Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Cell Dev Biol ; 8: 548, 2020.
Article in English | MEDLINE | ID: mdl-32714932

ABSTRACT

In the mammalian adult hippocampus, new neurons are continuously generated throughout life in the subgranular zone of the dentate gyrus. Increasing evidence point out the contribution of adult-born hippocampal granule cells (GCs) to cognitive processes such as learning and memory, indicating the relevance of understanding the molecular mechanisms that control the development of these new neurons in the preexisting hippocampal circuits. Cell proliferation and functional integration of adult-born GCs is a process highly regulated by different intrinsic and extrinsic factors. In this review, we discuss recent advances related with cellular components and extrinsic signals of the hippocampal neurogenic niche that support and modulate neurogenesis under physiological conditions.

2.
Mol Cell Neurosci ; 56: 298-306, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23851186

ABSTRACT

Neuronal connectivity and synaptic remodeling are fundamental substrates for higher brain functions. Understanding their dynamics in the mammalian allocortex emerges as a critical step to tackle the cellular basis of cognitive decline that occurs during normal aging and in neurodegenerative disorders. In this work we have designed a novel approach to assess alterations in the dynamics of functional and structural connectivity elicited by chronic cell-autonomous overexpression of the human amyloid precursor protein (hAPP). We have taken advantage of the fact that the hippocampus continuously generates new dentate granule cells (GCs) to probe morphofunctional development of GCs expressing different variants of hAPP in a healthy background. hAPP was expressed together with a fluorescent reporter in neural progenitor cells of the dentate gyrus of juvenile mice by retroviral delivery. Neuronal progeny was analyzed several days post infection (dpi). Amyloidogenic cleavage products of hAPP such as the ß-C terminal fragment (ß-CTF) induced a substantial reduction in glutamatergic connectivity at 21 dpi, at which time new GCs undergo active growth and synaptogenesis. Interestingly, this effect was transient, since the strength of glutamatergic inputs was normal by 35 dpi. This delay in glutamatergic synaptogenesis was paralleled by a decrease in dendritic length with no changes in spine density, consistent with a protracted dendritic development without alterations in synapse formation. Finally, similar defects in newborn GC development were observed by overexpression of α-CTF, a non-amyloidogenic cleavage product of hAPP. These results indicate that hAPP can elicit protracted dendritic development independently of the amyloidogenic processing pathway.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Dendrites/metabolism , Hippocampus/cytology , Neurogenesis , Amyloid beta-Protein Precursor/genetics , Animals , Dendrites/physiology , Dentate Gyrus/cytology , Dentate Gyrus/growth & development , Dentate Gyrus/physiology , Excitatory Postsynaptic Potentials , Female , Hippocampus/growth & development , Hippocampus/physiology , Humans , Mice , Mice, Inbred C57BL , Nerve Net/cytology , Nerve Net/growth & development , Nerve Net/physiology , Sensory Receptor Cells/cytology , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL