Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 815
Filter
1.
Virulence ; 15(1): 2395837, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39240070

ABSTRACT

Vaccination is crucial for the prevention and mitigation of avian influenza infections in China. The inactivated H7N9 vaccine, when administered to poultry, significantly lowers the risk of infection among both poultry and humans, while also markedly decreasing the prevalence of H7N9 detections. Highly pathogenic (HP) H7N9 viruses occasionally appear, whereas their low pathogenicity (LP) counterparts have been scarcely detected since 2018. However, these contributing factors remain poorly understood. We conducted an exploratory investigation of the mechanics via the application of comprehensive bioinformatic approaches. We delineated the Yangtze River Delta (YRD) H7N9 lineage into 5 clades (YRD-A to E). Our findings highlight the emergence and peak occurrence of the LP H7N9-containing YRD-E clade during the 5th epidemic wave in China's primary poultry farming areas. A more effective control of LP H7N9 through vaccination was observed compared to that of its HP H7N9 counterpart. YRD-E exhibited a tardy evolutionary trajectory, denoted by the conservation of its genetic and antigenic variation. Our analysis of YRD-E revealed only minimal amino acid substitutions along its phylogenetic tree and a few selective sweep mutations since 2016. In terms of epidemic fitness, the YRD-E was measured to be lower than that of the HP variants. Collectively, these findings underscore the conserved evolutionary patterns distinguishing the YRD-E. Given the conservation presented in its evolutionary patterns, the YRD-E LP H7N9 is hypothesized to be associated with a reduction following the mass vaccination in a relatively short period owing to its lower probability of antigenic variation that might affect vaccine efficiency.


Subject(s)
Evolution, Molecular , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza in Birds , Phylogeny , Poultry , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H7N9 Subtype/classification , Influenza A Virus, H7N9 Subtype/pathogenicity , Animals , Influenza in Birds/virology , Influenza in Birds/prevention & control , China/epidemiology , Influenza Vaccines/immunology , Influenza Vaccines/genetics , Poultry/virology , Mass Vaccination , Influenza, Human/prevention & control , Influenza, Human/virology , Influenza, Human/epidemiology , Poultry Diseases/virology , Poultry Diseases/prevention & control , Humans , Chickens/virology , Antigenic Variation/genetics
2.
J Virol ; : e0011924, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225467

ABSTRACT

Between 2013 and 2018, the novel A/Anhui/1/2013 (AH/13)-lineage H7N9 virus caused at least five waves of outbreaks in humans, totaling 1,567 confirmed human cases in China. Surveillance data indicated a disproportionate distribution of poultry infected with this AH/13-lineage virus, and laboratory experiments demonstrated that this virus can efficiently spread among chickens but not among Pekin ducks. The underlying mechanism of this selective transmission remains unclear. In this study, we demonstrated the absence of Neu5Gc expression in chickens across all respiratory and gastrointestinal tissues. However, Neu5Gc expression varied among different duck species and even within the tissues of the same species. The AH/13-lineage viruses exclusively bind to acetylneuraminic acid (Neu5Ac), in contrast to wild waterbird H7 viruses that bind both Neu5Ac and N-glycolylneuraminic acid (Neu5Gc). The level of Neu5Gc expression influences H7 virus replication and facilitates adaptive mutations in these viruses. In summary, our findings highlight the critical role of Neu5Gc in affecting the host range and interspecies transmission dynamics of H7 viruses among avian species.IMPORTANCEMigratory waterfowl, gulls, and shorebirds are natural reservoirs for influenza A viruses (IAVs) that can occasionally spill over to domestic poultry, and ultimately humans. This study showed wild-type H7 IAVs from waterbirds initially bind to glycan receptors terminated with N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc). However, after enzootic transmission in chickens, the viruses exclusively bind to Neu5Ac. The absence of Neu5Gc expression in gallinaceous poultry, particularly chickens, exerts selective pressure, shaping IAV populations, and promoting the acquisition of adaptive amino acid substitutions in the hemagglutinin protein. This results in the loss of Neu5Gc binding and an increase in virus transmissibility in gallinaceous poultry, particularly chickens. Consequently, the transmission capability of these poultry-adapted H7 IAVs in wild water birds decreases. Timely intervention, such as stamping out, may help reduce virus adaptation to domestic chicken populations and lower the risk of enzootic outbreaks, including those caused by IAVs exhibiting high pathogenicity.

3.
Cell ; 187(17): 4586-4604.e20, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39137778

ABSTRACT

Respiratory infections cause significant morbidity and mortality, yet it is unclear why some individuals succumb to severe disease. In patients hospitalized with avian A(H7N9) influenza, we investigated early drivers underpinning fatal disease. Transcriptomics strongly linked oleoyl-acyl-carrier-protein (ACP) hydrolase (OLAH), an enzyme mediating fatty acid production, with fatal A(H7N9) early after hospital admission, persisting until death. Recovered patients had low OLAH expression throughout hospitalization. High OLAH levels were also detected in patients hospitalized with life-threatening seasonal influenza, COVID-19, respiratory syncytial virus (RSV), and multisystem inflammatory syndrome in children (MIS-C) but not during mild disease. In olah-/- mice, lethal influenza infection led to survival and mild disease as well as reduced lung viral loads, tissue damage, infection-driven pulmonary cell infiltration, and inflammation. This was underpinned by differential lipid droplet dynamics as well as reduced viral replication and virus-induced inflammation in macrophages. Supplementation of oleic acid, the main product of OLAH, increased influenza replication in macrophages and their inflammatory potential. Our findings define how the expression of OLAH drives life-threatening viral disease.


Subject(s)
COVID-19 , Influenza, Human , Animals , Humans , Mice , COVID-19/virology , COVID-19/genetics , Influenza, Human/virology , Virus Replication , Macrophages/metabolism , Macrophages/virology , Female , Male , SARS-CoV-2 , Lung/virology , Lung/pathology , Lung/metabolism , Mice, Inbred C57BL , Oleic Acid/metabolism , Respiratory Syncytial Virus Infections/virology , Mice, Knockout , Viral Load , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/genetics , Orthomyxoviridae Infections/virology , Respiratory Tract Infections/virology , Child
4.
Anal Chim Acta ; 1316: 342820, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969422

ABSTRACT

This research presents an innovative reflective fiber optic probe structure, mutinously designed to detect H7N9 avian influenza virus gene precisely. This innovative structure skillfully combines multimode fiber (MMF) with a thin-diameter seven-core photonic crystal fiber (SCF-PCF), forming a semi-open Fabry-Pérot (FPI) cavity. This structure has demonstrated exceptional sensitivity in light intensity-refractive index (RI) response through rigorous theoretical and experimental validation. The development of a quasi-distributed parallel sensor array, which provides temperature compensation during measurements, has achieved a remarkable RI response sensitivity of up to 532.7 dB/RIU. The probe-type fiber optic sensitive unit, expertly functionalized with streptavidin, offers high specificity in detecting H7N9 avian influenza virus gene, with an impressively low detection limit of 10-2 pM. The development of this biosensor marks a significant development in biological detection, offering a practical engineering solution for achieving high sensitivity and specificity in light-intensity-modulated biosensing. Its potential for wide-ranging applications in various fields is now well-established.


Subject(s)
Biosensing Techniques , Influenza A Virus, H7N9 Subtype , Temperature , Biosensing Techniques/methods , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/isolation & purification , Optical Fibers , Limit of Detection , Fiber Optic Technology/methods , Animals , Genes, Viral
5.
Vet Res ; 55(1): 86, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970119

ABSTRACT

H7N9 subtype avian influenza viruses (AIVs) cause 1567 human infections and have high mortality, posing a significant threat to public health. Previously, we reported that two avian-derived H7N9 isolates (A/chicken/Eastern China/JTC4/2013 and A/chicken/Eastern China/JTC11/2013) exhibit different pathogenicities in mice. To understand the genetic basis for the differences in virulence, we constructed a series of mutant viruses based on reverse genetics. We found that the PB2-E627K mutation alone was not sufficient to increase the virulence of H7N9 in mice, despite its ability to enhance polymerase activity in mammalian cells. However, combinations with PB1-V719M and/or PA-N444D mutations significantly enhanced H7N9 virulence. Additionally, these combined mutations augmented polymerase activity, thereby intensifying virus replication, inflammatory cytokine expression, and lung injury, ultimately increasing pathogenicity in mice. Overall, this study revealed that virulence in H7N9 is a polygenic trait and identified novel virulence-related residues (PB2-627K combined with PB1-719M and/or PA-444D) in viral ribonucleoprotein (vRNP) complexes. These findings provide new insights into the molecular mechanisms underlying AIV pathogenesis in mammals, with implications for pandemic preparedness and intervention strategies.


Subject(s)
Influenza A Virus, H7N9 Subtype , Mutation , Orthomyxoviridae Infections , Viral Proteins , Animals , Mice , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza A Virus, H7N9 Subtype/physiology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/veterinary , Virulence , Female , Viral Proteins/genetics , Viral Proteins/metabolism , Mice, Inbred BALB C , Virus Replication
6.
J Gen Virol ; 105(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38980150

ABSTRACT

Between 2013 and 2017, the A/Anhui/1/13-lineage (H7N9) low-pathogenicity avian influenza virus (LPAIV) was epizootic in chickens in China, causing mild disease, with 616 fatal human cases. Despite poultry vaccination, H7N9 has not been eradicated. Previously, we demonstrated increased pathogenesis in turkeys infected with H7N9, correlating with the emergence of the L217Q (L226Q H3 numbering) polymorphism in the haemagglutinin (HA) protein. A Q217-containing virus also arose and is now dominant in China following vaccination. We compared infection and transmission of this Q217-containing 'turkey-adapted' (ty-ad) isolate alongside the H7N9 (L217) wild-type (wt) virus in different poultry species and investigated the zoonotic potential in the ferret model. Both wt and ty-ad viruses demonstrated similar shedding and transmission in turkeys and chickens. However, the ty-ad virus was significantly more pathogenic than the wt virus in turkeys but not in chickens, causing 100 and 33% mortality in turkeys respectively. Expanded tissue tropism was seen for the ty-ad virus in turkeys but not in chickens, yet the viral cell receptor distribution was broadly similar in the visceral organs of both species. The ty-ad virus required exogenous trypsin for in vitro replication yet had increased replication in primary avian cells. Replication was comparable in mammalian cells, and the ty-ad virus replicated successfully in ferrets. The L217Q polymorphism also affected antigenicity. Therefore, H7N9 infection in turkeys can generate novel variants with increased risk through altered pathogenicity and potential HA antigenic escape. These findings emphasize the requirement for enhanced surveillance and understanding of A/Anhui/1/13-lineage viruses and their risk to different species.


Subject(s)
Chickens , Ferrets , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Turkeys , Animals , Turkeys/virology , Influenza in Birds/virology , Influenza in Birds/transmission , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/pathogenicity , Chickens/virology , Virulence , China/epidemiology , Poultry Diseases/virology , Poultry Diseases/transmission , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Virus Shedding , Virus Replication , Zoonoses/virology , Influenza, Human/virology , Influenza, Human/transmission
7.
Microorganisms ; 12(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38930552

ABSTRACT

Numerous studies have reported a correlation between gut microbiota and influenza A virus (IAV) infection and disease severity. However, the causal relationship between these factors remains inadequately explored. This investigation aimed to assess the influence of gut microbiota on susceptibility to human infection with H7N9 avian IAV and the severity of influenza A (H1N1)pdm09 infection. A two-sample Mendelian randomization analysis was conducted, integrating our in-house genome-wide association study (GWAS) on H7N9 susceptibility and H1N1pdm09 severity with a metagenomics GWAS dataset from a Chinese population. Twelve and fifteen gut microbiotas were causally associated with H7N9 susceptibility or H1N1pdm09 severity, separately. Notably, Clostridium hylemonae and Faecalibacterium prausnitzii were negative associated with H7N9 susceptibility and H1N1pdm09 severity, respectively. Moreover, Streptococcus peroris and Streptococcus sanguinis were associated with H7N9 susceptibility, while Streptococcus parasanguini and Streptococcus suis were correlated with H1N1pdm09 severity. These results provide novel insights into the interplay between gut microbiota and IAV pathogenesis as well as new clues for mechanism research regarding therapeutic interventions or IAV infections. Future studies should concentrate on clarifying the regulatory mechanisms of gut microbiota and developing efficacious approaches to reduce the incidence of IAV infections, which could improve strategy for preventing and treating IAV infection worldwide.

8.
Virology ; 597: 110121, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38917688

ABSTRACT

The H7 subtype avian influenza viruses are circulating widely worldwide, causing significant economic losses to the poultry industry and posing a serious threat to human health. In 2019, H7N2 and H7N9 co-circulated in Chinese poultry, yet the risk of H7N2 remained unclear. We isolated and sequenced four H7N2 viruses from chickens, revealing them as novel reassortants with H7N9-derived HA, M, NS genes and H9N2-derived PB2, PB1, PA,NP, NA genes. To further explore the key segment of pathogenicity, H7N2-H7N9NA and H7N2-H9N2HA single-substitution were constructed. Pathogenicity study showed H7N2 isolates to be highly pathogenic in chickens, with H7N2-H7N9NA slightly weaker than H7N2-Wild type. Transcriptomic analysis suggested that H7N9-derived HA genes primarily drove the high pathogenicity of H7N2 isolates, eliciting a strong inflammatory response. These findings underscored the increased threat posed by reassorted H7N2 viruses to chickens, emphasizing the necessity of long-term monitoring of H7 subtype avian influenza viruses.


Subject(s)
Chickens , Influenza A Virus, H7N2 Subtype , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Reassortant Viruses , Animals , Chickens/virology , Influenza in Birds/virology , Influenza in Birds/transmission , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza A Virus, H7N9 Subtype/isolation & purification , Reassortant Viruses/pathogenicity , Reassortant Viruses/genetics , Influenza A Virus, H7N2 Subtype/pathogenicity , Influenza A Virus, H7N2 Subtype/genetics , Poultry Diseases/virology , Poultry Diseases/transmission , Virulence , Phylogeny , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza A Virus, H9N2 Subtype/physiology , China
9.
Emerg Microbes Infect ; 13(1): 2373314, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38922326

ABSTRACT

The proportion of human isolates with reduced neuraminidase inhibitors (NAIs) susceptibility in highly pathogenic avian influenza (HPAI) H7N9 virus was high. These drug-resistant strains showed good replication capacity without serious loss of fitness. In the presence of oseltamivir, R229I substitution were found in HA1 region of the HPAI H7N9 virus before NA R292K appeared. HPAI H7N9 or H7N9/PR8 recombinant viruses were developed to study whether HA R229I could increase the fitness of the H7N9 virus bearing NA 292K. Replication efficiency was assessed in MDCK or A549 cells. Neuraminidase enzyme activity and receptor-binding ability were analyzed. Pathogenicity in C57 mice was evaluated. Antigenicity analysis was conducted through a two-way HI test, in which the antiserum was obtained from immunized ferrets. Transcriptomic analysis of MDCK infected with HPAI H7N9 24hpi was done. It turned out that HA R229I substitution from oseltamivir induction in HA1 region increased (1) replication ability in MDCK(P < 0.05) and A549(P < 0.05), (2) neuraminidase enzyme activity, (3) binding ability to both α2,3 and α2,6 receptor, (4) pathogenicity to mice(more weight loss; shorter mean survival day; viral titer in respiratory tract, P < 0.05; Pathological changes in pneumonia), (5) transcriptome response of MDCK, of the H7N9 virus bearing NA 292K. Besides, HA R229I substitution changed the antigenicity of H7N9/PR8 virus (>4-fold difference of HI titre). It indicated that through the fine-tuning of HA-NA balance, R229I increased the fitness and changed the antigenicity of H7N9 virus bearing NA 292K. Public health attention to this mechanism needs to be drawn.


Subject(s)
Antiviral Agents , Influenza A Virus, H7N9 Subtype , Neuraminidase , Orthomyxoviridae Infections , Oseltamivir , Virus Replication , Animals , Oseltamivir/pharmacology , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/drug effects , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H7N9 Subtype/physiology , Neuraminidase/genetics , Neuraminidase/metabolism , Dogs , Virus Replication/drug effects , Antiviral Agents/pharmacology , Humans , Mice , Orthomyxoviridae Infections/virology , Madin Darby Canine Kidney Cells , A549 Cells , Mice, Inbred C57BL , Drug Resistance, Viral/genetics , Amino Acid Substitution , Influenza, Human/virology , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Female , Viral Proteins/genetics , Viral Proteins/metabolism
10.
Vet Microbiol ; 294: 110108, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729093

