Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.044
Filter
1.
Cell Immunol ; 403-404: 104861, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098245

ABSTRACT

The immune response to stress diverges with age, with neonatal macrophages implicated in tissue regeneration versus tissue scarring and maladaptive inflammation in adults. Integral to the macrophage stress response is the recognition of hypoxia and pathogen-associated molecular patterns (PAMPs), which are often coupled. The age-specific, cell-intrinsic nature of this stress response remains vague. To uncover age-defined divergences in macrophage crosstalk potential after exposure to hypoxia and PAMPs, we interrogated the secreted proteomes of neonatal versus adult macrophages via non-biased mass spectrometry. Through this approach, we newly identified age-specific signatures in the secretomes of neonatal versus adult macrophages in response to hypoxia and the prototypical PAMP, lipopolysaccharide (LPS). Neonatal macrophages secreted proteins most consistent with an anti-inflammatory, regenerative phenotype protective against apoptosis and oxidative stress, dependent on hypoxia inducible transcription factor-1α (HIF-1α). In contrast, adult macrophages secreted proteins consistent with a pro-inflammatory, glycolytic phenotypic signature consistent with pathogen killing. Taken together, these data uncover fundamental age and HIF-1α dependent macrophage responses that may be targeted to calibrate the innate immune response during stress and inflammation.

2.
Cureus ; 16(7): e63852, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39099978

ABSTRACT

The element that causes hypoxia when the von Hippel-Lindau (VHL) protein is not functioning is hypoxia-inducible factor 1-alpha (HIF-1α), which is the essential protein linked to cell control under hypoxia. Consequently, in situations where cells are oxygen-deficient, HIF-1α carries out a variety of essential functions. Citations to relevant literature support the notion that HIF-1α regulates the mitochondrial and glycolytic pathways, as well as the transition from the former to the latter. Cells with limited oxygen supply benefit from this change, which is especially beneficial for the inhibition of the mitochondrial electron transport chain and enhanced uptake of glucose and lactate. During hypoxic stress, HIF-1α also controls proline and glycolytic transporters such as lactate dehydrogenase A (LDHA) and glucose transporter 1 (GLUT1). These mechanisms help the cell return to homeostasis. Therefore, through metabolic change promoting adenosine triphosphate (ATP) synthesis and reducing reactive oxygen species (ROS) creation, HIF-1α may have a role in reducing oxidative stress in cells. This evidence, which describes the function of HIF-1α in many molecular pathways, further supports the notion that it is prognostic and that it contributes to hypoxic cell adaption. Understanding more about disorders, including inflammation, cancer, and ischemia, is possible because of HIF-1α's effect on metabolic changes. Gaining knowledge about the battle between metabolism, which is directed by HIF-1α, would help advance the research on pathophysiological situations involving dysregulated hypoxia and metabolism.

3.
Front Pharmacol ; 15: 1396231, 2024.
Article in English | MEDLINE | ID: mdl-39101138

ABSTRACT

Background: The primary constituent of ginseng, known as ginsenosides (GS), has been scientifically demonstrated to possess anti-fatigue, anti-hypoxia, anti-inflammatory, and antioxidant properties. However, the effect and mechanisms of GS on tissue injury induced by high-altitude hypoxia still remain unclear. Aim of the study: This study aims to investigate the protective effect of GS on a high-altitude hypoxia model and explore its mechanism. Materials and methods: Sprague-Dawley rats were placed in a high-altitude simulation chamber for 48 h (equivalent to an altitude of 6,000 m) to establish a high-altitude hypoxia model. We assessed the anti-hypoxic efficacy of GS through blood gas analysis, complete blood count, and hemorheology analysis. We used H&E and hypoxia probe assays to evaluate the protective effect of GS on organ ischemia-induced injury. Further, we used ELISA and qPCR analysis to detect the levels of inflammatory factors and oxidative stress markers. Immunohistochemistry and immunofluorescence staining were performed to determinate protein expression of hypoxia inducible factor 1-alpha (HIF-1α), erythropoietin (EPO), and prolyl hydroxylase 2 (PHD2). Results: In the survival experiment of anoxic mice, 100 mg/kg of GS had the best anti-anoxic effect. GS slowed down the weight loss rate of rats in hypoxic environment. In the fluorescence detection of hypoxia, GS reduced the fluorescence signal value of lung and kidney tissue and alleviated the hypoxia state of tissue. Meanwhile GS improved blood biochemical and hematological parameters. We also observed that GS treatment significantly decreased oxidative stress damage in lung and kidney tissues. Further, the levels of inflammatory factors, IL-1ß, IL-6, and TNF-α were reduced by GS. Finally, GS regulated the PHD2/HIF-1α/EPO signaling pathway to improve blood viscosity and tissue hyperemia damage. Conclusion: GS could alleviate high-altitude induced lung and kidney damage by reducing the level of inflammation and oxidative stress, improving blood circulation through the PHD2/HIF-1α/EPO pathway.

