Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Medicines (Basel) ; 10(6)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37367731

ABSTRACT

Cancer cells are characterized by metabolic reprogramming, which enables their survival in of-ten inhospitable conditions. A very well-documented example that has gained attraction in re-cent years and is already considered a hallmark of transformed cells is the reprogramming of carbohydrate metabolism. Such a feature, in association with the differential expression of en-zymes involved in the biosynthesis of glycoconjugates, generically known as glycosyltransfer-ases, contributes to the expression of structurally atypical glycans when compared to those ex-pressed in healthy tissues. The latest studies have demonstrated that glycophenotypic alterations are capable of modulating multifactorial events essential for the development and/or progres-sion of the disease. Herein, we will address the importance of glycobiology in modern medi-cine, focusing on the ability of unusual/truncated O-linked glycans to modulate two complex and essential phenomena for cancer progression: the acquisition of the multidrug resistance (MDR) phenotype and the activation of molecular pathways associated with the epithelial-mesenchymal transition (EMT) process, an event deeply linked with cancer metastasis.

2.
Foods ; 12(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37174431

ABSTRACT

Leuconostoc mesenteroides strains are common contributors in fermented foods producing a wide variety of polysaccharides from sucrose through glycosyltransferases (GTFs). These polymers have been proposed as protective barriers against acidity, dehydration, heat, and oxidative stress. Despite its presence in many traditional fermented products and their association with food functional properties, regulation of GTFs expression in Ln. mesenteroides is still poorly understood. The strain Ln. mesenteroides ATCC 8293 contains three glucansucrases genes not found in operons, and three fructansucrases genes arranged in two operons, levLX and levC-scrB, a Glycoside-hydrolase. We described the first differential gene expression analysis of this strain when cultivated in different carbon sources. We observed that while GTFs are expressed in the presence of most sugars, they are down-regulated in xylose. We ruled out the regulatory effect of CcpA over GTFs and did not find regulatory elements with a direct effect on glucansucrases in the condition assayed. Our findings suggest that only operon levLX is repressed in xylose by LexA and that both fructansucrases operons can be regulated by the VicK/VicR system and PerR. It is essential to further explore the effect of environmental conditions in Ln. mesenteroides bacteria to better understand GTFs regulation and polymer function.

3.
Matrix Biol ; 118: 47-68, 2023 04.
Article in English | MEDLINE | ID: mdl-36882122

ABSTRACT

Changes in protein glycosylation are a hallmark of transformed cells and modulate numerous phenomena associated with cancer progression, such as the acquisition of multidrug resistance (MDR) phenotype. Different families of glycosyltransferases and their products have already been described as possible modulators of the MDR phenotype. Among the glycosyltransferases intensively studied in cancer research, UDP-N-acetyl-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase-6 (pp-GalNAc-T6), which is widely expressed in many organs and tissues, stands out. Its influence in several events associated with kidney, oral, pancreatic, renal, lung, gastric and breast cancer progression has already been described. However, its participation in the MDR phenotype has never been studied. Here, we demonstrate that human breast adenocarcinoma MCF-7 MDR cell lines, generated by chronic exposure to doxorubicin, in addition to exhibiting increased expression of proteins belonging to the ABC superfamily (ABCC1 and ABCG2), and anti-apoptotic proteins (Blcl-2 and Bcl-xL), also present high expression of pp-GalNAc-T6, the enzyme currently proposed as the main responsible for the biosynthesis of oncofetal fibronectin (onf-FN), a major extracellular matrix component expressed by cancer cells and embryonic tissues, but absent in healthy cells. Our results show that onf-FN, which is generated by the addition of a GalNAc unit at a specific threonine residue inside the type III homology connective segment (IIICS) domain of FN, is strongly upregulated during the acquisition of the MDR phenotype. Also, the silencing of pp-GalNAc-T6, not only compromises the expression of the oncofetal glycoprotein, but also made the MDR cells more sensitive to all anticancer drugs tested, partially reversing the MDR phenotype. Taken together, our results demonstrate for the first time the upregulation of the O-glycosylated oncofetal fibronectin, as well as the direct participation of pp-GalNAc-T6 during the acquisition of a MDR phenotype in a breast cancer model, giving credence to the hypothesis that in transformed cells, glycosyltransferases and/or their products, such as unusual extracellular matrix glycoproteins can be used as potential therapeutic targets for the treatment of cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Glycosylation , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Glycosyltransferases , Drug Resistance, Multiple/genetics
4.
J Biomol Struct Dyn ; 41(21): 12000-12015, 2023.
Article in English | MEDLINE | ID: mdl-36703608

ABSTRACT

Dental caries is a global public health problem, being the most common non-communicable disease. Streptococcus mutans, the causative agent of human cariogenic dental biofilms, produce glycosyltransferases (Gtfs) whose gene expression is modulated by the VicRK system, which makes them a promising target for dental biofilm inhibitor developments. Bioinformatics have playing a significant role in drug discovery programs mainly in novel hit identification. In this study, potential inhibitors against the S. mutans VicK system have been identified through Structure-based Virtual Screening performed between the VicK druggable sites followed byMolecular Dynamic simulations (MD) with binding affinity analysis by MM-PBSA approach. First, VicK protein was downloaded from PDB, and druggability analyses were performed by PockDrug and FTMap servers describing three interaction sites (S1, S2, and S3) that covered the most important domains for stability and activity. Next, a catechol virtual screening (n = 383) was performed on AutoDock4.2, and better-docked catechols showed strong binding affinity interaction through hydrogen bonding, hydrophobic interactions, and π-stacking with VicK auto kinase and phosphatase activity sites. Ligand efficiency indexes were also calculated (LE, LELP, LLE, and BEI) and showed optimal values. Furthermore, a 200 ns MD simulation run showed stability (RMSD and RMSF) and a high number of hydrogen bonds into peltatoside and maritimein, the two best VicK complexes. These results supported that catechols could potentially inhibit exopolysaccharides synthesis and be used in the biofilm management of new anti-cariogenic and antimicrobial agents.


Subject(s)
Anti-Infective Agents , Dental Caries , Humans , Streptococcus mutans/genetics , Streptococcus mutans/metabolism , Biofilms , Drug Discovery
5.
J Mol Med (Berl) ; 100(10): 1387-1403, 2022 10.
Article in English | MEDLINE | ID: mdl-36056254

ABSTRACT

Polypeptide N-acetylgalactosamine transferase 3 (ppGalNAc-T3) is an enzyme involved in the initiation of O-GalNAc glycan biosynthesis. Acting as a writer of frequent post-translational modification (PTM) on human proteins, ppGalNAc-T3 has key functions in the homeostasis of human cells and tissues. We review the relevant roles of this molecule in the biosynthesis of O-GalNAc glycans, as well as in biological functions related to human physiological and pathological conditions. With main emphasis in ppGalNAc-T3, we draw attention to the different ways involved in the modulation of ppGalNAc-Ts enzymatic activity. In addition, we take notice on recent reports of ppGalNAc-T3 having different subcellular localizations, highlight critical intrinsic and extrinsic functions in cellular physiology that are exerted by ppGalNAc-T3-synthesized PTMs, and provide an update on several human pathologies associated with dysfunctional ppGalNAc-T3. Finally, we propose biotechnological tools as new therapeutic options for the treatment of pathologies related to altered ppGalNAc-T3. KEY MESSAGES: ppGalNAc-T3 is a key enzyme in the human O-GalNAc glycans biosynthesis. enzyme activity is regulated by PTMs, lectin domain and protein-protein interactions. ppGalNAc-T3 is located in human Golgi apparatus and cell nucleus. ppGalNAc-T3 has a central role in cell physiology as well as in several pathologies. Biotechnological tools for pathological management are proposed.


Subject(s)
N-Acetylgalactosaminyltransferases/metabolism , Protein Processing, Post-Translational , Cell Physiological Phenomena , Humans , Peptides , Polysaccharides/chemistry , Transferases/metabolism , Polypeptide N-acetylgalactosaminyltransferase
6.
Int J Mol Sci ; 23(18)2022 09 08.
Article in English | MEDLINE | ID: mdl-36142273

ABSTRACT

Glycolipid glycosylation is an intricate process that mainly takes place in the Golgi by the complex interplay between glycosyltransferases. Several features such as the organization, stoichiometry and composition of these complexes may modify their sorting properties, sub-Golgi localization, enzymatic activity and in consequence, the pattern of glycosylation at the plasma membrane. In spite of the advance in our comprehension about physiological and pathological cellular states of glycosylation, the molecular basis underlying the metabolism of glycolipids and the players involved in this process remain not fully understood. In the present work, using biochemical and fluorescence microscopy approaches, we demonstrate the existence of a physical association between two ganglioside glycosyltransferases, namely, ST3Gal-II (GD1a synthase) and ß3GalT-IV (GM1 synthase) with Golgi phosphoprotein 3 (GOLPH3) in mammalian cultured cells. After GOLPH3 knockdown, the localization of both enzymes was not affected, but the fomation of ST3Gal-II/ß3GalT-IV complex was compromised and glycolipid expression pattern changed. Our results suggest a novel control mechanism of glycolipid expression through the regulation of the physical association between glycolipid glycosyltransferases mediated by GOLPH3.


Subject(s)
Glycolipids , Glycosyltransferases , Animals , G(M1) Ganglioside/metabolism , Gangliosides/metabolism , Glycolipids/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Golgi Apparatus/metabolism , Mammals/metabolism , Phosphoproteins/metabolism
7.
Plant Physiol Biochem ; 189: 24-34, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36041365

ABSTRACT

The current study aimed to scale up the favorable bio-stimulants for enhancing the growth and breeding strategies of Stevia rebaudiana to increase sugar productivity. Inoculation of 45-day-old S. rebaudiana plantlets with Bacillus cereus and Azospirillum brasilense alone or in combination for 30 days allowed comparisons among their effects on enhancement and improvement of plant growth, production of bioactive compounds and expression of steviol glycoside genes. B. cereus SrAM1 isolated from surface-sterilized Stevia rebaudiana leaves was molecularly identified using 16s rRNA and tested for its ability to promote plant growth. Beneficial endophytic B. cereus SrAM1 induced all plant growth-promoting traits, except solubilization of phosphate, therefore it showed high effectiveness in the promotion of growth and production of bioactive compounds. Treatment of plants with B. cereus SrAM1 alone revealed carbohydrates content of 278.99 mg/g, total soluble sugar of 114.17 mg/g, total phenolics content of 34.05 mg gallic acid equivalent (GAE)/g dry weight) and total antioxidants activity of 32.33 mg (A.A)/g dry weight). Thus, plantlets inoculated with B. cereus SrAM1 alone exhibited the greatest responses in physiological and morphological parameters, but plantlets inoculated with B. cereus SrAM1 + A. brasilense showed a maximal upregulation of genes responsible for the biosynthesis of steviol glycosides (Kaurene oxidase, ent-KO; UDP-dependent glycosyl transferases of UGT85C2, UGT74G1, UGT76G1). Taken together, the used bacterial strains, particularly B. cereus SrAM1 could significantly improve the growth of S. rebaudiana via dynamic interactions in plants.


Subject(s)
Azospirillum brasilense , Diterpenes, Kaurane , Stevia , Antioxidants/metabolism , Azospirillum brasilense/genetics , Azospirillum brasilense/metabolism , Bacillus cereus/genetics , Diterpenes, Kaurane/metabolism , Gallic Acid/pharmacology , Gene Expression Regulation, Plant , Glucosides/metabolism , Glycosides/metabolism , Molecular Biology , Phosphates/metabolism , Plant Breeding , Plant Leaves/metabolism , RNA, Ribosomal, 16S , Stevia/metabolism , Sugars/metabolism , Transferases/genetics , Uridine Diphosphate/metabolism
8.
Medicines (Basel) ; 9(6)2022 May 24.
Article in English | MEDLINE | ID: mdl-35736247

ABSTRACT

Cancer development and progression is associated with aberrant changes in cellular glycosylation. Cells expressing altered glycan-structures are recognized by cells of the immune system, favoring the induction of inhibitory immune processes which subsequently promote tumor growth and spreading. Here, we discuss about the importance of glycobiology in modern medicine, taking into account the impact of altered glycan structures expressed in cancer cells as potential glycobiomarkers of disease, as well as on cancer development and progression.

9.
Curr Opin Chem Biol ; 61: 203-213, 2021 04.
Article in English | MEDLINE | ID: mdl-33812143

ABSTRACT

Carbohydrate processing enzymes are of biocatalytic interest. Glycoside hydrolases and the recently discovered lytic polysaccharide monooxygenase for their use in biomass degradation to obtain biofuels or valued chemical entities. Glycosyltransferases or engineered glycosidases and phosphorylases for the synthesis of carbohydrates and glycosylated products. Quantum mechanics-molecular mechanics (QM/MM) methods are highly contributing to establish their different chemical reaction mechanisms. Other computational methods are also used to study enzyme conformational changes, ligand pathways, and processivity, e.g. for processive glycosidases like cellobiohydrolases. There is still a long road to travel to fully understand the role of conformational dynamics in enzyme activity and also to disclose the variety of reaction mechanisms these enzymes employ. Additionally, computational tools for enzyme engineering are beginning to be applied to evaluate substrate specificity or aid in the design of new biocatalysts with increased thermostability or tailored activity, a growing field where molecular modeling is finding its way.


Subject(s)
Carbohydrates/chemistry , Computational Chemistry , Enzymes/chemistry , Molecular Dynamics Simulation , Substrate Specificity
10.
Bioprocess Biosyst Eng ; 44(6): 1109-1118, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33547961

ABSTRACT

Isomaltulose is an alternative sugar obtained from sucrose using some bacteria producing glycosyltransferase. This work aimed to optimize conditions for the immobilization of Serratia plymuthica through ionic gelation and cross-linking by transglutaminase using the sequential experimental strategy for the conversion of sucrose into isomaltulose. The effect of five variables (concentrations of cell mass, alginate, gelatin, transglutaminase, and calcium chloride) was studied, as well as the interactions between them on the matrix composition for the S. plymuthica immobilization. Three experimental designs were used to optimize the concentrations of each variable to obtain higher concentration of isomaltulose. A high conversion of sucrose into isomaltulose (71.04%) was obtained by the cells immobilized in a matrix composed of alginate (1.7%), CaCl2 (0.25 mol/L), gelatin (0.5%), transglutaminase (3.5%) and cell mass (33.5%). As a result, the transglutaminase application as a cross-linking agent improved the immobilization of Serratia plymuthica cells and the conversion of sucrose into isomaltulose.


Subject(s)
Cells, Immobilized , Cross-Linking Reagents/chemistry , Isomaltose/biosynthesis , Serratia , Sucrose/metabolism , Transglutaminases/chemistry , Cells, Immobilized/chemistry , Cells, Immobilized/metabolism , Serratia/chemistry , Serratia/metabolism
11.
Biol Chem ; 399(7): 661-672, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29894296

ABSTRACT

Triple negative breast cancer (TNBC) is a major global public health problem. The lack of targeted therapy and the elevated mortality evidence the need for better knowledge of the tumor biology. Hypoxia and aberrant glycosylation are associated with advanced stages of malignancy, tumor progression and treatment resistance. Importantly, serum deprivation regulates the invasive phenotype and favors TNBC cell survival. However, in TNBC, the role of hypoxia and serum deprivation in the regulation of glycosylation remains largely unknown. The effects of hypoxia and serum deprivation on the expression of glycosyltransferases and glycan profile were evaluated in the MDA-MB-231 cell line. We showed that the overexpression of HIF-1α was accompanied by acquisition of epithelial-mesenchimal transition features. Significant upregulation of fucosyl- and sialyltransferases involved in the synthesis of tumor-associated carbohydrate antigens was observed together with changes in fucosylation and sialylation detected by Aleuria aurantia lectin and Sambucus nigra agglutinin lectin blots. Bioinformatic analysis further indicated a mechanism by which HIF-1α can regulate ST3GAL6 expression and the relationship within the intrinsic characteristics of TNBC tumors. In conclusion, our results showed the involvement of hypoxia and serum deprivation in glycosylation profile regulation of TNBC cells triggering breast cancer aggressive features and suggesting glycosylation as a potential diagnostic and therapeutic target.


Subject(s)
Hypoxia/metabolism , Polysaccharides/metabolism , Triple Negative Breast Neoplasms/metabolism , Cell Survival , Humans , Hypoxia/blood , Polysaccharides/blood , Transcription Factors/metabolism , Triple Negative Breast Neoplasms/blood , Triple Negative Breast Neoplasms/pathology , Tumor Cells, Cultured
12.
Mol Plant ; 11(5): 645-658, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29530817

ABSTRACT

Extensins (EXTs) are highly repetitive plant O-glycoproteins that require several post-translational modifications (PTMs) to become functional in plant cell walls. First, they are hydroxylated on contiguous proline residues; then they are O-glycosylated on hydroxyproline and serine. After secretion into the apoplast, O-glycosylated EXTs form a tridimensional network organized by inter- and intra-Tyr linkages. Recent studies have made significant progress in the identification of the enzymatic machinery required to process EXTs, which includes prolyl 4-hydroxylases, glycosyltransferases, papain-type cysteine endopeptidases, and peroxidases. EXTs are abundant in plant tissues and are particularly important in rapidly expanding root hairs and pollen tubes, which grow in a polar manner. Small changes in EXT PTMs affect fast-growing cells, although the molecular mechanisms underlying this regulation are unknown. In this review, we highlight recent advances in our understanding of EXT modifications throughout the secretory pathway, EXT assembly in cell walls, and possible sensing mechanisms involving the Catharanthus roseus cell surface sensor receptor-like kinases located at the interface between the apoplast and the cytoplasmic side of the plasma membrane.


Subject(s)
Catharanthus/metabolism , Glycoproteins/metabolism , Plant Proteins/metabolism , Cell Membrane/metabolism , Protein Processing, Post-Translational
13.
Biochem J ; 474(16): 2803-2816, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28698248

ABSTRACT

Ganglioside glycosyltransferases (GGTs) are type II membrane proteins bearing a short N-terminal cytoplasmic tail, a transmembrane domain (TMD), and a lumenal catalytic domain. The expression and activity of these enzymes largely determine the quality of the glycolipids that decorate mammalian cell membranes. Many glycosyltransferases (GTs) are themselves glycosylated, and this is important for their proper localisation, but few if any other post-translational modifications of these proteins have been reported. Here, we show that the GGTs, ST3Gal-V, ST8Sia-I, and ß4GalNAcT-I are S-acylated at conserved cysteine residues located close to the cytoplasmic border of their TMDs. ST3Gal-II, a GT that sialylates glycolipids and glycoproteins, is also S-acylated at a conserved cysteine located in the N-terminal cytoplasmic tail. Many other GTs also possess cysteine residues in their cytoplasmic regions, suggesting that this modification occurs also on these GTs. S-acylation, commonly known as palmitoylation, is catalysed by a family of palmitoyltransferases (PATs) that are mostly localised at the Golgi complex but also at the endoplasmic reticulum (ER) and the plasma membrane. Using GT ER retention mutants, we found that S-acylation of ß4GalNAcT-I and ST3Gal-II takes place at different compartments, suggesting that these enzymes are not substrates of the same PAT. Finally, we found that cysteines that are the target of S-acylation on ß4GalNAcT-I and ST3Gal-II are involved in the formation of homodimers through disulphide bonds. We observed an increase in ST3Gal-II dimers in the presence of the PAT inhibitor 2-bromopalmitate, suggesting that GT homodimerisation may be regulating S-acylation.


Subject(s)
N-Acetylgalactosaminyltransferases/metabolism , Protein Processing, Post-Translational , Sialyltransferases/metabolism , Acylation , Amino Acid Sequence , Animals , CHO Cells , Cell Line , Conserved Sequence , Cricetulus , Cysteine/metabolism , Dimerization , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Fluorescence , Mutation , N-Acetylgalactosaminyltransferases/chemistry , N-Acetylgalactosaminyltransferases/genetics , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Phylogeny , Protein Interaction Domains and Motifs , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Sialyltransferases/chemistry , Sialyltransferases/genetics , beta-Galactoside alpha-2,3-Sialyltransferase
14.
Cell Physiol Biochem ; 41(5): 1801-1829, 2017.
Article in English | MEDLINE | ID: mdl-28376491

ABSTRACT

Post-translational and co-translational enzymatic addition of glycans (glycosylation) to proteins, lipids, and other carbohydrates, is a powerful regulator of the molecular machinery involved in cell cycle, adhesion, invasion, and signal transduction, and is usually seen in both in vivo and in vitro cancer models. Glycosyltransferases can alter the glycosylation pattern of normal cells, subsequently leading to the establishment and progression of several diseases, including cancer. Furthermore, a growing amount of research has shown that different oxygen tensions, mainly hypoxia, leads to a markedly altered glycosylation, resulting in altered glycan-receptor interactions. Alteration of intracellular glucose metabolism, from aerobic cellular respiration to anaerobic glycolysis, inhibition of integrin 3α1ß translocation to the plasma membrane, decreased 1,2-fucosylation of cell-surface glycans, and galectin overexpression are some consequences of the hypoxic tumor microenvironment. Additionally, increased expression of gangliosides carrying N-glycolyl sialic acid can also be significantly affected by hypoxia. For all these reasons, it is possible to realize that hypoxia strongly alters glycobiologic events within tumors, leading to changes in their behavior. This review aims to analyze the complexity and importance of glycoconjugates and their molecular interaction network in the hypoxic context of many solid tumors.


Subject(s)
Hypoxia/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Polysaccharides/metabolism , Animals , Glucose/metabolism , Glycosylation , Humans , N-Acetylneuraminic Acid/metabolism
15.
Rev. bras. hematol. hemoter ; Rev. bras. hematol. hemoter;38(4): 331-340, Oct.-Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-829941

ABSTRACT

ABSTRACT ABO, H, secretor and Lewis histo-blood system genes control the expression of part of the carbohydrate repertoire present in areas of the body occupied by microorganisms. These carbohydrates, besides having great structural diversity, act as potential receptors for pathogenic and non-pathogenic microorganisms influencing susceptibility and resistance to infection and illness. Despite the knowledge of some structural variability of these carbohydrate antigens and their polymorphic levels of expression in tissue and exocrine secretions, little is known about their biological importance and potential applications in medicine. This review highlights the structural diversity, the biological importance and potential applications of ABO, H, Lewis and secretor histo-blood carbohydrates.


Subject(s)
ABO Blood-Group System , Lewis Blood Group Antigens , Oligosaccharides , Carbohydrates , Glycosyltransferases
16.
Rev Bras Hematol Hemoter ; 38(4): 331-340, 2016.
Article in English | MEDLINE | ID: mdl-27863762

ABSTRACT

ABO, H, secretor and Lewis histo-blood system genes control the expression of part of the carbohydrate repertoire present in areas of the body occupied by microorganisms. These carbohydrates, besides having great structural diversity, act as potential receptors for pathogenic and non-pathogenic microorganisms influencing susceptibility and resistance to infection and illness. Despite the knowledge of some structural variability of these carbohydrate antigens and their polymorphic levels of expression in tissue and exocrine secretions, little is known about their biological importance and potential applications in medicine. This review highlights the structural diversity, the biological importance and potential applications of ABO, H, Lewis and secretor histo-blood carbohydrates.

17.
Glycobiology ; 26(9): 913-925, 2016 09.
Article in English | MEDLINE | ID: mdl-27507902

ABSTRACT

The cell wall is a complex extracellular matrix composed primarily of polysaccharides. Noncellulosic polysaccharides, glycoproteins and proteoglycans are synthesized in the Golgi apparatus by glycosyltransferases (GTs), which use nucleotide sugars as donors to glycosylate nascent glycan and glycoprotein acceptors that are subsequently exported to the extracellular space. Many nucleotide sugars are synthesized in the cytosol, leading to a topological issue because the active sites of most GTs are located in the Golgi lumen. Nucleotide sugar transporters (NSTs) overcome this problem by translocating nucleoside diphosphate sugars from the cytosol into the lumen of the organelle. The structures of the cell wall components synthesized in the Golgi are diverse and complex; therefore, transporter activities are necessary so that the nucleotide sugars can provide substrates for the GTs. In this review, we describe the topology of reactions involved in polysaccharide biosynthesis in the Golgi and focus on the roles of NSTs as well as their impacts on cell wall structure when they are altered.


Subject(s)
Cell Wall/genetics , Plant Cells/metabolism , Polysaccharides/biosynthesis , Sugars/metabolism , Biological Transport/genetics , Cell Wall/chemistry , Cell Wall/metabolism , Glycosylation , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Monosaccharide Transport Proteins , Nucleotides/chemistry , Nucleotides/metabolism , Polysaccharides/genetics
18.
Front Oncol ; 5: 138, 2015.
Article in English | MEDLINE | ID: mdl-26161361

ABSTRACT

Cancer cells depend on altered metabolism and nutrient uptake to generate and keep the malignant phenotype. The hexosamine biosynthetic pathway is a branch of glucose metabolism that produces UDP-GlcNAc and its derivatives, UDP-GalNAc and CMP-Neu5Ac and donor substrates used in the production of glycoproteins and glycolipids. Growing evidence demonstrates that alteration of the pool of activated substrates might lead to different glycosylation and cell signaling. It is already well established that aberrant glycosylation can modulate tumor growth and malignant transformation in different cancer types. Therefore, biosynthetic machinery involved in the assembly of aberrant glycans are becoming prominent targets for anti-tumor drugs. This review describes three classes of glycosylation, O-GlcNAcylation, N-linked, and mucin type O-linked glycosylation, involved in tumor progression, their biosynthesis and highlights the available inhibitors as potential anti-tumor drugs.

20.
Front Oncol ; 4: 114, 2014.
Article in English | MEDLINE | ID: mdl-24904828

ABSTRACT

Neuroblastoma (NB), accounting for 10% of childhood cancers, exhibits aberrant cell-surface glycosylation patterns. There is evidence that changes in glycolipids and protein glycosylation pathways are associated to NB biological behavior. Polysialic acid (PSA) interferes with cellular adhesion, and correlates with NB progression and poor prognosis, as well as the expression of sialyltransferase STX, the key enzyme responsible for PSA synthesis. Galectin-1 and gangliosides, overexpressed and actively shedded by tumor cells, can modulate normal cells present in the tumor microenvironment, favoring angiogenesis and immunological escape. Different glycosyltransferases are emerging as tumor markers and potential molecular targets. Immunotherapy targeting disialoganglioside GD2 rises as an important treatment option. One anti-GD2 antibody (ch14.18), combined with IL-2 and GM-CSF, significantly improves survival for high-risk NB patients. This review summarizes our current knowledge on NB glycobiology, highlighting the molecular basis by which carbohydrates and protein-carbohydrate interactions impact on biological behavior and patient clinical outcome.

SELECTION OF CITATIONS
SEARCH DETAIL