ABSTRACT

H7N9 subtype avian influenza virus (AIV) poses a great challenge to poultry industry. Virus-like particle (VLP) is a prospective alternative for the traditional egg-based influenza vaccines. N-linked glycosylation (NLG) regulates the efficacy of influenza vaccines, whereas the impact of NLG modifications on the efficacy of influenza VLP vaccines remains unclear. Here, H7N9 VLPs were assembled in insect cells through co-infection with the baculoviruses expressing the NLG-modified hemagglutinin (HA), neuraminidase and matrix proteins, and the VLP vaccines were assessed in chickens and mice. NLG modifications significantly enhanced hemagglutination-inhibition and virus neutralization antibody responses in mice, rather than in chickens, because different immunization strategies were used in these animal models. The presence of dual NLG at residues 133 and 158 significantly elevated HA-binding IgG titers in chickens and mice. The VLP vaccines conferred complete protection and significantly suppressed virus replication and lung pathology post challenge with H7N9 viruses in chickens and mice. VLP immunization activated T cell immunity-related cytokine response and inhibited inflammatory cytokine response in mouse lung. Of note, the presence of dual NLG at residues 133 and 158 optimized the capacity of the VLP vaccine to stimulate interleukin-4 expression, inhibit virus shedding or alleviate lung pathology in chickens or mice. Intriguingly, the VLP vaccine with NLG addition at residue 133 provided partial cross-protection against the H5Nx subtype AIVs in chickens and mice. In conclusion, dual NLG at residues 133 and 158 in HA can be potentially used to enhance the efficacy of H7N9 VLP vaccines in chickens and mammals.


Subject(s)
Antibodies, Viral , Chickens , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza in Birds , Mice, Inbred BALB C , Vaccines, Virus-Like Particle , Animals , Chickens/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Mice , Influenza A Virus, H7N9 Subtype/immunology , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Glycosylation , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Influenza in Birds/virology , Antibodies, Viral/blood , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Female , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Cytokines , Poultry Diseases/prevention & control , Poultry Diseases/virology , Poultry Diseases/immunology
11.
Heliyon ; 10(7): e28218, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560106

ABSTRACT

Host-virus interactions can significantly impact the viral life cycle and pathogenesis; however, our understanding of the specific host factors involved in highly pathogenic avian influenza A virus H7N9 (HPAI H7N9) infection is currently restricted. Herein, we designed and synthesized 65 small interfering RNAs targeting host genes potentially associated with various aspects of RNA virus life cycles. Afterward, HPAI H7N9 viruses were isolated and RNA interference was used to screen for host factors likely to be involved in the life cycle of HPAI H7N9. Moreover, the research entailed assessing the associations between host proteins and HPAI H7N9 proteins. Twelve key host proteins were identified: Annexin A (ANXA)2, ANXA5, adaptor related protein complex 2 subunit sigma 1 (AP2S1), adaptor related protein complex 3 subunit sigma 1 (AP3S1), ATP synthase F1 subunit alpha (ATP5A1), COPI coat complex subunit alpha (COP)A, COPG1, heat shock protein family A (Hsp70) member 1A (HSPA)1A, HSPA8, heat shock protein 90 alpha family class A member 1 (HSP90AA1), RAB11B, and RAB18. Co-immunoprecipitation revealed intricate interactions between viral proteins (hemagglutinin, matrix 1 protein, neuraminidase, nucleoprotein, polymerase basic 1, and polymerase basic 2) and these host proteins, presumably playing a crucial role in modulating the life cycle of HPAI H7N9. Notably, ANXA5, AP2S1, AP3S1, ATP5A1, HSP90A1, and RAB18, were identified as novel interactors with HPAI H7N9 proteins rather than other influenza A viruses (IAVs). These findings underscore the significance of host-viral protein interactions in shaping the dynamics of HPAI H7N9 infection, while highlighting subtle variations compared with other IAVs. Deeper understanding of these interactions holds promise to advance disease treatment and prevention strategies.

12.
Rev Med Virol ; 34(3): e2533, 2024 May.
Article in English | MEDLINE | ID: mdl-38635404

ABSTRACT

Influenzavirus is among the most relevant candidates for a next pandemic. We review here the phylogeny of former influenza pandemics, and discuss candidate lineages. After briefly reviewing the other existing antiviral options, we discuss in detail the evidences supporting the efficacy of passive immunotherapies against influenzavirus, with a focus on convalescent plasma.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza, Human , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics , Immunotherapy
13.
Emerg Microbes Infect ; 13(1): 2343912, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38629574

ABSTRACT

Human infections with the H7N9 influenza virus have been eliminated in China through vaccination of poultry; however, the H7N9 virus has not yet been eradicated from poultry. Carefully analysis of H7N9 viruses in poultry that have sub-optimal immunity may provide a unique opportunity to witness the evolution of highly pathogenic avian influenza virus in the context of vaccination. Between January 2020 and June 2023, we isolated 16 H7N9 viruses from samples we collected during surveillance and samples that were sent to us for disease diagnosis. Genetic analysis indicated that these viruses belonged to a single genotype previously detected in poultry. Antigenic analysis indicated that 12 of the 16 viruses were antigenically close to the H7-Re4 vaccine virus that has been used since January 2022, and the other four viruses showed reduced reactivity with the vaccine. Animal studies indicated that all 16 viruses were nonlethal in mice, and four of six viruses showed reduced virulence in chickens upon intranasally inoculation. Importantly, the H7N9 viruses detected in this study exclusively bound to the avian-type receptors, having lost the capacity to bind to human-type receptors. Our study shows that vaccination slows the evolution of H7N9 virus by preventing its reassortment with other viruses and eliminates a harmful characteristic of H7N9 virus, namely its ability to bind to human-type receptors.


Subject(s)
Chickens , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza in Birds , Vaccination , Animals , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H7N9 Subtype/pathogenicity , Chickens/virology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza in Birds/virology , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Mice , Humans , China , Evolution, Molecular , Influenza, Human/prevention & control , Influenza, Human/virology , Influenza, Human/immunology , Mice, Inbred BALB C , Virulence , Phylogeny , Female , Poultry Diseases/virology , Poultry Diseases/prevention & control , Poultry/virology
14.
15.
Clin Infect Dis ; 78(6): 1757-1768, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38537255

ABSTRACT

INTRODUCTION: A surge of human influenza A(H7N9) cases began in 2016 in China from an antigenically distinct lineage. Data are needed about the safety and immunogenicity of 2013 and 2017 A(H7N9) inactivated influenza vaccines (IIVs) and the effects of AS03 adjuvant, prime-boost interval, and priming effects of 2013 and 2017 A(H7N9) IIVs. METHODS: Healthy adults (n = 180), ages 19-50 years, were enrolled into this partially blinded, randomized, multicenter phase 2 clinical trial. Participants were randomly assigned to 1 of 6 vaccination groups evaluating homologous versus heterologous prime-boost strategies with 2 different boost intervals (21 vs 120 days) and 2 dosages (3.75 or 15 µg of hemagglutinin) administered with or without AS03 adjuvant. Reactogenicity, safety, and immunogenicity measured by hemagglutination inhibition and neutralizing antibody titers were assessed. RESULTS: Two doses of A(H7N9) IIV were well tolerated, and no safety issues were identified. Although most participants had injection site and systemic reactogenicity, these symptoms were mostly mild to moderate in severity; injection site reactogenicity was greater in vaccination groups receiving adjuvant. Immune responses were greater after an adjuvanted second dose, and with a longer interval between prime and boost. The highest hemagglutination inhibition geometric mean titer (95% confidence interval) observed against the 2017 A(H7N9) strain was 133.4 (83.6-212.6) among participants who received homologous, adjuvanted 3.75 µg + AS03/2017 doses with delayed boost interval. CONCLUSIONS: Administering AS03 adjuvant with the second H7N9 IIV dose and extending the boost interval to 4 months resulted in higher peak antibody responses. These observations can broadly inform strategic approaches for pandemic preparedness. Clinical Trials Registration. NCT03589807.


Subject(s)
Antibodies, Viral , Immunization, Secondary , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza, Human , Vaccines, Inactivated , Humans , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/adverse effects , Adult , Male , Female , Middle Aged , Influenza A Virus, H7N9 Subtype/immunology , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects , Antibodies, Viral/blood , Influenza, Human/prevention & control , Influenza, Human/immunology , Young Adult , Immunization Schedule , Hemagglutination Inhibition Tests , United States , Immunogenicity, Vaccine , Antibodies, Neutralizing/blood , Polysorbates/administration & dosage , Polysorbates/adverse effects , alpha-Tocopherol/administration & dosage , alpha-Tocopherol/adverse effects , Squalene/administration & dosage , Squalene/adverse effects , Squalene/immunology , Healthy Volunteers , Drug Combinations , Adjuvants, Vaccine/administration & dosage , Vaccination/methods , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/adverse effects
16.
Vaccines (Basel) ; 12(3)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38543924

ABSTRACT

The adaptation of egg-derived H7N9 candidate vaccine virus (CVV) in the mammalian cell line is an approach to developing a high-growth virus strain for the mass production of vaccine manufacturing. The adaptive mutations that occur in hemagglutinin (HA) are critical to the activity and potency of the vaccine virus. Previously, we identified a new mutation of A169S in the HA protein of an MDCK-adapted H7N9 vaccine virus (A/Anhui/2013, RG268); however, whether and how this mutation affects vaccine potency remain to be investigated. In this study, we serially passaged RG268 in MDCK cells and found that the HA titer and the TCID50 of the passaged virus RG268-M5 were 4-fold (HA units/50 µL) and 3.5-fold (log10 TCID50/mL) higher than those of the original CVV. By inspecting tandem MS spectra, we identified a new glycosylation site at N167 near the receptor binding site of the HA protein of RG268-M5. Flow cytometry results revealed that RG268-M5 could efficiently infect MDCK cells and initiate viral protein replication as well as that of RG268. Though the new glycosylation site is in the antigenic epitope of viral HA protein, the HI assay result indicated that the antigenicity of RG268-M5 was similar to RG268. Additionally, immunizing mice with RG268-M5 mixed aluminum hydroxide could induce potent antibody responses against the homologous and heterologous H7N9 viruses in vitro whereas the titers were comparable with those from the RG268 group. These results provide in-depth structural information regarding the effects of site-specific glycosylation on virus properties, which have implications for novel avian influenza vaccine development.

17.
J Virol ; 98(3): e0194423, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38421166

ABSTRACT

Since the first human infection reported in 2013, H7N9 avian influenza virus (AIV) has been regarded as a serious threat to human health. In this study, we sought to identify the virulence determinant of the H7N9 virus in mammalian hosts. By comparing the virulence of the SH/4664 H7N9 virus, a non-virulent H9N2 virus, and various H7N9-H9N2 hybrid viruses in infected mice, we first pinpointed PB2 as the primary viral factor accounting for the difference between H7N9 and H9N2 in mammalian virulence. We further analyzed the in vivo effects of individually mutating H7N9 PB2 residues different from the closely related H9N2 virus and consequently found residue 473, alongside the well-known residue 627, to be critical for the virulence of the H7N9 virus in mice and the activity of its reconstituted viral polymerase in mammalian cells. The importance of PB2-473 was further strengthened by studying reverse H7N9 substitutions in the H9N2 background. Finally, we surprisingly found that species-specific usage of ANP32A, a family member of host factors connecting with the PB2-627 polymorphism, mediates the contribution of PB2 473 residue to the mammalian adaption of AIV polymerase, as the attenuating effect of PB2 M473T on the viral polymerase activity and viral growth of the H7N9 virus could be efficiently complemented by co-expression of chicken ANP32A but not mouse ANP32A and ANP32B. Together, our studies uncovered the PB2 473 residue as a novel viral host range determinant of AIVs via species-specific co-opting of the ANP32 host factor to support viral polymerase activity.IMPORTANCEThe H7N9 avian influenza virus has been considered to have the potential to cause the next pandemic since the first case of human infection reported in 2013. In this study, we identified PB2 residue 473 as a new determinant of mouse virulence and mammalian adaptation of the viral polymerase of the H7N9 virus and its non-pathogenic H9N2 counterparts. We further demonstrated that the variation in PB2-473 is functionally linked to differential co-opting of the host ANP32A protein in supporting viral polymerase activity, which is analogous to the well-known PB2-627 polymorphism, albeit the two PB2 positions are spatially distant. By providing new mechanistic insight into the PB2-mediated host range determination of influenza A viruses, our study implicated the potential existence of multiple PB2-ANP32 interfaces that could be targets for developing new antivirals against the H7N9 virus as well as other mammalian-adapted influenza viruses.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza, Human , Nuclear Proteins , RNA-Binding Proteins , Animals , Humans , Mice , Influenza A Virus, H7N9 Subtype/metabolism , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza A Virus, H9N2 Subtype , Influenza, Human/virology , Mammals , Nuclear Proteins/metabolism , Nucleotidyltransferases/metabolism , RNA-Binding Proteins/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Virulence , Virus Replication
18.
ACS Appl Mater Interfaces ; 16(3): 3139-3146, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38197122

ABSTRACT

We report on the design of heteromultivalent influenza A virus (IAV) receptors based on reversible self-assembled monolayers (SAMs) featuring two distinct mobile ligands. The principal layer building blocks consist of α-(4-amidinophenoxy)alkanes decorated at the ω-position with sialic acid (SA) and the neuraminidase inhibitor Zanamivir (Zan), acting as two mobile ligands binding to the complementary receptors hemagglutinin (HA) and neuraminidase (NA) on the virus surface. From ternary amphiphile mixtures comprising these ligands, the amidines spontaneously self-assemble on top of carboxylic acid-terminated SAMs to form reversible mixed monolayers (rSAMs) that are easily tunable with respect to the ligand ratio. We show that this results in the ability to construct surfaces featuring a very strong affinity for the surface proteins and specific virus subtypes. Hence, an rSAM prepared from solutions containing 15% SA and 10% Zan showed an exceptionally high affinity and selectivity for the avian IAV H7N9 (Kd = 11 fM) that strongly exceeded the affinity for other subtypes (H3N2, H5N1, H1N1). Changing the SA/Zan ratio resulted in changes in the relative preference between the four tested subtypes, suggesting this to be a key parameter for rapid adjustments of both virus affinity and selectivity.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H7N9 Subtype , Influenza A Virus, H3N2 Subtype/metabolism , Neuraminidase/metabolism , Ligands , N-Acetylneuraminic Acid/metabolism
19.
Viruses ; 16(1)2024 01 19.
Article in English | MEDLINE | ID: mdl-38275962

ABSTRACT

Avian influenza (AI) viruses cause infection in birds and humans. Several H5N1 and H7N9 variants are highly pathogenic avian influenza (HPAI) viruses. H5N1 is a highly infectious bird virus infecting primarily poultry, but unlike other AIs, H5N1 also infects mammals and transmits to humans with a case fatality rate above 40%. Similarly, H7N9 can infect humans, with a case fatality rate of over 40%. Since 1996, there have been several HPAI outbreaks affecting humans, emphasizing the need for safe and effective antivirals. We show that probenecid potently inhibits H5N1 and H7N9 replication in prophylactically or therapeutically treated A549 cells and normal human broncho-epithelial (NHBE) cells, and H5N1 replication in VeroE6 cells and mice.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , Humans , Mice , Influenza in Birds/drug therapy , Influenza in Birds/prevention & control , Influenza in Birds/epidemiology , Influenza A Virus, H7N9 Subtype/genetics , Probenecid , Birds , Mammals
20.
Int J Biol Macromol ; 258(Pt 2): 129126, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38163504

ABSTRACT

New pathogenic influenza virus strains are constantly emerging, posing a serious risk to both human health and economic growth. To effectively control the spread of this virus, there is an urgent need for early, rapid, sensitive, simple, and cost-effective detection technologies, as well as new and effective antiviral drugs. In this study, we have successfully achieved a significant milestone by successfully fusing the H7N9 influenza virus hemagglutinin (HA) protein with the nano-luciferase component, resulting in the development of a novel set of biosensors. This remarkable achievement marks the first instance of utilizing this biosensor technology for influenza antibody detection. Our biosensor technology also has the potential to facilitate the development of antiviral drugs targeting specific epitopes of the HA protein, providing a promising avenue for the treatment of H7N9 influenza virus infections. Furthermore, our biosensors have broad applications beyond H7N9 influenza virus detection, as they can be expanded for the detection of other pathogens and drug screening applications in the future. By providing a novel and effective solution to the detection and treatment of influenza viruses, our biosensors have the potential to revolutionize the field of infectious disease control.


Subject(s)
Biosensing Techniques , Influenza A Virus, H7N9 Subtype , Influenza, Human , Humans , Hemagglutinins , Drug Evaluation, Preclinical , Hemagglutinin Glycoproteins, Influenza Virus , Antiviral Agents
SELECTION OF CITATIONS
SEARCH DETAIL