5.
Redox Rep ; 29(1): 2387465, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39102510

ABSTRACT

BACKGROUD: Bronchopulmonary dysplasia (BPD) is one of the most important complications plaguing neonates and can lead to a variety of sequelae. the ability of the HIF-1α/VEGF signaling pathway to promote angiogenesis has an important role in neonatal lung development. METHOD: Newborn rats were exposed to 85% oxygen. The effects of hyperoxia exposure on Pleomorphic Adenoma Gene like-2 (PLAGL2) and the HIF-1α/VEGF pathway in rats lung tissue were assessed through immunofluorescence and Western Blot analysis. In cell experiments, PLAGL2 was upregulated, and the effects of hyperoxia and PLAGL2 on cell viability were evaluated using scratch assays, CCK-8 assays, and EDU staining. The role of upregulated PLAGL2 in the HIF-1α/VEGF pathway was determined by Western Blot and RT-PCR. Apoptosis and ferroptosis effects were determined through flow cytometry and viability assays. RESULTS: Compared with the control group, the expression levels of PLAGL2, HIF-1α, VEGF, and SPC in lung tissues after 3, 7, and 14 days of hyperoxia exposure were all decreased. Furthermore, hyperoxia also inhibited the proliferation and motility of type II alveolar epithelial cells (AECII) and induced apoptosis in AECII. Upregulation of PLAGL2 restored the proliferation and motility of AECII and suppressed cell apoptosis and ferroptosis, while the HIF-1α/VEGF signaling pathway was also revived. CONCLUSIONS: We confirmed the positive role of PLAGL2 and HIF-1α/VEGF signaling pathway in promoting BPD in hyperoxia conditions, and provided a promising therapeutic targets.


Subject(s)
Alveolar Epithelial Cells , Animals, Newborn , Apoptosis , Ferroptosis , Hyperoxia , Hypoxia-Inducible Factor 1, alpha Subunit , Signal Transduction , Vascular Endothelial Growth Factor A , Animals , Rats , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Alveolar Epithelial Cells/metabolism , Ferroptosis/physiology , Hyperoxia/metabolism , Rats, Sprague-Dawley , Transcription Factors/metabolism , Transcription Factors/genetics , Down-Regulation , Humans , Cell Proliferation
6.
Front Pharmacol ; 15: 1436072, 2024.
Article in English | MEDLINE | ID: mdl-39108756

ABSTRACT

Introduction: Peripheral artery disease (PAD) is an increasingly common disease, causing significant complications for patients. Trimetazidine (TMZ) not only improves clinical symptoms in PAD patients but also facilitates angiogenesis in ischemic hind limbs. Our aim was to find the function of TMZ in promoting angiogenesis and tissue perfusion in ischemic rat skeletal muscle. Methods: The rats underwent femoral artery ligation (FAL) and then treated with TMZ and saline. Hematoxylin-eosin and Masson's trichrome stain in the ischemic gastrocnemius muscle to analyze muscle morphology and atrophy. To identify angiogenesis and the tissue perfusion, CD31 immunohistochemical staining and laser speckle contrast imaging was conducted. Additionally, hind limb motor ability was measured. Finally, qRT-PCR and Western blotting were used to statistically analyze the expression levels of HIF-1α and VEGF. Results: Our study demonstrated significant enhancement in angiogenesis and tissue perfusion after FAL when treated with TMZ compared to the saline group. Histologically, it mitigates ischemia-induced muscle atrophy and inflammation, as well as reduces fibrosis progression in the TMZ group. Additionally, hind limb motor ability improved in rats treated with TMZ during motor experiments. Discussion: It suggests that TMZ can promote angiogenesis and improve tissue perfusion in ischemic skeletal muscle of rats by activating the HIF-1α/VEGF signaling pathway. Additionally, it leads to significant improvement in ischemia-induced motor limitations in the hind limbs of rats.

7.
Front Nutr ; 11: 1433640, 2024.
Article in English | MEDLINE | ID: mdl-39109237

ABSTRACT

Background: Altitude illness has serious effects on individuals who are not adequately acclimatized to high-altitude areas and may even lead to death. However, the individualized mechanisms of onset and preventive measures are not fully elucidated at present, especially the relationship between altitude illness and elements, which requires further in-depth research. Methods: Fresh serum samples were collected from individuals who underwent health examinations at the two hospitals in Xining and Sanya between November 2021 and December 2021. The blood zinc (Zn), iron (Fe), and calcium (Ca) concentrations, as well as hypoxia-inducible factor 1-alpha (HIF-1α) concentrations, were measured. This study conducted effective sample size estimation, repeated experiments, and used GraphPad Prism 9.0 and IBM SPSS version 19.0 software for comparative analysis of differences in the expression of elements and HIF-1α among different ethnic groups, altitudes, and concentration groups. Linear regression and multiple linear regression were employed to explore the relationships among elements and their correlation with HIF-1α. Results: This study included a total of 400 participants. The results from the repeated measurements indicated that the consistency of the laboratory test results was satisfactory. In terms of altitude differences, except for Fe (p = 0.767), which did not show significant variance between low and high altitude regions, Zn, Ca, and HIF-1α elements all exhibited notable differences between these areas (p < 0.0001, p = 0.004, and p < 0.0001). When grouping by the concentrations of elements and HIF-1α, the results revealed significant variations in the distribution of zinc among different levels of iron and HIF-1α (p < 0.05). The outcomes of the linear regression analysis demonstrated that calcium and zinc, iron and HIF-1α, calcium and HIF-1α, and zinc and HIF-1α displayed substantial overall explanatory power across different subgroups (p < 0.05). Finally, the results of the multiple linear regression analysis indicated that within the high-altitude population, the Li ethnic group in Sanya, and the Han ethnic group in Sanya, the multiple linear regression model with HIF-1αas the dependent variable and elements as the independent variables exhibited noteworthy overall explanatory power (p < 0.05). Conclusion: The levels of typical elements and HIF-1α in the blood differ among various altitudes and ethnic groups, and these distinctions may be linked to the occurrence and progression of high-altitude illness.

8.
Int J Nanomedicine ; 19: 7831-7850, 2024.
Article in English | MEDLINE | ID: mdl-39105099

ABSTRACT

Purpose: Compared with traditional photothermal therapy (PTT, >50°C), mild PTT (≤45°C) is a promising strategy for tumor therapy with fewer adverse effects. Unfortunately, its anti-tumor efficacy is hampered by thermoresistance induced by overexpression of heat shock proteins (HSPs). In our previous study, we found bufalin (BU) is a glycolysis inhibitor that depletes HSPs, which is expected to overcome thermotolerance of tumor cells. In this study, BU-loaded multifunctional nanoparticles (NPs) were developed for enhancing the mild PTT of colorectal cancer (CRC). Methods: Fe3O4 NPs coated with the polydopamine (PDA) shell modified with polyethylene glycol (PEG) and cyclic arginine-glycyl-aspartic peptide (cRGD) for loading BU (Fe3O4@PDA-PEG-cRGD/BU NPs) were developed. The thermal variations in Fe3O4@PDA-PEG-cRGD/BU NPs solution under different conditions were measured. Glycolysis inhibition was evaluated by measuring the glucose uptake, extracellular lactate, and intracellular adenosine triphosphate (ATP) levels. The cellular cytotoxicity of Fe3O4@PDA-PEG-cRGD/BU NPs was analyzed using a cell counting kit-8 assay, Calcein-AM/PI double staining, and flow cytometry in HCT116 cells. The magnetic resonance imaging (MRI) performance and anti-tumor therapeutic efficacy of Fe3O4@PDA-PEG-cRGD/BU NPs were evaluated in HCT116-tumor bearing mice. Results: Fe3O4@PDA-PEG-cRGD/BU NPs had an average diameter of 260.4±3.5 nm, the zeta potential of -23.8±1.6 mV, the drug loading rate of 1.1%, which had good thermal stability, photothermal conversion efficiencies and MRI performance. In addition, the released BU not only killed tumor cells but also interfered with glycolysis by targeting the steroid receptor coactivator 3 (SRC-3)/HIF-1α pathway, preventing intracellular ATP synthesis, and combating HSP-dependent tumor thermoresistance, ultimately strengthening the thermal sensitivity toward mild PTT both in vitro and in vivo. Conclusion: This study provides a highly effective strategy for enhancing the therapeutic effects of mild PTT toward tumors.


Subject(s)
Bufanolides , Colorectal Neoplasms , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit , Photothermal Therapy , Animals , Bufanolides/pharmacology , Bufanolides/chemistry , Bufanolides/pharmacokinetics , Humans , Glycolysis/drug effects , Colorectal Neoplasms/therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Photothermal Therapy/methods , Mice , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Indoles/chemistry , Indoles/pharmacology , Polyethylene Glycols/chemistry , Polymers/chemistry , Mice, Inbred BALB C , Cell Line, Tumor , Mice, Nude , HCT116 Cells , Magnetite Nanoparticles/chemistry , Nanoparticles/chemistry , Xenograft Model Antitumor Assays
9.
Cell Metab ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39106859

ABSTRACT

The transcriptional response to hypoxia is temporally regulated, yet the molecular underpinnings and physiological implications are unknown. We examined the roles of hepatic Bmal1 and Hif1α in the circadian response to hypoxia in mice. We found that the majority of the transcriptional response to hypoxia is dependent on either Bmal1 or Hif1α, through shared and distinct roles that are daytime determined. We further show that hypoxia-inducible factor (HIF)1α accumulation upon hypoxia is temporally regulated and Bmal1 dependent. Unexpectedly, mice lacking both hepatic Bmal1 and Hif1α are hypoxemic and exhibit increased mortality upon hypoxic exposure in a daytime-dependent manner. These mice display mild liver dysfunction with pulmonary vasodilation likely due to extracellular signaling regulated kinase (ERK) activation, endothelial nitric oxide synthase, and nitric oxide accumulation in lungs, suggestive of hepatopulmonary syndrome. Our findings indicate that hepatic BMAL1 and HIF1α are key time-dependent regulators of the hypoxic response and can provide molecular insights into the pathophysiology of hepatopulmonary syndrome.

10.
Clin Transl Med ; 14(8): e1763, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39107958

ABSTRACT

BACKGROUND: Breast cancer (BC) is one of the most prevalent malignant tumours that threatens women health worldwide. It has been reported that circular RNAs (circRNAs) play an important role in regulating tumour progression and tumour microenvironment (TME) remodelling. METHODS: Differentially expression characteristics and immune correlations of circRNAs in BC were verified using high-throughput sequencing and bioinformatic analysis. Exosomes were characterised by nanoparticle transmission electron microscopy and tracking analysis. The biological function of circ-0100519 in BC development was demonstrated both in vitro and in vivo. Western blotting, RNA pull-down, RNA immunoprecipitation, flow cytometry, and luciferase reporter were conducted to investigate the underlying mechanism. RESULTS: Circ-0100519 was significant abundant in BC tumour tissues and related to poor prognosis. It can be encapsulated into secreted exosomes, thereby promoting BC cell invasion and metastasis via inducing M2-like macrophages polarisation.Mechanistically, circ-0100519 acted as a scaffold to enhance the interaction between the deubiquitinating enzyme ubiquitin-specific protease 7 (USP7) and nuclear factor-like 2 (NRF2) in macrophages, inducing the USP7-mediated deubiquitination of NRF2. Additionally, HIF-1α could function as an upstream effector to enhance circ-0100519 transcription. CONCLUSIONS: Our study revealed that exosomal circ-0100519 is a potential biomarker for BC diagnosis and prognosis, and the HIF-1α inhibitor PX-478 may provide a therapeutic target for BC.


Subject(s)
Breast Neoplasms , Exosomes , NF-E2-Related Factor 2 , RNA, Circular , Ubiquitin-Specific Peptidase 7 , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Female , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Ubiquitin-Specific Peptidase 7/genetics , Ubiquitin-Specific Peptidase 7/metabolism , Exosomes/metabolism , Exosomes/genetics , Macrophages/metabolism , Mice , Disease Progression , Animals , Cell Line, Tumor
11.
Front Pharmacol ; 15: 1411513, 2024.
Article in English | MEDLINE | ID: mdl-39130627

ABSTRACT

Background: Corneal neovascularization (CNV) is a sight-threatening condition that necessitates epigenetic control. The role of lysine-specific demethylase 1 (LSD1) in CNV remains unclear, despite its established significance in tumor angiogenesis regulation. Methods: An alkali burn-induced CNV mouse model was used in vivo. The effects of LSD1 inhibitor tranylcypromine hydrochloride (TCP) were examined through slit lamp, histological staining, and immunofluorescence. The expression of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) levels were assessed in corneal tissues. Oxidative stress and ferrous ion expression during CNV were determined using 4-HNE, GPX4, and FerroOrange staining. In vitro, a hypoxia-reoxygenation (H/R) model was established using human umbilical vein endothelial cells (HUVECs) to study LSD1 or hypoxia-inducible factor (HIF-1α) knockdown and lentiviral overexpression of HIF-1α. The effects on HUVECs migration, invasion, and angiogenesis were evaluated through cell scratching assay, transwell migration assay and tube formation assay. The role of ferroptosis was investigated using ROS staining, FerroOrange staining, and key ferroptosis proteins. Further, The JAK2/STAT3 pathway's involvement in CNV regulation was explored through in vivo experiments with subconjunctival injection of AG490. Results: The results showed a substantial correlation between corneal damage and LSD1 levels. In addition, HIF-1α expression was also elevated after alkali burns, and subconjunctival injection of TCP reduced corneal inflammation and neovascularization. Corneal alkali burns increased ROS levels and reduced antioxidative stress indicators, accompanied by elevated ferrous ion levels, which were reversed by TCP injection. In vitro, TCP or siRNAs inhibited H/R-induced ferroptosis and angiogenesis in HUVECs by affecting specific protein expressions and MDA, SOD, and GSH levels. HIF-1α levels, associated with ROS production, ferroptosis, and angiogenesis, increased during H/R, but were reversed by TCP or siRNA administration. HIF-1α overexpression counteracted the effects of LSD1 inhibition. Additionally, AG490 injection effectively reduced HIF-1α and VEGFA expression in the CNV model. Discussion: These findings suggest that LSD1 inhibition via the HIF-1α-driven pathway prevents angiogenesis, oxidative stress, and ferroptosis in corneal alkali burn-induced CNV, highlighting LSD1 as a potential therapeutic target.

12.
Front Pharmacol ; 15: 1434568, 2024.
Article in English | MEDLINE | ID: mdl-39130642

ABSTRACT

Abnormal glucose metabolism in microglial is closely associated with Alzheimer's disease (AD). Reprogramming of microglial glucose metabolism is centered on regulating the way in which microglial metabolize glucose to alter microglial function. Therefore, reprogramming microglial glucose metabolism is considered as a therapeutic strategy for AD. Huanshaodan (HSD) is a Chinese herbal compound which shows significant efficacy in treating AD, however, the precise mechanism by which HSD treats AD remains unclear. This study is aim to investigate whether HSD exerts anti-AD effects by regulating the metabolic reprogramming of microglial through the mTOR/HIF-1α signaling pathway. SAMP8 mice and BV2 cells were used to explore the alleviative effect of HSD on AD and the molecular mechanism in vivo and in vitro. The pharmacodynamic effects of HSD was evaluated by behavioral tests. The pathological deposition of Aß in brain of mice was detected by immunohistochemistry. ELISA method was used to measure the activity of HK2 and the expression of PKM2, IL-6 and TNF-α in hippocampus and cortex tissues of mice. Meanwhile, proteins levels of p-mTOR, mTOR, HIF-1α, CD86, Arg1 and IL-1ß were detected by Western-blot. LPS-induced BV2 cells were treated with HSD-containing serum. The analysis of the expression profiles of the CD86 and CD206 markers by flow cytometry allows us to distinguish the BV2 polarization. Glucose, lactic acid, ATP, IL-6 and TNF-α levels, as well as lactate dehydrogenase and pyruvate dehydrogenase activities were evaluated in the BV2. Western-blot analysis was employed to detect mTOR, p-mTOR, HIF-1α and IL-1ß levels in BV2. And the mTOR agonist MHY1485 (MHY) was chosen to reverse validate. In this study, it is found that HSD improved cognitive impairment in SAMP8 mice and reduced Aß deposition, suppressed the levels of glycolysis and neuroinflammation in mice. In LPS-induced BV2 cells, HSD also regulated glycolysis and neuroinflammation, and suppressed the mTOR/HIF-1α signaling pathway. More importantly, these effects were reversed by MHY. It is demonstrated that HSD regulated microglial glucose metabolism reprogramming by inhibiting the mTOR/HIF-1α signaling pathway, alleviated neuroinflammation, and exerted anti-AD effects. This study provided scientific evidence for the clinical application of HSD for treating AD.

13.
Genes Cancer ; 15: 41-59, 2024.
Article in English | MEDLINE | ID: mdl-39132498

ABSTRACT

BACKGROUND: In some breast cancers, altered estrogen-sulfotransferase (SULT1E1) and its inactivation by oxidative-stress modifies E2 levels. Parallelly, hypoxia-inducible tissue-damaging factors (HIF1α) are induced. The proteins/genes expressions of these factors were verified in human-breast-cancer tissues. SULT1E1 inducing-drugs combinations were tested for their possible protective effects. METHODS: Matrix-metalloproteases (MMP2/9) activity and SULT1E1-HIF1α protein/gene expression (Western-blot/RTPCR) were assessed in breast-cancers versus adjacent-tissues. Oxidant-stress neutralizer, chalcone (trans-1,3-diaryl-2-propen-1-ones) and SULT1E1-inducer pure dialyl-sulfide (garlic; Allium sativum) were tested to prevent cancer causing factors in rat, in-vitro and in-vivo. The antioxidant-enzymes SOD1/catalase/GPx/LDH and matrix-degenerating MMP2/9 activities were assessed (gel-zymogram). Histoarchitecture (HE-staining) and tissue SULT1E1-localization (immuno-histochemistry) were screened. Extensive statistical-analysis were performed. RESULTS: Human cancer-tissue expresses higher SULT1E1, HIF1α protein/mRNA and lower LDH activity. Increase of MMP2/9 activities commenced tissue damage. However, chalcone and DAS significantly induced SULT1E1 gene/protein, suppressed HIF1α expression, MMP2/9 activities in rat tissues. Correlation and group statistics of t-test suggest significant link of oxidative-stress (MDA) with SULT1E1 (p = 0.006), HIF1α (p = 0.006) protein-expression. The non-protein-thiols showed negative correlation (p = 0.001) with HIF1α. These proteins and SULT1E1-mRNA expressions were significantly higher in tumor (p < 0.05). Correlation data suggest, SULT1E1 is correlated with non-protein-thiols. CONCLUSIONS: Breast cancers associate with SULT1E1, HIF1α and MMPs deregulations. For the first time, we are revealing that advanced cancer tissue with elevated SULT1E1-protein may reactivate in a reducing-state initiated by chalcone, but remain dormant in an oxidative environment. Furthermore, increased SULT1E1 protein synthesis is caused by DAS-induced mRNA expression. The combined effects of the drugs might decrease MMPs and HIF1α expressions. Further studies are necessary.

14.
Cell Signal ; 122: 111345, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39134249

ABSTRACT

In tumors, the rapid proliferation of cells and the imperfect blood supply system lead to hypoxia, which can regulate the adaptation of tumor cells to the hypoxic environment through hypoxia-inducible factor-1α (HIF-1α) and promote tumor development in multiple ways. Recent studies have found that epithelial-mesenchymal transition (EMT) and ferroptosis play important roles in the progression of tumor cells. The activation of HIF-1α is considered a key factor in inducing EMT in tumor cells. When HIF-1α is activated, it can regulate EMT-related genes, causing tumor cells to gradually lose their epithelial characteristics and acquire more invasive mesenchymal traits. The occurrence of EMT allows tumor cells to better adapt to changes in the surrounding tissue, enhancing their migratory and invasive capabilities, thus promoting tumor progression. At the same time, HIF-1α also plays a crucial regulatory role in ferroptosis in tumor cells. In a hypoxic environment, HIF-1α may affect processes such as iron metabolism and oxidative stress responses, inducing ferroptosis in tumor cells. This article briefly reviews the dual role of HIF-1α in EMT and ferroptosis in tumor cells, helping to gain a deeper understanding of the regulatory pathways of HIF-1α in the development of tumor cells, providing a new perspective for understanding the pathogenesis of tumors. The regulation of HIF-1α may become an important strategy for future tumor therapy.

15.
J Nanobiotechnology ; 22(1): 479, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134988

ABSTRACT

The prevention and treatment of gastrointestinal mucosal injury caused by a plateau hypoxic environment is a clinical conundrum due to the unclear mechanism of this syndrome; however, oxidative stress and microbiota dysbiosis may be involved. The Robinia pseudoacacia L. flower, homologous to a functional food, exhibits various pharmacological effects, such as antioxidant, antibacterial, and hemostatic activities. An increasing number of studies have revealed that plant exosome-like nanoparticles (PELNs) can improve the intestinal microbiota and exert antioxidant effects. In this study, the oral administration of Robinia pseudoacacia L. flower exosome-like nanoparticles (RFELNs) significantly ameliorated hypoxia-induced gastric and small intestinal mucosal injury in mice by downregulating hypoxia-inducible factor-1α (HIF-1α) and HIF-2α expression and inhibiting hypoxia-mediated ferroptosis. In addition, oral RFELNs partially improved hypoxia-induced microbial and metabolic disorders of the stomach and small intestine. Notably, RFELNs displayed specific targeting to the gastrointestinal tract. In vitro experiments using gastric and small intestinal epithelial cell lines showed that cell death caused by elevated HIF-1α and HIF-2α under 1% O2 mainly occurred via ferroptosis. RFELNs obviously inhibited HIF-1α and HIF-2α expression and downregulated the expression of NOX4 and ALOX5, which drive reactive oxygen species production and lipid peroxidation, respectively, suppressing ferroptosis under hypoxia. In conclusion, our findings underscore the potential of oral RFELNs as novel, naturally derived agents targeting the gastrointestinal tract, providing a promising therapeutic approach for hypoxia-induced gastric and small intestinal mucosal ferroptosis.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Exosomes , Ferroptosis , Flowers , Gastric Mucosa , Hypoxia-Inducible Factor 1, alpha Subunit , Intestinal Mucosa , Intestine, Small , Lipid Peroxidation , Nanoparticles , Animals , Ferroptosis/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Exosomes/metabolism , Exosomes/drug effects , Lipid Peroxidation/drug effects , Intestine, Small/drug effects , Intestine, Small/metabolism , Intestine, Small/pathology , Administration, Oral , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Male , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Flowers/chemistry , Nanoparticles/chemistry , Hypoxia/drug therapy , Hypoxia/metabolism , Humans , Mice, Inbred C57BL
16.
Front Pharmacol ; 15: 1395160, 2024.
Article in English | MEDLINE | ID: mdl-39135784

ABSTRACT

Introduction: Endometriosis (EMs) is characterized by ectopic growth of active endometrial tissue outside the uterus. The Luoshi Neiyi prescription (LSNYP) has been extensively used for treating EMs in China. However, data on the active chemical components of LSNYP are insufficient, and its pharmacological mechanism in EMs treatment remains unclear. This study aimed to explore the potential mechanism of LSNYP for EMs through network pharmacology based on the components absorbed into the blood. Methods: Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used to analyze blood components, and a series of network pharmacology strategies were utilized to predict targets of these components and EMs. Protein-protein interaction (PPI) network analysis, component-target-disease network construction, gene ontology (GO) functional enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Additionally, molecular docking, molecular dynamics simulations, and in vitro and in vivo experiments were conducted to validate the HIF1A/EZH2/ANTXR2 pathway associated with hypoxic pathology in EMs. Results: Thirty-four absorbed components suitable for network pharmacology analysis were identified, and core targets, such as interleukin 6, EGFR, HIF1A, and EZH2, were founded. Enrichment results indicated that treatment of EMs with LSNYP may involve the regulation of hypoxia and inflammatory-related signaling pathways and response to oxidative stress and transcription factor activity. Experimental results demonstrated that LSNYP could decrease the expression of HIF1A, ANTXR2, YAP1, CD44, and ß-catenin, and increased EZH2 expression in ectopic endometrial stromal cells and endometriotic tissues. Molecular docking and molecular dynamics simulations manifested that there was stable combinatorial activity between core components and key targets of the HIF1A/EZH2/ANTXR2 pathway. Conclusion: LSNYP may exert pharmacological effects on EMs via the HIF1A/EZH2/ANTXR2 pathway; hence, it is a natural herb-related therapy for EMs.

17.
Am J Hum Genet ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39137781

ABSTRACT

We performed a series of integrative analyses including transcriptome-wide association studies (TWASs) and proteome-wide association studies (PWASs) of renal cell carcinoma (RCC) to nominate and prioritize molecular targets for laboratory investigation. On the basis of a genome-wide association study (GWAS) of 29,020 affected individuals and 835,670 control individuals and prediction models trained in transcriptomic reference models, our TWAS across four kidney transcriptomes (GTEx kidney cortex, kidney tubules, TCGA-KIRC [The Cancer Genome Atlas kidney renal clear-cell carcinoma], and TCGA-KIRP [TCGA kidney renal papillary cell carcinoma]) identified 38 gene associations (false-discovery rate <5%) in at least two of four transcriptomic panels and identified 12 genes that were independent of GWAS susceptibility regions. Analyses combining TWAS associations across 48 tissues from GTEx identified associations that were replicable in tumor transcriptomes for 23 additional genes. Analyses by the two major histologic types (clear-cell RCC and papillary RCC) revealed subtype-specific associations, although at least three gene associations were common to both subtypes. PWAS identified 13 associated proteins, all mapping to GWAS-significant loci. TWAS-identified genes were enriched for active enhancer or promoter regions in RCC tumors and hypoxia-inducible factor binding sites in relevant cell lines. Using gene expression correlation, common cancers (breast and prostate) and RCC risk factors (e.g., hypertension and BMI) display genetic contributions shared with RCC. Our work identifies potential molecular targets for RCC susceptibility for downstream functional investigation.

18.
Free Radic Biol Med ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39128487

ABSTRACT

The pathogenesis of intervertebral disc degeneration (IVDD) involves complex signaling networks and various effector molecules, and our understanding of the pathogenesis of IVDD is limited. Hypoxia inducible factor-1α (HIF-1α) is closely related to IVDD, and there is excessive oxidative stress concurrent with IVDD. In this study, we found that HIF-1α could protect nucleus pulposus cells from excessive oxidative stress by reversing the imbalance between oxidants and antioxidants and thus mitigating the oxidative stress-induced mitochondrial impairment. With further exploration, we found that pyruvate dehydrogenase kinase 1 (PDK-1) was involved in the protective effect of HIF-1α on nucleus pulposus cells under oxidative stress. We suggested that HIF-1α could preserve the mitochondrial integrity and activate glycolysis in nucleus pulposus cells via PDK-1, and the addition of DCA, a PDK-1 inhibitor, could blunt the protective effect of HIF-1α. In addition, the HIF-1α/PDK-1 regulatory axis was also confirmed in vivo through HIF-1α knockout mice model. Therefore, we propose that HIF-1α protects nucleus pulposus cells from excessive oxidative stress by maintaining the mitochondrial integrity and glycolysis via PDK-1, thus enriching the insight into the protective mechanism of HIF-1α against IVDD, and providing a novel therapeutic target for the treatment of IVDD.

19.
Eur J Pharmacol ; : 176883, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39128809

ABSTRACT

Glaucine is an aporphine alkaloid with anti-inflammatory, bronchodilator and anti-cancer activities. However, the effects of glaucine in the regulation of age-related macular degeneration (AMD) remain unclear. Herein, we aimed to investigate the anti-angiogenetic and anti-inflammatory effects of glaucine in ARPE-19 cells. ARPE-19 cells were treated with N-(methoxyoxoacetyl)-glycine, methyl ester (DMOG) and cobalt chloride (CoCl2) for induction of hypoxia, while lipopolysaccharide (LPS) treatment was used for elicitation of inflammatory response. Cell viability was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. The expression of hypoxia-inducible factor (HIF-1α) and vascular endothelial growth factor (VEGF) were measured by Western blot. The secretion of VEGF, interleukin (IL)-6 and monocyte chemoattractant protein-1 (MCP-1) was detected using enzyme-linked immunosorbent assay (ELISA). Human umbilical vein endothelial cells (HUVECs) were used for tube formation analysis. Expression of HIF-1α and secretion of VEGF were significantly increased under DMOG and CoCl2 induction, whereas glaucine significantly attenuated both HIF-1α expression and VEGF secretion by DMOG- and CoCl2-induced ARPE-19 cells. In addition, glaucine suppressed the tube formation by DMOG- and CoCl2-induced HUVEC cells. Moreover, glaucine also attenuated the production of IL-6 and MCP-1 by LPS-induced ARPE-19 cells. This study indicated that glaucine exhibited anti-angiogenic and anti-inflammatory effects, suggesting that glaucine might have benefits for the treatment of AMD.

20.
Article in English | MEDLINE | ID: mdl-39136503

ABSTRACT

BACKGROUND: Si-Ni-San (SNS) is the formula prescription of Traditional Chinese Medicine (TCM) with anti-depression properties, but its underlying mechanisms remain unclear. OBJECTIVE: This study provides novel approaches for the study of Traditional Chinese Medicine (TCM) and offers new opportunities for exploring the pharmacological properties of SNS. METHODS: The ingredients in SNS implicated in the treatment of depression were identified and studied using network pharmacology. SwissTargetPrediction and molecular docking were used to study the interaction of SNS ingredients and their targets. The protective effect of these ingredients and their cocktail in rat pheochromocytoma cells (PC12) exposed to corticosterone (Cor) were evaluated using the CCK-8 assay, Hoechst 33342 staining, 2',7'-dichlorodihydro fluorescein diacetate (H2DCFDA) staining, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, and in-cell Western analysis. RESULTS: The network pharmacology study showed that the HIF-1 signaling pathway was the most crucial pathway implicated in the anti-depressive property of SNS. MAPK1 (ERK2), MAPK3 (ERK1), AKT1, VEGFA, STAT3, and EGF were identified as hub target proteins in the HIF-1 signaling pathway. Quercetin, naringenin, licochalcone A, and kaempferol from SNS, which targeted the six proteins mentioned above, were used to create a cocktail. This cocktail exerted protective properties, decreased the oxidative stress in PC12 exposed to Cor, and successfully regulated the expressions of AKT1, p-AKT1, ERK1, ERK2, p-ERK1/2, STAT3, p- STAT3, and VEGFA induced by Cor exposure. The SwissTargetPrediction and molecular docking study showed that the cocktail may regulate the HIF-1 signaling pathway by directly binding with AKT1 and MAPK1. CONCLUSION: The cocktail from SNS comprised of quercetin, naringenin, licochalcone A, and kaempferol exerts anti-depression potentiality by modulating the HIF-1 signaling pathway via direct interactions with AKT1 and MAPK1.

SELECTION OF CITATIONS
SEARCH DETAIL