Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Mass Spectrom (Tokyo) ; 13(1): A0151, 2024.
Article in English | MEDLINE | ID: mdl-39161737

ABSTRACT

Choline-containing compounds are essential nutrients for human activity, as they are involved in many biological processes, including cell membrane organization, methyl group donation, neurotransmission, signal transduction, lipid transport, and metabolism. These compounds are normally obtained from food. Fermented brown rice and rice bran with Aspergillus oryzae (FBRA) is a fermented food product derived from rice and rice ingredients. FBRA exhibits a multitude of functional properties with respect to the health sciences. This study has a particular focus on choline-containing compounds. We first developed a simultaneous liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis method for seven choline-containing compounds. The method was subsequently applied to FBRA and its ingredients. Hydrophilic interaction chromatography (HILIC) and selected reaction monitoring were employed for the simultaneous analysis of seven choline-containing compounds. MS ion source conditions were optimized in positive ion mode, and the product ions derived from the choline group were obtained through MS/MS optimization. Under optimized HILIC conditions, the peaks exhibited good shape without peak tailing. Calibration curves demonstrated high linearity across a 300- to 10,000-fold concentration range. The application of the method to FBRA and other ingredients revealed significant differences between food with and without fermentation. In particular, betaine and α-glycerophosphocholine were found to be highest in FBRA and brown rice malt, respectively. The results indicated that the fermentation processing of rice ingredients results in alterations to the choline-containing compounds present in foods. The developed HILIC/MS/MS method proved to be a valuable tool for elucidating the composition of choline-containing compounds in foods.

2.
Food Chem ; 458: 140205, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38943962

ABSTRACT

The accurate determination of polar cationic pesticides in food poses a challenge due to their high polarity and trace levels in complex matrices. This study hypothesized that the use of halloysite nanotubes (HNTs) can significantly enhance the extraction efficiency and sensitivity of these analytes because of their rich hydroxyl groups and cation exchange sites. Therefore, we chemically incorporated HNTs with organic polymer monoliths for in-tube solid-phase microextraction (SPME). This novel hybrid monolith extended service life, improved adsorption capacity, and exhibited excellent extraction performance for polar cationic pesticides. Based on these advancements, a robust and sensitive in-tube SPME-HILIC-MS/MS method was constructed to determine trace levels of polar cationic pesticides in complex food matrices. The method achieved limits of detection of 1.9, 2.1, and 0.1 µg/kg for maleic hydrazide, amitrole, and cyromazine, respectively. The spiked recoveries in five food samples ranged from 80.2 to 100.8%, with relative standard deviations below 10.7%.


Subject(s)
Clay , Food Contamination , Nanotubes , Pesticides , Solid Phase Microextraction , Solid Phase Microextraction/methods , Solid Phase Microextraction/instrumentation , Nanotubes/chemistry , Pesticides/isolation & purification , Pesticides/chemistry , Pesticides/analysis , Food Contamination/analysis , Clay/chemistry , Adsorption , Tandem Mass Spectrometry , Limit of Detection , Cations/chemistry
3.
Heliyon ; 10(10): e31213, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38799737

ABSTRACT

A hydrophilic interaction liquid chromatography tandem mass spectrometry (HILIC/MS/MS) method was developed and validated for the quantitative analysis of the fully phosphorothioate modified oligonucleotide nusinersen. HILIC/MS/MS method is more robust and compatible with mass spectrometry than ion pair reversed-phase liquid chromatography-tandem mass spectrometry (IP-RP-LC/MS/MS). Various types and concentrations of additives and different pH of mobile phase affected the mass spectrometry response, chromatographic peak shape and retention of nusinersen. The optimized extraction method of nusinersen employs hydrophilic-lipophilic balance solid phase extraction, with a recovery of up to 80 %. Chromatographic quantification was performed using a gradient system on an amide column and the mobile phase consisted of ammonium acetate, acetonitrile and water in a certain proportion. The fully phosphorothioate modified nusinersen can obtain a high mass spectrometry response by providing greater peak symmetry and high ionization efficiency in a high-pH mobile phase. Moreover, the significant carry over interference was observed at the pH 6.3 of the mobile phase. Adjusting the pH value up to 10, and the carry over interference disappeared. The lower limit of quantitation of this developed HILIC/MS/MS assay was 30.0 ng/mL and the method was systematic methodology validated. This HILIC/MS/MS method provides an attractive and robust alternative for the quantitative analysis of nusinersen and was applied in the pharmacokinetic study of nusinersen in rabbits.

4.
Talanta ; 275: 126134, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38692044

ABSTRACT

Phosphoenolpyruvate (PEP) is an essential intermediate metabolite that is involved in various vital biochemical reactions. However, achieving the direct and accurate quantification of PEP in plasma or serum poses a significant challenge owing to its strong polarity and metal affinity. In this study, a sensitive method for the direct determination of PEP in plasma and serum based on ethylenediaminetetraacetic acid (EDTA)-facilitated hydrophilic interaction liquid chromatography-tandem mass spectrometry was developed. Superior chromatographic retention and peak shapes were achieved using a zwitterionic stationary-phase HILIC column with a metal-inert inner surface. Efficient dechelation of PEP-metal complexes in serum/plasma samples was achieved through the introduction of EDTA, resulting in a significant enhancement of the PEP signal. A PEP isotopically labelled standard was employed as a surrogate analyte for the determination of endogenous PEP, and validation assessments proved the sensitivity, selectivity, and reproducibility of this method. The method was applied to the comparative quantification of PEP in plasma and serum samples from mice and rats, as well as in HepG2 cells, HEK293T cells, and erythrocytes; the results confirmed its applicability in PEP-related biomedical research. The developed method can quantify PEP in diverse biological matrices, providing a feasible opportunity to investigate the role of PEP in relevant biomedical research.


Subject(s)
Edetic Acid , Hydrophobic and Hydrophilic Interactions , Phosphoenolpyruvate , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Animals , Humans , Edetic Acid/chemistry , Mice , Chromatography, Liquid/methods , Rats , Phosphoenolpyruvate/chemistry , Phosphoenolpyruvate/blood , Phosphoenolpyruvate/metabolism , HEK293 Cells , Hep G2 Cells , Rats, Sprague-Dawley , Male
5.
Foods ; 13(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38472748

ABSTRACT

Ningnanmycin is a widely used antibiotic in agricultural production that effectively controls fungal and viral diseases in tea trees and chrysanthemums. The polarity characteristic of ningnanmycin has posed limitations on the development of robust detection methods, thereby hindering effective monitoring and control measures. By combining cation exchange solid phase extraction (SPE) with hydrophilic interaction chromatography tandem mass spectrometry (HILIC-MS/MS), we have effectively tackled the issue pertaining to the separation and retention of ningnanmycin. The average recoveries of ningnanmycin in green tea, black tea, and chrysanthemum were 77.3-82.0%, 80.1-81.5%, and 74.0-80.0%, respectively. The intraday and interday relative standard deviations (RSDs) were below and equal to 7.7%. Good linearity was observed in the concentration range of 1-1000 µg/L (R2 > 0.998). The limits of detection (LODs) ranged from 1.1 µg/kg to 7.1 µg/kg, and the limits of quantification (LOQs) ranged from 3.6 µg/kg to 23.7 µg/kg for ningnanmycin. These results indicate the good accuracy, repeatability, reproducibility, and sensitivity of the method. It is suitable for detecting ningnanmycin in tea and chrysanthemum.

6.
Molecules ; 29(6)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38542975

ABSTRACT

Supplementing fish oil is one of the strategies to reduce the risk of cardiovascular disease, the leading cause of death around the world. Contradictorily, fish oil may also contain trimethylamine-N-oxide, a recently emerged risk factor for cardiovascular disease, as well as one of its precursors, trimethylamine. A method suitable for routine quantification of trimethylamine-N-oxide and trimethylamine in fish oil with a quick and easy liquid extraction without derivatization has been developed. Liquid chromatography with tandem mass spectrometry detection was employed along with a zwitterionic hydrophilic interaction liquid chromatography column and a gradient elution with eluents containing 50 mmol/L of ammonium formate. An internal standard (triethylamine) was used for quantification by mass spectrometry with an external calibration. The assay proved high linearity in the ranges of 10 to 100 ng/mL and 100 to 1000 ng/mL for trimethylamine-N-oxide and trimethylamine, respectively. The lowest limit of quantification was determined to be 100 µg/kg for trimethylamine and 10 µg/kg for trimethylamine-N-oxide, with the limit of detection at 5 µg/kg and 0.25 µg/kg, respectively. Accuracy ranged from 106-119%. Precision was below 7% the relative standard deviation for both analytes. The method was successfully applied for the determination of trimethylamine-N-oxide and trimethylamine contents in nine commercially available liquid fish oils and three commercially available fish oil capsules, showing that trimethylamine and trimethylamine-N-oxide are not present in highly refined fish oils.


Subject(s)
Cardiovascular Diseases , Methylamines , Humans , Reproducibility of Results , Tandem Mass Spectrometry/methods , Fish Oils , Oxides , Chromatography, High Pressure Liquid/methods
7.
Bioanalysis ; 16(6): 347-362, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38376139

ABSTRACT

Background: It has become common practice to assess solute carrier transporter (SLC)-mediated drug-drug interactions (DDIs) by quantitating various individual endogenous compounds as biomarkers in human plasma and urine. The goal of this work was to develop biomarker multiplex assays that could be utilized during first in human studies to support the simultaneous assessment of clinical DDI risk across various SLCs. Methodology: Hydrophilic interaction chromatography-MS/MS methods were developed, and validations were performed. Results: The multiplex assays were applied to a first in human study. Placebo/reference subject biomarker data were consistent with single assay in-house and published data. Conclusion: This work demonstrates the utility of these multiplex methods to support the concurrent evaluation of clinical DDI risk across various SLCs.


Subject(s)
Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Biomarkers , Membrane Transport Proteins , Drug Interactions
8.
Talanta ; 269: 125489, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38096631

ABSTRACT

Urine amino acid analysis has proven valuable for an array of clinical or nutritional studies. However, transportation of liquid urine sample shows certain disadvantages, such as possible leakage, need for cold chain and thus higher costs for their transport. Utilization of dried urine spots (DUS) can offer an interesting alternative. In the present study, a method was developed for the determination of 14 amino acids in DUS including the testing of in-house collection device and drying of the sample before analysis. Normal filter paper was tested as the means for sample collection. Absorption and extraction experiments were performed on 3 different types of filter paper, with 3 different extraction solvents and two different solvent volumes. The solvents used were mixtures of common analytical solvents (methanol, water, acetonitrile) using total volumes of 1 mL and 1.5 mL. Finally, 1 mL of acetonitrile: methanol: water 40:40:20 (v/v/v) was chosen as the optimal system. Analysis was performed on a UHPLC-MS system, using stable isotope labeled internal standards. Method validation included the study of limits of detection (LOD) and quantification (LOQ), linearity ranges, precision, matrix effect, extraction recovery, precision, and stability for each analyte. The obtained results were satisfactory, thus enabling application of the proposed method as an alternative to the analysis of liquid urine. Further utilization of DUS can offer advantages by enabling patient centric sampling even in long distances far from the analytical laboratories.


Subject(s)
Amino Acids , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Methanol , Solvents , Acetonitriles , Water , Chromatography, High Pressure Liquid
9.
Article in English | MEDLINE | ID: mdl-38142502

ABSTRACT

RNA modifications play a crucial regulatory role in a variety of biological processes and are closely related to numerous diseases, including cancer. The diversity of metabolites in serum makes it a favored biofluid for biomarkers discovery. In this work, a robust and accurate hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) approach was established for simultaneous determination of dimethylated nucleosides in human serum. Using the established method, we were able to accurately quantify the concentrations of N6-2'-O-dimethyladenosine (m6Am), N2,N2-dimethylguanosine (m2,2G), and 5,2'-O-dimethyluridine (m5Um) in serum samples from 53 healthy controls, 57 advanced colorectal adenoma patients, and 39 colorectal cancer (CRC) patients. The results showed that, compared with healthy controls and advanced colorectal adenoma patients, the concentrations of m6Am and m2,2G were increased in CRC patients, while the concentration of m5Um was decreased in CRC patients. These results indicate that these three dimethylated nucleosides could be potential biomarkers for early detection of colorectal cancer. Interestingly, the level of m5Um was gradually decreased from healthy controls to advanced colorectal adenoma patients to CRC patients, indicating m5Um could also be used to evaluate the level of malignancy of colorectal tumor. In addition, this study will contribute to the investigation on the regulatory mechanisms of RNA dimethylation in the onset and development of colorectal cancer.


Subject(s)
Adenoma , Colorectal Neoplasms , Humans , Nucleosides/chemistry , Tandem Mass Spectrometry/methods , Chromatography, Liquid , Biomarkers , Colorectal Neoplasms/diagnosis , Hydrophobic and Hydrophilic Interactions , Adenoma/metabolism , RNA/chemistry , Biomarkers, Tumor
10.
J Chromatogr A ; 1708: 464342, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37696124

ABSTRACT

The importance of lipids seen in studies of metabolism, cancer, the recent COVID-19 pandemic and other diseases has brought the field of lipidomics to the forefront of clinical research. Quantitative and comprehensive analysis is required to understand biological interactions among lipid species. However, lipidomic analysis is often challenging due to the various compositional structures, diverse physicochemical properties, and wide dynamic range of concentrations of lipids in biological systems. To study the comprehensive lipidome, a hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS)-based screening method with 1200 lipid features across 19 (sub)classes, including both nonpolar and polar lipids, has been developed. HILIC-MS/MS was selected due to its class separation property and fatty acyl chain level information. 3D models of class chromatographic retention behavior were established and evaluations of cross-class and within-class interferences were performed to avoid over-reporting these features. This targeted HILIC-MS/MS method was fully validated, with acceptable analytical parameters in terms of linearity, precision, reproducibility, and recovery. The accurate quantitation of 608 lipid species in the SRM 1950 NIST plasma was achieved using multi-internal standards per class and post-hoc correction, extending current databases by providing lipid concentrations resolved at fatty acyl chain level. The overall correlation coefficients (R2) of measured concentrations with values from literature range from 0.64 to 0.84. The applicability of the developed targeted lipidomics method was demonstrated by discovering 520 differential lipid features related to COVID-19 severity. This high coverage and targeted approach will aid in future investigations of the lipidome in various disease contexts.


Subject(s)
COVID-19 , Lipidomics , Humans , Tandem Mass Spectrometry , Pandemics , Reproducibility of Results , Chromatography, Liquid , Patient Acuity , Lipids
11.
Metabolites ; 13(5)2023 May 09.
Article in English | MEDLINE | ID: mdl-37233685

ABSTRACT

Carob (Ceratonia siliqua) is an exceptional source of significant bioactive compounds with great economic importance in the Mediterranean region, where it is widely cultivated. Carob fruit is used for the production of a variety of products and commodities such as powder, syrup, coffee, flour, cakes, and beverages. There is growing evidence of the beneficial effects of carob and the products made from it on a range of health problems. Therefore, metabolomics could be used to explore the nutrient-rich compounds of carob. Sample preparation is a crucial step in metabolomics-based analysis and has a great impact on the quality of the data obtained. Herein, sample preparation of carob syrup and powder was optimized, to enable highly efficient metabolomics-based HILIC-MS/MS analysis. Pooled powder and syrup samples were extracted under different conditions by adjusting pH, solvent type, and sample weight to solvent volume ratio (Wc/Vs). The metabolomics profiles obtained were evaluated using the established criteria of total area and number of maxima. It was observed that the Wc/Vs ratio of 1:2 resulted in the highest number of metabolites, regardless of solvent type or pH. Aqueous acetonitrile with a Wc/Vs ratio of 1:2 satisfied all established criteria for both carob syrup and powder samples. However, when the pH was adjusted, basic aqueous propanol 1:2 Wc/Vs and acidic aqueous acetonitrile 1:2 Wc/Vs provided the best results for syrup and powder, respectively. We strongly believe that the current study could support the standardization of the metabolomics sample preparation process to enable more efficient LC-MS/MS carob analysis.

12.
Carbohydr Polym ; 312: 120795, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37059535

ABSTRACT

Glycosphingolipids (GSLs) in human milk regulate the immune system, support intestinal maturation, and prevent gut pathogens. The structural complexity and low abundance of GSLs limits their systematic analysis. Here, we coupled the use of monosialoganglioside 1-2-amino-N-(2-aminoethyl) benzamide (GM1-AEAB) derivatives as internal standards with HILIC-MS/MS to qualitatively and quantitatively compare GSLs in human, bovine, and goat milk. One neutral glycosphingolipid (GB) and 33 gangliosides were found in human milk, of which 22 were newly detected and three were fucosylated. Five GB and 26 gangliosides were identified in bovine milk, of which 21 were newly discovered. Four GB and 33 gangliosides were detected in goat milk, 23 of them newly reported. GM1 was the main GSL in human milk; whereas disialoganglioside 3 (GD3) and monosialogangloside 3 (GM3) were dominant in bovine and goat milk, respectively; N-acetylneuraminic acid (Neu5Ac) was detected in >88 % of GSLs in bovine and goat milk. N-hydroxyacetylneuraminic acid (Neu5Gc)-modified GSLs were 3.5 times more abundant in goat than in bovine milk; whereas GSLs modified with both Neu5Ac and Neu5Gc were 3 times more abundant in bovine than in goat milk. Given the health benefits of different GSLs, these results will facilitate the development of custom-designed human milk-based infant formula.


Subject(s)
Glycosphingolipids , Tandem Mass Spectrometry , Humans , Animals , Glycosphingolipids/chemistry , G(M1) Ganglioside/analysis , Gangliosides/analysis , Gangliosides/chemistry , Milk, Human/chemistry , Goats
13.
Toxins (Basel) ; 15(2)2023 02 04.
Article in English | MEDLINE | ID: mdl-36828442

ABSTRACT

In recent years, the consumption of blue-green algae (BGA) dietary supplements is increasing because of their health benefits. However, cyanobacteria can produce cyanotoxins, which present serious health risks. In this work we propose hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry (HILIC-MS/MS) to determine cyanotoxins in BGA dietary supplements. Target toxins, including microcystin-leucine-arginine (MC-LR) and microcystin-arginine-arginine (MC-RR), nodularin, anatoxin-a and three non-protein amino acids, ß-N-methylamino-L-alanine (BMAA), 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl)glycine (AEG), were separated using a SeQuant ZIC-HILIC column. Cyanotoxin extraction was based on solid-liquid extraction (SLE) followed by a tandem-solid phase extraction (SPE) procedure using Strata-X and mixed-mode cation-exchange (MCX) cartridges. The method was validated for BGA dietary supplements obtaining quantification limits from 60 to 300 µg·kg-1. Nine different commercial supplements were analyzed, and DAB, AEG, and MCs were found in some samples, highlighting the relevance of monitoring these substances as precaution measures for the safe consumption of these products.


Subject(s)
Cyanobacteria , Microcystins , Microcystins/analysis , Tandem Mass Spectrometry/methods , Cyanobacteria Toxins , Chromatography, Liquid/methods , Cyanobacteria/chemistry , Dietary Supplements/analysis , Arginine , Hydrophobic and Hydrophilic Interactions , Chromatography, High Pressure Liquid/methods
14.
Forensic Toxicol ; 41(2): 221-229, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36586094

ABSTRACT

PURPOSE: The detection of hydrolysis products of Novichok agents in biological samples from victims is important for confirming exposure to these agents. However, Novichok agents are new class of nerve agent and there have been only few reports on analyses of Novichok agent degradation products. Here, we developed hydrophilic interaction liquid chromatography (HILIC)-tandem mass spectrometry (MS/MS) methods to detect Novichok agent degradation products in human urine with simple pretreatment and high sensitivity. METHODS: A Poroshell 120 HILIC-Z column was used to analyze six Novichok agent degradation products. For urine samples, we used a simple pretreatment method, which consisted of deproteinization with acetonitrile and microfiltration. We calculated the pKa values of the OH groups, the log P values, and the molecular weights to investigate the difference in chromatographic behaviors of the Novichok agent degradation products and the degradation products of conventional nerve agents. RESULTS: Six Novichok agent degradation products, including N-(bis-(diethylamino)methylidene)-methylphosphonamidic acid (MPGA), which could not be detected by our previous method, could be analyzed with sufficient peak shape and mutual separation. The detection limits of six Novichok agent degradation products were sufficiently low (1-50 ng/mL) and the calibration curves showed sufficient linearity. The physicochemical parameters of Novichok agent degradation products were different from those of conventional nerve agent degradation products, and this explains the difference in chromatographic behaviors. CONCLUSION: Six Novichok agent degradation products were successfully analyzed by HILIC-MS/MS. Due to the absence of a derivatization step, throughput performance was higher than our previous derivatization-liquid chromatography-MS/MS method.


Subject(s)
Nerve Agents , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Hydrophobic and Hydrophilic Interactions
15.
Carbohydr Polym ; 301(Pt A): 120312, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36436856

ABSTRACT

Gestational diabetes mellitus (GDM) has negative effects on mothers and offspring, which may be related to the glycosylation level of milk proteins. Here, the human milk N/O-glycome of healthy and GDM individuals was analyzed by HILIC-MS/MS. A total of 56 putative N-glycans were detected, among which 12 N-glycans were significantly different between GDM and healthy milk. A total of 25 putative O-glycans were detected, and 11 of them varied greatly between GDM and healthy milk, especially H1N1S1 and H2N2S1. Overall, the relative content of N/O-glycans in GDM milk was significantly lower than that of healthy milk. In GDM milk, fucosylated N-glycans present higher proportion, whereas the proportion of sialylated O-glycans were lower. These findings would provide a foundation for in-depth study on the structure-activity relationship of milk N/O-glycans and are expected to drive the design of infant formula for newborns.


Subject(s)
Diabetes, Gestational , Milk, Human , Pregnancy , Female , Humans , Infant, Newborn , Glycosylation , Milk, Human/metabolism , Diabetes, Gestational/metabolism , Tandem Mass Spectrometry , Glycoproteins , Polysaccharides/metabolism
16.
J Chromatogr A ; 1686: 463654, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36434830

ABSTRACT

Metabolic reprogramming of cancer cells is a hallmark of cancer, in which the polar metabolites involving aerobic glycolysis, pentose phosphate pathway (PPP), tricarboxylic acid (TCA) cycle, and glutaminolysis play a crucial role in the occurrence and development of cancer. Therefore, targeted analysis of the polar metabolites in these pathways is of great value for understanding cancers, finding diagnostic biomarkers, and identifying therapeutic targets. However, it is still challenging to directly determine polar metabolites in these pathways without derivatization due to their diverse chemical properties, isomers, and strong polarity. Herein, a highly selective and sensitive HILIC-MS/MS method was developed for direct determination of the polar metabolites in aerobic glycolysis, PPP, TCA cycle, and glutaminolysis pathways. Without derivatization, 19 polar metabolites and their isomers with carbonyl, carboxyl, or phosphoryl groups in human plasma and cell extracts of prostate cancer (PC) were determined with strong retention and high resolution. This method has been widely verified by measuring linearity, precision, sensitivity, repeatability, matrix effect, and accuracy. The analysis of plasma samples by HILIC-MS/MS revealed distinct PC-specific metabolic signatures compared to a healthy control. In addition, this method could also be used to screen the targets of metabolic inhibitors at the cellular level. We conclude that the developed HILIC-MS/MS method provides a valuable means to study the cancer metabolic reprogramming or energy metabolism in living organisms.


Subject(s)
Prostatic Neoplasms , Tandem Mass Spectrometry , Humans , Male , Chromatography, Liquid , Energy Metabolism , Hydrophobic and Hydrophilic Interactions
17.
Metabolites ; 12(10)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36295875

ABSTRACT

RNA methylation plays a vital role in the pathogenesis of a variety of diseases including cancer, and aberrant levels of modified nucleosides in RNA were revealed to be related to cancer. Urine is a favored source for biomarker discovery due to the non-invasion to patients. Herein, we developed a sensitive hydrophilic interaction liquid chromatography tandem mass spectrometry (HILIC-MS/MS) method combined with stable isotope dilution for accurate quantification of methylated nucleosides in human urine. With this method, we successfully quantified ten methylated nucleosides in urine samples collected from healthy controls and breast cancer patients. We found N6-methyladenosine (m6A), 2'-O-methyladenosine (Am), N1-methyladenosine (m1A), N6,2'-O-dimethyladenosine (m6Am), N1-methylguanosine (m1G), 2'-O-methylguanosine (Gm), 5-methylcytidine (m5C) and 2'-O-methylcytidine (Cm) were all decreased in early-stage breast cancer patients, and a nomogram prediction model was constructed. Locally advanced breast cancer patients exhibited elevated levels of urinary 2'-O-methylated nucleosides in comparison to early-stage breast cancer patients. Together, we developed a robust method for the simultaneous determination of methylated nucleosides in human urine, and the results revealed an association between the contents of urinary methylated nucleosides and the occurrence of breast cancer, which may stimulate future studies about the regulatory roles of these methylated nucleosides in the initiation and progression of breast cancer.

18.
Article in English | MEDLINE | ID: mdl-36041348

ABSTRACT

RNA modifications have been revealed to be essential in many biological activities, and their disorders are associated with various human diseases, including cancers. 2'-O-methyladenosine (Am), N1-methyladenosine (m1A), N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am) and N6,N6-dimethyladenosine (m62A) are important adenosine (A) modifications. The noninvasive collection of urine samples and the diverse contents of metabolites in plasma make them favored biofluids for biomarkers discovery. In this work, we established a hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) method to quantify these six nucleosides in urine and plasma of healthy controls and breast cancer (BC) patients. The limit of detection (LOD) for A, Am, m1A, m6A, m6Am, and m62A were 0.0025, 0.01, 0.05, 0.005, 0.005, and 0.005 nM. The results showed that the concentrations of Am, m6A, and m6Am were increased, whereas m1A was decreased in the urine of BC patients compared with the healthy controls. We also found that the level ratios of m1A/A, m6A/A, and m6Am/A were all reduced in plasma from BC patients, compared with healthy controls. Interestingly, these ratios of methylated adenosine nucleosides to adenosine in plasma could better discriminate BC patients from healthy controls, compared to the levels of these nucleosides. The present study not only suggests these modified adenosines can act as noninvasive biomarkers of BC but also will contribute to investigating the impacts of RNA methylation on the occurrence and development of BC.


Subject(s)
Breast Neoplasms , Tandem Mass Spectrometry , Adenosine/chemistry , Chromatography, Liquid/methods , Female , Humans , Hydrophobic and Hydrophilic Interactions , Nucleosides/urine , RNA/chemistry , Tandem Mass Spectrometry/methods
19.
Nutrients ; 14(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36014773

ABSTRACT

Microbiome-derived trimethylamine N-oxide (TMAO) has been associated with platelet hyperreactivity and subsequent atherogenesis. Whether physiological TMAO-levels influence platelet-derived lipid mediators remains unknown. Little is known about pre-analytic factors potentially influencing TMAO concentrations. We aimed at developing a quantitative LC-MS/MS method to investigate in-vivo and in-vitro pre-analytical factors in TMAO analysis to properly assess the proposed activating effect of TMAO on platelets. TMAO, betaine, carnitine, and choline were analyzed by HILIC-ESI-MS/MS within 6 min total run time. Method validation included investigation of reproducibility, recovery, sensitivity, and in-vitro pre-analytical factors. A 24-h monitoring experiment was performed, evaluating in-vivo pre-analytical factors like daytime or diet. Finally, the effects of different TMAO concentrations on platelet activation and corresponding alterations of platelet-derived eicosanoid release were analyzed. The method showed high reproducibility (CVs ≤ 5.3%), good recovery rates (96-98%), and negligible in-vitro pre-analytical effects. The influence of in-vivo pre-analytical factors on TMAO levels was not observable within the applied experimental conditions. We did not find any correlation between TMAO levels and platelet activation at physiological TMAO concentrations, whereas platelet-derived eicosanoids presented activation of the cyclooxygenase and lipoxygenase pathways. In contrast to previously published results, we did not find any indications regarding diet dependency or circadian rhythmicity of TMAO levels. Our results do not support the hypothesis that TMAO increases platelet responsiveness via the release of lipid-mediators.


Subject(s)
Methylamines , Tandem Mass Spectrometry , Choline/metabolism , Choline/pharmacology , Chromatography, Liquid , Lipids , Methylamines/metabolism , Platelet Activation , Reproducibility of Results , Tandem Mass Spectrometry/methods
20.
Anal Bioanal Chem ; 414(20): 6029-6046, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35796782

ABSTRACT

Low-dose methotrexate (MTX) plays a key role in treatment of rheumatoid arthritis. However, not all patients respond satisfactorily, and no therapeutic drug monitoring has been implemented in clinical practice, despite the fact that MTX therapy has now been available for decades. Analysis of individual intracellular MTX metabolites among rheumatoid arthritis (RA) patients is hampered by the low intracellular concentrations of MTX-PGs which require a highly sensitive method to quantify. Here, we present a rapid and highly sensitive LC (HILIC) MS/MS method with LLOQ 0.1 nM, 0.8 nmol/L for each metabolite of MTX-PG1-5 and MTX-PG6-7 respectively. Over a linear range of 0.1-100 nM, 0.8-100 nmol/L for each metabolite of MTX-PG1-5 and MTX-PG6-7, respectively, the inter- and intra- accuracy and precision were within 15% of the nominal value for all MTX metabolites. The presented assay was used to assess and compare MTX metabolite concentrations extracted from four different matrices: red blood cells, plasma, peripheral blood mononuclear cells, and whole blood that have been collected either using traditional venepuncture or volumetric absorptive micro-sampling (VAMS) sampling techniques. The presented method not only improves analyte coverage and sensitivity as compared to other published methods; it also improves the greenness.


Subject(s)
Arthritis, Rheumatoid , Methotrexate , Chromatography, Liquid/methods , Erythrocytes/chemistry , Humans , Leukocytes/chemistry , Leukocytes, Mononuclear , Methotrexate/analogs & derivatives , Polyglutamic Acid/analogs & derivatives , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL