive oxidase mimics and holds great potential for rapid and accurate detection of GSH in food and vegetables.


Subject(s)
Oxidoreductases , Vegetables , Humans , Colorimetry/methods , Glutathione
16.
J Cancer ; 14(8): 1309-1320, 2023.
Article in English | MEDLINE | ID: mdl-37283797

ABSTRACT

An imbalance in ROS (reactive oxidative species) and the antioxidant barrier regulates the process of tumorigenesis. GSH has a key effect in preventing cells from oxidative damage by scavenging ROS. The role of CHAC2, an enzyme regulating GSH, in lung adenocarcinoma remains unknown. Here, RNA sequencing data analysis and immunohistochemistry (IHC) assays of lung adenocarcinoma and normal lung tissues were used to verify the expression of CHAC2. The effect of CHAC2 on the proliferation abilities of lung adenocarcinoma cells was examined using a series of overexpression or knockout assays. RNA sequencing and IHC results showed that the expression level of CHAC2 in lung adenocarcinoma was higher than that in normal lung tissues. CCK-8, colony formation and subcutaneous xenograft experiments in BALB/c nude mice showed that in vitro and in vivo CHAC2 promoted the growth capacity of lung adenocarcinoma cells. Subsequent immunoblot, immunohistochemistry and flow cytometry experiments showed that CHAC2 increased ROS by reducing GSH in lung adenocarcinoma and that the elevated ROS activated the MAPK pathway. Our investigation identified a new role for CHAC2 and elucidated the mechanism by which CHAC2 promotes lung adenocarcinoma progression.

17.
Biomolecules ; 13(5)2023 04 25.
Article in English | MEDLINE | ID: mdl-37238613

ABSTRACT

Therapeutic strategies for ARID1A-mutant ovarian cancers are limited. Higher basal reactive oxygen species (ROS) and lower basal glutathione (GSH) empower the aggressive proliferation ability and strong metastatic property of OCCCs, indicated by the increased marker of epithelial-mesenchymal transition (EMT) and serving the immunosuppressive microenvironment. However, the aberrant redox homeostasis also empowers the sensitivity of DQ-Lipo/Cu in a mutant cell line. DQ, a carbamodithioic acid derivative, generates dithiocarbamate (DDC) in response to ROS, and the chelation of Cu and DDC further generates ROS and provides a ROS cascade. Besides, quinone methide (QM) released by DQ targets the vulnerability of GSH; this effect, plus the increase of ROS, destroys the redox homeostasis and causes cancer cell death. Also importantly, the formed Cu(DDC)2 is a potent cytotoxic anti-cancer drug that successfully induces immunogenic cell death (ICD). The synergistic effect of EMT regulation and ICD will contribute to managing cancer metastasis and possible drug resistance. In summary, our DQ-Lipo/Cu shows promising inhibitory effects in cancer proliferation, EMT markers, and "heat" the immune response.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Humans , Female , Copper/pharmacology , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Liposomes/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Glutathione/metabolism , Tumor Microenvironment , DNA-Binding Proteins , Transcription Factors/genetics
18.
Curr Neuropharmacol ; 21(6): 1433-1449, 2023.
Article in English | MEDLINE | ID: mdl-36872352

ABSTRACT

Mitochondria regulate multiple aspects of neuronal development, physiology, plasticity, and pathology through their regulatory roles in bioenergetic, calcium, redox, and cell survival/death signalling. While several reviews have addressed these different aspects, a comprehensive discussion focussing on the relevance of isolated brain mitochondria and their utilities in neuroscience research has been lacking. This is relevant because the employment of isolated mitochondria rather than their in situ functional evaluation, offers definitive evidence of organelle-specificity, negating the interference from extra mitochondrial cellular factors/signals. This mini-review was designed primarily to explore the commonly employed in organello analytical assays for the assessment of mitochondrial physiology and its dysfunction, with a particular focus on neuroscience research. The authors briefly discuss the methodologies for biochemical isolation of mitochondria, their quality assessment, and cryopreservation. Further, the review attempts to accumulate the key biochemical protocols for in organello assessment of a multitude of mitochondrial functions critical for neurophysiology, including assays for bioenergetic activity, calcium and redox homeostasis, and mitochondrial protein translation. The purpose of this review is not to examine each and every method or study related to the functional assessment of isolated brain mitochondria, but rather to assemble the commonly used protocols of in organello mitochondrial research in a single publication. The hope is that this review will provide a suitable platform aiding neuroscientists to choose and apply the required protocols and tools to address their particular mechanistic, diagnostic, or therapeutic question dealing within the confines of the research area of mitochondrial patho-physiology in the neuronal perspective.


Subject(s)
Calcium , Mitochondria , Humans , Reactive Oxygen Species/metabolism , Calcium/metabolism , Mitochondria/metabolism , Brain/metabolism
19.
Polymers (Basel) ; 15(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36904563

ABSTRACT

One of the major goals of vascular tissue engineering is to develop much-needed materials that are suitable for use in small-diameter vascular grafts. Poly(1,8-octamethylene citrate) can be considered for manufacturing small blood vessel substitutes, as recent studies have demonstrated that this material is cytocompatible with adipose tissue-derived stem cells (ASCs) and favors their adhesion and viability. The work presented here is focused on modifying this polymer with glutathione (GSH) in order to provide it with antioxidant properties, which are believed to reduce oxidative stress in blood vessels. Cross-linked poly(1,8-octamethylene citrate) (cPOC) was therefore prepared by polycondensation of citric acid and 1,8-octanediol at a 2:3 molar ratio of the reagents, followed by in-bulk modification with 0.4, 0.8, 4 or 8 wt.% of GSH and curing at 80 °C for 10 days. The chemical structure of the obtained samples was examined by FTIR-ATR spectroscopy, which confirmed the presence of GSH in the modified cPOC. The addition of GSH increased the water drop contact angle of the material surface and lowered the surface free energy values. The cytocompatibility of the modified cPOC was evaluated in direct contact with vascular smooth-muscle cells (VSMCs) and ASCs. The cell number, the cell spreading area and the cell aspect ratio were measured. The antioxidant potential of GSH-modified cPOC was measured by a free radical scavenging assay. The results of our investigation indicate the potential of cPOC modified with 0.4 and 0.8 wt.% of GSH to produce small-diameter blood vessels, as the material was found to: (i) have antioxidant properties, (ii) support VSMC and ASC viability and growth and (iii) provide an environment suitable for the initiation of cell differentiation.

20.
Biosensors (Basel) ; 13(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36832020

ABSTRACT

Hydroxyl radicals (•OH) are known as essential chemicals for cells to maintain their normal functions and defensive responses. However, a high concentration of •OH may cause oxidative stress-related diseases, such as cancer, inflammation, and cardiovascular disorders. Therefore, •OH can be used as a biomarker to detect the onset of these disorders at an early stage. Reduced glutathione (GSH), a well-known tripeptide for its antioxidant capacity against reactive oxygen species (ROS), was immobilized on a screen-printed carbon electrode (SPCE) to develop a real-time detection sensor with a high selectivity towards •OH. The signals produced by the interaction of the GSH-modified sensor and •OH were characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The CV curve of the GSH-modified sensor in the Fenton reagent exhibited a pair of well-defined peaks, demonstrating the redox reaction of the electrochemical sensor and •OH. The sensor showed a linear relationship between the redox response and the concentration of •OH with a limit of detection (LOD) of 49 µM. Furthermore, using EIS studies, the proposed sensor demonstrated the capability of differentiating •OH from hydrogen peroxide (H2O2), a similar oxidizing chemical. After being immersed in the Fenton solution for 1 hr, redox peaks in the CV curve of the GSH-modified electrode disappeared, revealing that the immobilized GSH on the electrode was oxidized and turned to glutathione disulfide (GSSG). However, it was demonstrated that the oxidized GSH surface could be reversed back to the reduced state by reacting with a solution of glutathione reductase (GR) and nicotinamide adenine dinucleotide phosphate (NADPH), and possibly reused for •OH detection.


Subject(s)
Glutathione , Hydrogen Peroxide , Hydrogen Peroxide/chemistry , Glutathione Disulfide , Reactive Oxygen Species , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL