Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 519
Filter
1.
Article in English | MEDLINE | ID: mdl-39313361

ABSTRACT

Alcohol-associated liver disease (ALD), including alcoholic fatty liver, is a serious problem in many countries, and its economic costs to society are enormous. There is evidence indicating the relations between gut environments and liver disease, and thus, improvement of gut environment is expected to be an effective approach for ALD prevention. In this study, we explored the preventive effect of partially hydrolyzed guar gum (PHGG) on ALD focusing on the gut-liver axis. Two weeks of PHGG pre-feeding suppressed the liver fat accumulation in the experimental binge alcohol model mouse. In cecal microbiome, PHGG pre-feeding increased beneficial Bifidobacterium with its metabolite acetate concentration and suppressed the alcohol-induced increase in the potential pathobiont Streptococcus. PHGG pre-feeding increased colonic gene expression of angiogenin genes, which act as antimicrobial peptides and decreased expression of genes for mast cell protease, which suggests a potential involvement in leaky gut. Correlation network analysis based on evaluated parameters revealed four relations worth noticing. (i) The abundance of Bifidobacterium positively correlated with cecal acetate. (ii) Cecal acetate negatively correlated with Streptococcus via colonic angiogenin expression. (iii) Streptococcus positively correlated with liver fat area. (iv) Cecal acetate had direct negative correlation with liver fat area. Considering these relations comprehensively, acetate produced by Bifidobacterium may be a key mediator in ALD prevention; it inhibited growth of potential pathobiont Streptococcus and also directly regulated liver lipid metabolism reaching through portal vein. This study demonstrated that regularly intake of PHGG may be effective in reducing the risk of alcoholic fatty liver via gut-liver axis.

2.
Sci Rep ; 14(1): 20764, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237590

ABSTRACT

The development of deep high-temperature oil and gas reservoirs gives rise to a rise in reservoir temperature along with the depth of the oil reservoir, thereby imposing higher requirements on the heat resistance of fracturing fluid. Guar gum fracturing fluid has difficulty tolerating temperatures exceeding 160 °C, thereby demanding the development of corresponding cross-linking agents, temperature stabilizers, and other additives to enhance the thermal stability of the fracturing system. Considering the distinctive characteristics of deep and ultra-deep reservoirs, such as extreme burial depth (exceeding 6000 m), ultra-high temperature (higher than 160 °C), and high fracturing pressure, an experimental modification of a guar gum fracturing fluid system was carried out, specifically tailored for ultra-high temperatures. The experiment identified and selected individual agents for ultra-high temperature fracturing fluids, including crosslinking agents, thermal stabilizers, flowback aids, and clay inhibitors. Through rigorous experimentation, these key agents for an ultra-high temperature fracturing fluid system have been successfully developed, including the optimal thickener GBA1-2, crosslinking agent BA1-1, anti-swelling agent FB-1, and gel breaker TS-1. The evaluation of diverse additive dosages has facilitated the development of an optimal guar fracturing fluid system, which exhibits outstanding high-temperature resistance while minimizing damage and friction. The outcomes of our experiments indicate that even after subjecting our ultra-high temperature fracturing fluid to 2 h of shearing at 170 s-1 at 180 °C, its viscosity remained above 200 mPa s-a distinct proof of its superior performance in withstanding high temperatures. This achievement represents a substantial progress in providing a suitable fracturing fluid system for the transformation and stimulation of ultra-deep and ultra-high temperature reservoirs, and also lays a solid foundation for further exploration and application in related fields in the future.

3.
Int J Biol Macromol ; 279(Pt 2): 135237, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39218190

ABSTRACT

Kuey teow is one of the delicacies of Guangdong, China and is a gluten-free noodle dish made from rice. It has a short storage period and extending the shelf life by quick freezing induces quality deterioration due to temperature fluctuations. To improve its freeze-thaw frozen storage quality, this paper examined the effects of hydroxypropyl corn starch (HCS), guar gum (GG), and compound phosphates (CP) on the quality of quick-frozen kuey teow during freeze-thaw cycles. The mechanism was investigated by identifying changes in the moisture status, aging degree of the starch, and textural and cooking characteristics. The results showed that all three additions improved the toughness, chewiness and steaming characteristics of the kuey teow, with CP significantly enhancing chewiness. XRD and FTIR results revealed that GG more significantly inhibited the decrease of starch crystallinity, while HCS inhibited starch aging. GG, HCS and CP all improved the hydration characteristics and water holding capacity of rice starch. GG enhances the ability of starch to bind more tightly with water, resulting in a more uniform water distribution and a more continuous and tight structure of the kuey teow. This study will provide a theoretical basis for compounding and optimizing the quick-freezing of kuey teow.

4.
Food Chem ; 463(Pt 1): 141091, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39244998

ABSTRACT

To enhance stability and bioaccessibility of curcumin in Pickering emulsions stabilized by starch nanoparticles (SNP), cationized guar gum (CGG) was incorporated into the emulsion. Zeta potential results revealed that SNP and CGG formed electrostatic interactions, resulting in stable interfacial layer with higher hydrophobicity. Adding 0.4 % CGG maintained a homogeneous phase without significant droplet size change for up to one month. The emulsion with 0.4 % CGG demonstrated stable storage under varying pH (4-10), ionic strength (0-10 mM NaCl), and freeze-thaw cycles (up to 3). When optimized Pickering emulsion system was applied to curcumin encapsulation, curcumin-loaded emulsions were stably maintained for up to one month. The curcumin retained approximately 100 % stability under thermal (90 °C) and UV (12h) treatments. In the optimized emulsion, starch components resisted digestion in oral and gastroenteric phases but were primarily digested in small intestine, resulting in an increasing bioaccessibility from 88.23 to 96.92 %.

5.
Int J Biol Macromol ; 279(Pt 4): 135418, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39245103

ABSTRACT

Diabetic wounds have become a serious global health concern, with a growing number of patients each year. Diabetic altered wound healing physiology, as well as resulting complications, make therapy difficult. Hence, diabetic wound healing necessitates a multidisciplinary strategy. This study focused on the formulation, statistical optimization, ex vivo, and in vitro evaluation of a diabetic wound healing by n-acetyl cysteine (NAC) loaded hydrogel. The objective of the study is to formulate n-acetyl loaded hydrogel with different ratio (1:1, 1:2, 1:3, 2:1) of sodium alginate and guar gum. The antibacterial and antifungal assessment against the viability of Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli), and Staphylococcus aureus (S.aureus) and Candida albicans (C. albicans) was conducted after determining the in vitro drug release profile. The results of the experiment demonstrated that the formulation F3 was an optimal formulation on triplicate measurement with a pH of 6.2 ± 0.168, and a density of 1.026 ± 0.21. In vitro cell line study exhibited F3 has potential role in cell adhesion and proliferation might be beneficial to tissue regeneration and wound healing. The results imply that F3 may be helpful for the quick healing of diabetic wounds by promoting angiogenesis and also by scavenging free oxygen radicals.


Subject(s)
Acetylcysteine , Anti-Bacterial Agents , Antioxidants , Bandages , Hydrogels , Wound Healing , Acetylcysteine/pharmacology , Acetylcysteine/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Wound Healing/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Humans , Alginates/chemistry , Microbial Sensitivity Tests , Candida albicans/drug effects , Drug Liberation , Plant Gums/chemistry , Escherichia coli/drug effects , Rats , Drug Compounding , Mannans/chemistry , Mannans/pharmacology
6.
Gels ; 10(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39330176

ABSTRACT

This study aimed to develop HGs based on cationic guar gum (CGG), polyethylene glycol (PEG), propylene glycol (PG), and citric acid (CA) using a 2k factorial experimental design to optimize their properties. HGs were characterized through FTIR and Raman spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The biological activities of HGs were determined by evaluating their mucoadhesive capacity and antibacterial activity in vitro, whereas their toxicity was analyzed using Artemia salina nauplii as an in vivo model. Results revealed that HGs were successfully optimized for their viscosity, pH, and sensory properties, and it was observed that varying concentrations of PEG-75 did not influence them. Through SEM analyses, it was noted that increased levels of PEG-75 resulted in HGs with distinct porosity and textures, whereas FTIR and Raman spectroscopy exhibited representative peaks of the raw materials used during the synthesis process. TGA studies indicated the thermal stability of HGs, as they presented degradation patterns at 100 and 300 °C. The synthesized HGs exhibited similar mucoadhesion kinetic profiles, demonstrating a displacement factor at an equilibrium of 0.57 mm/mg at 5 min. The antibacterial activity of HGs was appraised as poor against Gram-positive and Gram-negative bacteria due to their MIC90 values (>500 µg/mL). Regarding A. salina, treatment with HGs neither decreased their viability nor induced morphological changes. The obtained results suggest the suitability of CGG/PEG HGs for oral mucosa drug delivery and expand the knowledge about their mucoadhesive capacity, antibacterial potential, and in vivo biocompatibility.

7.
Food Sci Technol Int ; : 10820132241278220, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39219490

ABSTRACT

Fortification of yogurt with orange pulp tends to increase its protein network strength resulting in reduced syneresis. The aim of the current study was to prepare set-type orange yogurt with cow milk, skim milk powder, guar gum, and orange pulp at 0%, 1.0%, 2.0%, 3.0%, and 4.0% concentrations, respectively. The changes in proximate, total soluble solid, antioxidant activity, ascorbic acid, and syneresis were assessed. Yogurt was stored for consecutive three weeks during that duration all attributes were evaluated weekly. Set-type orange pulp incorporated yogurt significantly increased the fat (3.91% to 4.9%), protein (3.90% to 3.94%), moisture (84% to 84.80%), total soluble solids (16.01% to 18.51%), ascorbic acid (16.99% to 20.43%), and syneresis (28.90% to 29.94%), respectively. Overall results indicate that 4% orange pulp-enriched set-type yogurt presented more stable parameters as compared to other formulas.

8.
Mol Biotechnol ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212825

ABSTRACT

The escalating intersection of diabetes and impaired wound healing poses a substantial societal burden, marked by an increasing prevalence of chronic wounds. Diabetic individuals struggle with hindered recovery, attributed to compromised blood circulation and diminished immune function, resulting in prolonged healing periods and elevated healthcare expenditures. To address this challenge, we report here a drug-free novel guar gum (GG)-based nano-formulation which is effective against diabetic wound healing. Nanoparticles with an average particle size of 32.4 nm display stability with negative zeta potential. Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) analysis reveal alterations in thermal properties and molecular structures induced by the nano-particulation process. In vitro studies highlight the antioxidant potential of GGNP through concentration-dependent free radical scavenging activity in DPPH and ABTS assays. The nanoformulation also exhibits inhibitory effects on α-glucosidase and α-amylase enzymes. Cell viability studies have indicated moderate cytotoxicity in L929 cells and significant proliferation and migration in HaCaT cells, suggesting a positive impact on skin cells. In vitro enzymatic activity assessments under hyperglycaemic conditions reveal the potential of GGNP to modulate glutathione-S-transferase (GST), superoxide dismutase (SOD), and catalase activities as well as decreasing lipid peroxidation (LPO) levels, showcasing an antioxidant response. These results suggest GGNP as a promising candidate in diabetic wound healing.

9.
Int J Biol Macromol ; 278(Pt 2): 134707, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39147339

ABSTRACT

Herein, we report for the first time a simple strategy to design a hierarchical chemically exfoliated magnesium diboride and guar gum network structure decorated with Ru nanoparticles (eMgB2-GG@Ru) as an electrode to evaluate its electrochemical performance for the application of supercapacitor. The eMgB2 and functionalized eMgB2-GG@Ru materials were thoroughly examined using XRD, TGA, DLS, FE-SEM, STEM, AFM, XPS, and BET techniques. The combined eMgB2-GG@Ru electrode exhibits a network structure morphology with an increased interlayer distance of eMgB2 nanolayers along with a uniform distribution of spherical Ru nanoparticles. The electrochemical performance of eMgB2-GG@Ru and its pristine materials was studied through CV, GCD, and EIS to determine their supercapacitor performance. The eMgB2-GG@Ru electrode demonstrates higher specific capacitance (352 F/g) than its eMgB2@Ru (258.9 F/g), and MgB2 (214.5 F/g) counterparts at a current density of 0.5 A/g in a three-electrode setup using 3 M KOH electrolyte. The hierarchical eMgB2-GG@Ru solid-state symmetric devices maintained higher capacity retention of 89 % even after 7000 cycles, achieving a maximum energy density of 26.12 kW/kg at the power density of 450 W/kg at 0.5 A/g. Therefore, the innovative eMgB2-GG@Ru electrode offers superior electrochemical performance with efficient electrolyte ion mobility for energy storage applications.


Subject(s)
Electric Capacitance , Electrodes , Galactans , Mannans , Nanocomposites , Plant Gums , Ruthenium , Plant Gums/chemistry , Nanocomposites/chemistry , Galactans/chemistry , Ruthenium/chemistry , Mannans/chemistry , Electrochemical Techniques , Magnesium Compounds/chemistry
10.
Int J Biol Macromol ; 279(Pt 1): 135112, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39197606

ABSTRACT

As classical soft materials, conductive hydrogels have attracted wide attention in the field of strain sensors due to their unique flexibility and conductivity. However, there are still challenges in developing conductive hydrogels with comprehensive mechanical strength, self-healing ability and sensitive sensing properties. In this paper, a novel PAV/CMGG hydrogel was prepared by a simple one-pot method through the introduction of 1-vinyl-3-butylimidazolium bromide (VBIMBr), acrylic acid (AA), carboxymethyl guar gum (CMGG) and AlCl3. The coordination bond between Al3+ and -COO- groups on PAA and CMGG, the hydrogen bond between PAA and CMGG, and the electrostatic interaction between [VBIM]+ and -COO- endow the hydrogel with good mechanical properties, self-recovery ability, fatigue resistance and great self-healing properties. PAV/CMGG hydrogel had good conductivity of 2.31 S/m which could successfully light up the bulb. The hydrogel as the strain sensor had not only a wide strain sensing capability (strain ranging from 0 to 800 %), but also a high strain sensitivity (gauge factor (GF) = 28.50 for the strain ranging from 600 to 800 %). This study can provide inspiration for the construction of new high-performance flexible sensors.


Subject(s)
Galactans , Hydrogels , Ionic Liquids , Mannans , Plant Gums , Plant Gums/chemistry , Galactans/chemistry , Mannans/chemistry , Hydrogels/chemistry , Ionic Liquids/chemistry , Electric Conductivity
11.
Int J Biol Macromol ; 277(Pt 3): 134333, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094873

ABSTRACT

In this work, an attempt has been made to develop a novel natural polysaccharide-based composite packaging biofilm prepared through a solution casting method. The biofilm is prepared from guar gum (GG) and agar-agar (AA) beeswax (BE). The incorporation of 20 % wt./wt.glycerol BE in the blended polymer GG/AA (50:50) (GG/AA/BE20 (50:50)) film shows a reduction in water solubility (66.67 %), water vapour permeability (69.28 %) and oxygen permeability (72.23 %). Moreover, GG/AA/BE20 (50:50) shows an increment in the tensile strength and elongation of a break by 48.32 % and 26.05 %, respectively, compared to pristine GG film. The scanning electron microscopy (SEM) image reveals defects-free smooth surfaces of the film. The Fourier transform-infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) demonstrated the strong hydrogen bonding between GG, AA, and BE. The biodegradable film shows 99 % degradation within 28 days when placed in the soil. The developed film plays a crucial role in extending the shelf life of cheese, effectively maintaining its moisture content, texture, colour, and pH over a span of up to two months from the point of packaging. These results suggest that GG/AA/BE20 (50:50) composite film is a promising packaging film for cheese preservation.


Subject(s)
Agar , Cheese , Food Packaging , Galactans , Mannans , Plant Gums , Waxes , Plant Gums/chemistry , Galactans/chemistry , Mannans/chemistry , Food Packaging/methods , Waxes/chemistry , Agar/chemistry , Permeability , Food Preservation/methods , Steam , Tensile Strength , Solubility
12.
Int J Biol Macromol ; 277(Pt 3): 134445, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098685

ABSTRACT

As a widely used water-based fracturing fluid, the performance of hydroxypropyl guar gum fracturing fluid is closely related to the degree of crosslinking, the quantitative characterization of which can reveal a detailed crosslinking mechanism and guide the preparation of fracturing fluid gels with an excellent performance. However, the commonly used high-temperature rheology method for evaluating the performance of fracturing fluids only qualitatively reflects the degree of crosslinking. In this study, low-field nuclear magnetic resonance (LF-NMR) was used to characterize the degree of crosslinking in guar gum fracturing fluid gels. The spin-spin relaxation time of the H proton in guar gum was molecularly analyzed using LF-NMR. The viscoelastic properties met the requirements when the crosslinking degree of the gel was 88-94 %. The transformation of the linear structure into a membrane structure during the crosslinking process of the guar gum fracturing fluid was confirmed by freeze-drying and scanning electron microscopy (SEM) from a microscopic perspective. The changing trend of the microstructure and viscoelastic properties of the fracturing fluid gel under different crosslinker dosages was consistent with changes in the degree of crosslinking. The LF-NMR test process is non-destructive to the gel structure, and the test results demonstrate good accuracy and repeatability.


Subject(s)
Galactans , Magnetic Resonance Spectroscopy , Mannans , Plant Gums , Galactans/chemistry , Plant Gums/chemistry , Mannans/chemistry , Magnetic Resonance Spectroscopy/methods , Viscosity , Cross-Linking Reagents/chemistry , Rheology , Gels/chemistry , Elasticity , Polysaccharides
13.
J Biomater Sci Polym Ed ; : 1-20, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110752

ABSTRACT

The skin is at risk for injury to external factors since it serves as the body's first line of defense against the external environment. Hydrogels have drawn much interest due to their intrinsic extracellular matrix (ECM) properties and their biomimetic, structural, and durable mechanical characteristics. Hydrogels have enormous potential use in skin wound healing due to their ability to deliver bioactive substances easily. In this study, composite hydrogels were developed by blending guar gum (GG), polyvinyl alcohol (PVA), and carboxymethyl cellulose (CMC) with crosslinker TEOS for skin wound treatment. The structural, surface morphology, surface roughness, and stability features of the composite hydrogels were characterized by several techniques, such as FTIR, SEM-EDX, AFM, and DSC. The increasing ZiF-8 causes more surface roughness, with decreased swelling in different media (Aqueous > PBS > NaCl). The increasing ZiF-8 amount causes less hydrophilic behavior and biodegradation with increasing gel fraction. The cytocompatibility of Zinc imidazolate framework-8 (ZiF-8) based composites was evaluated against fibroblast cell lines by cell viability, proliferation, and cell morphology. The increasing ZiF-8 caused more cell viability and proliferation with proper cell morphology. Hence, the results show that synthesized composite hydrogels may be a potential candidate for numerous wound repair applications.

14.
Food Chem X ; 23: 101632, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39100252

ABSTRACT

Herein, three types of ovalbumin (OA)-polysaccharide conjugates were prepared with three polysaccharides (XG: xanthan gum; GG: guar gum; KGM: konjac glucomannan) for the fish oil emulsion stabilization. The glycation did not change the spectra bands and secondary structure percentages of OA, whereas it decreased the molecular surface hydrophobicity of OA. The initial emulsion droplet sizes were dependent on the polysaccharide types, OA preparation concentrations, polysaccharide: OA mass ratios, and glycation pH. The emulsion stability was mainly dependent on the polysaccharide types, polysaccharide: OA mass ratios, and glycation pH. However, it was minorly dependent on the OA preparation concentrations. The emulsions stabilized by conjugates with high polysaccharide: OA mass ratios (e.g., ≥3:5 for OA-GG) or appropriate glycation pH (e.g., 5.0-6.1 for OA-XG) showed no obvious creaming during the room temperature storage. This work provided basic knowledge on the structural modification and functional application of a protein.

15.
Front Chem ; 12: 1393791, 2024.
Article in English | MEDLINE | ID: mdl-39161956

ABSTRACT

Uncontrolled or improperly managed wastewater is considered toxic and dangerous to plants, animals, and people, as well as negatively impacting the ecosystem. In this research, the use of we aimed to prepare polymer nanocomposites (guar gum/polyvinyl alcohol, and nano-montmorillonite clay) for eliminating heavy metals from water-based systems, especially Cu2+ and Cd2+ ions. The synthesis of nanocomposites was done by the green method with different ratios of guar gum to PVA (50/50), (60/40), and (80/20) wt%, in addition to glycerol that acts as a cross-linker. Fourier-transform infrared spectroscopy (FT-IR) analysis of the prepared (guar gum/PVA/MMT) polymeric nano-composites' structure and morphology revealed the presence of both guar gum and PVA's functional groups in the polymeric network matrix. Transmission electron microscopy (TEM) analysis was also performed, which verified the creation of a nanocomposite. Furthermore, theromgravimetric analysis (TGA) demonstrated the biocomposites' excellent thermal properties. For those metal ions, the extreme uptake was found at pH 6.0 in each instance. The Equilibrium uptake capacities of the three prepared nanocomposites were achieved within 240 min. The maximal capacities were found to be 95, 89 and 84 mg/g for Cu2+, and for Cd2+ were found to be 100, 91, 87 mg/g for guar gum (80/20, 60/40 and 50/50), respectively. The pseudo-2nd-order model with R2 > 0.98 was demonstrated to be followed by the adsorption reaction, according to the presented results. In less than 4 hours, the adsorption equilibrium was reached. Furthermore, a 1% EDTA solution could be used to revitalize the metal-ion-loaded nanocomposites for several cycles. The most promising nanocomposite with efficiency above 90% for the removal of Cu2+ and Cd2+ ions from wastewater was found to have a guar (80/20) weight percentage, according to the results obtained.

16.
Polymers (Basel) ; 16(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39125228

ABSTRACT

Using biopolymers for soil stabilization is favorable compared to more conventional methods because they are more environmentally friendly, cost-effective, and long-lasting. This study analyzes the physical properties of guar gum and laterite soil mixes. A comprehensive engineering study of guar gum-treated soil was conducted with the help of a brief experimental program. This study examined the effects of soil-guar gum interactions on the strengthening behavior of guar gum-treated soil mixtures using a series of laboratory tests. The treated laterite soil's dry density increased marginally, while its optimum moisture content decreased as the guar gum increased. Treatment with guar gum significantly enhanced the strength of laterite soil mixtures. For laterite soil with 2% guar gum, the unsoaked CBR increased by 148% and the soaked CBR increased by 192.36%. The cohesiveness and internal friction angle increased by 93.33% and 31.52%, respectively. These results show that using guar gum dramatically improves the strength of laterite soil, offering a more environmentally friendly and sustainable alternative to traditional soil additives. Using guar gum in T8 subgrade soil requires a 1395 mm pavement depth and costs INR 3.83 crores, 1.52 times more than laterite soil. For T9 subgrade soil, the depth was 1495 mm, costing INR 4.42 crores, 1.72 times more than laterite soil. This study introduces a novel approach to soil stabilization by employing guar gum, a biopolymer, to enhance the physical and mechanical properties of laterite soil. Furthermore, this study provides a detailed cost-benefit analysis for pavement applications, revealing the financial feasibility of using guar gum despite it requiring a marginally higher initial investment.

17.
Int J Biol Macromol ; 277(Pt 2): 134253, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39084426

ABSTRACT

In the past three decades, the prevalence of type-2 diabetes has arisen dramatically in countries of all income levels. A novel, most effective nanotechnology-based strategy may reduce the prevalence of diabetes. Recently, the shell-crosslinked polysaccharide-based micellar nanocarriers (MNCs) have shown great promise in terms of stability, controlled drug release, and improved in vivo performance. In this study, heptyl carboxymethyl guar gum was synthesized and characterized by ATR-FTIR, 1HNMR spectroscopy, surface charge, critical micelle concentration (23.9 µg/mL), and cytotoxicity analysis. Box-Behnken design was used to optimize the diameter, zeta potential, drug entrapment efficiency (DEE), and drug release characteristics of poly (allylamine)-crosslinked MNCs containing canagliflozin. The optimized MNCs revealed spherical morphology under TEM and had 149.3 nm diameter (PDI 21.2 %), +53.8 mV zeta potential, and 84 % DEE. The MNCs released about 63 % of the drug in 12 h under varying pH of the simulated gastrointestinal fluid. DSC and x-ray analyses suggested amorphous dispersion of drugs in the MNCs. CAM assay demonstrated the biocompatibility of the MNCs. The MNCs showed hemolysis of <1 %, 85 % mucin adsorption, and stability over three months. The MNCs demonstrated excellent anti-diabetic efficacy in streptozotocin-nicotinamide-induced diabetic rats, continuously lowering blood glucose levels up to 12 h.


Subject(s)
Canagliflozin , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Drug Carriers , Galactose , Mannans , Polyamines , Animals , Galactose/chemistry , Galactose/analogs & derivatives , Mannans/chemistry , Mannans/pharmacology , Rats , Drug Carriers/chemistry , Diabetes Mellitus, Type 2/drug therapy , Polyamines/chemistry , Diabetes Mellitus, Experimental/drug therapy , Canagliflozin/chemistry , Canagliflozin/pharmacology , Drug Liberation , Nanoparticles/chemistry , Male , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Blood Glucose/drug effects , Galactans/chemistry , Galactans/pharmacology , Plant Gums/chemistry
18.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 40: e20240017, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39043473

ABSTRACT

OBJECTIVE: This work is aimed to formulate and evaluate Mucoadhesive Microspheres contain Amoxicillin for the effective use in the treatment of H.Pylori. METHODS: Microspheres were prepared using Emulsification-cross linking technique. To this guar gum (GG) and sodium alginate (SA) was dissolved in 200 ml of water and allowed to swell for 24 h at room temperature. And separately chitosan (CH) was dissolved in 2% (v/v) glacial acetic acid and this also kept for 24 h to swell or dissolve properly. After 24 h this swelled mixture was mixed under magnetic stirrer (Remi, India) at specific stirring rate for 1 h in order to find homogeneous mass of both the gum. Then slurry of chitosan also was homogenized for half an hour. The drug, Amoxicillin (1g) was then added to the chitosan solution and mixed homogeneously. RESULTS: The aim of the study was to formulate and evaluate microspheres, for SR of the chosen drug. The particle size of microspheres was in the range of 200-500 µ, maximum mucoadhesive property observed was 57.41% for Optimized formulation F-9, Drug release 68.52% till 8 h, and the maximum entrapment was 94.87% for F-9 formulation. The work also aims to study various parameters affecting the behavior of microspheres in oral dosage form. CONCLUSION: Drugs with short half life that are absorbed from the gastrointestinal tract (GIT) are eliminated rapidly from the blood flow. To avoid this, the oral SR was developed as this formulation released the drug slowly into the GIT and maintained a stable drug concentration in the serum for a longer duration of time.


Subject(s)
Alginates , Amoxicillin , Chitosan , Mannans , Microspheres , Plant Gums , Amoxicillin/administration & dosage , Amoxicillin/pharmacokinetics , Amoxicillin/chemistry , Chitosan/chemistry , Plant Gums/chemistry , Mannans/chemistry , Alginates/chemistry , Helicobacter pylori/drug effects , Galactans/chemistry , Particle Size
19.
Front Chem ; 12: 1410876, 2024.
Article in English | MEDLINE | ID: mdl-39045335

ABSTRACT

This study investigates the quantitative structure-property relationship (QSPR) modeling of guar gum biomolecules, focusing on their structural parameters. Guar gum, a polysaccharide with diverse industrial applications, exhibits various properties such as viscosity, solubility, and emulsifying ability, which are influenced by its molecular structure. In this research, M -polynomial and associated topological indices are employed as structural descriptors to represent the molecular structure of guar gum. The M -polynomial and associated topological indices capture important structural features, including size, shape, branching, and connectivity. By correlating these descriptors with experimental data on guar gum properties, predictive models are developed using regression analysis techniques. The analysis revealed a strong correlation between the boiling point and molecular weight and all the considered topological descriptors. The resulting models offer insights into the relationship between guar gum structure and its properties, facilitating the optimization of guar gum production and application in various industries. This study demonstrates the utility of M -polynomial and QSPR modeling in elucidating structure-property relationships of complex biomolecules like guar gum, contributing to the advancement of biomaterial science and industrial applications.

20.
Int J Biol Macromol ; 276(Pt 1): 133866, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39009268

ABSTRACT

Hydrogels are becoming increasingly significant in tissue engineering because of their numerous benefits, including biocompatibility, biodegradability, and their ability to provide a supportive structure for cell proliferation. This study presents the synthesis and characterization of a new multimaterial hydrogel with 3D-printing capabilities composed of copper nanoparticle-reinforced gelatin, polyvinyl alcohol (PVA), and guar gum-based biomaterials intended for tissue engineering applications. Combining CuNPs aims to enhance the hydrogel's antibacterial properties, mechanical strength, and bioactivity, which are essential for successful tissue regeneration. Hydrogels are chemically cross-linked with glyoxal and analyzed through different assessments to examine the compressive behavior, surface morphology, sorbing capacity, biocompatibility, thermal stability, and degradation properties. The results demonstrated that including CuNPs significantly improved the hydrogel's compressive modulus (4.18 MPa) for the hydrogel with the CuNPs and provided better antibacterial activity against common pathogens with controlled degradation. All the hydrogels exhibited a lower coefficient of friction, which was below 0.1. In vitro cell culture studies using chondrocytes indicated that the CuNPs-loaded hydrogel supported cell proliferation and growth of chondrogenic genes such as collagen type II (COL2) and aggrecan (ACAN). The biocompatibility and enhanced mechanical properties of the multimaterial hydrogel make it a promising candidate for developing customized, patient-specific tissue engineering scaffolds.


Subject(s)
Copper , Galactans , Gelatin , Hydrogels , Mannans , Plant Gums , Polyvinyl Alcohol , Tissue Engineering , Galactans/chemistry , Mannans/chemistry , Mannans/pharmacology , Polyvinyl Alcohol/chemistry , Plant Gums/chemistry , Gelatin/chemistry , Tissue Engineering/methods , Copper/chemistry , Copper/pharmacology , Hydrogels/chemistry , Metal Nanoparticles/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tissue Scaffolds/chemistry , Cell Proliferation/drug effects , Animals , Humans , Chondrocytes/drug effects , Chondrocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL