Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
2.
Immunotherapy ; : 1-9, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889068

ABSTRACT

Persons living with human immunodeficiency virus (PLWH) carry increased risk for developing malignancies, including glioblastoma. Despite extensive investigations, both human immunodeficiency virus (HIV) and glioblastoma are incurable. Treatment for a patient with combined glioblastoma and HIV remains an unexplored need. Preliminary evidence suggests that immunotherapy may be effective for the simultaneous treatment of both HIV and cancer by reversing HIV latency and T cell exhaustion. We present a case of glioblastoma in a PLWH who was treated with pembrolizumab. Treatment was well tolerated and safe with a mixed response. Our patient did not develop any opportunistic infections, immune-related adverse events, or worsening of his immunodeficiency. To our knowledge, this is the first reported case of a PLWH and glioblastoma treated with immunotherapy.


Persons living with human immunodeficiency virus (PLWH) are at increased risk for cancers, including glioblastoma. Despite extensive research, both human immunodeficiency virus (HIV) and glioblastoma are incurable. The optimal treatment for concurrent HIV and glioblastoma is unknown. Early evidence suggests that immunotherapy can deplete residual HIV and restore immune function. We present a case of glioblastoma in a PLWH treated with immunotherapy. Treatment was well tolerated and safe. To our knowledge, this is the first reported case of a PLWH and glioblastoma treated with immunotherapy.

3.
Article in English | MEDLINE | ID: mdl-38902848

ABSTRACT

Despite the success of antiretroviral therapy, human immunodeficiency virus (HIV) cannot be cured because of a reservoir of latently infected cells that evades therapy. To understand the mechanisms of HIV latency, we employed an integrated single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq) approach to simultaneously profile the transcriptomic and epigenomic characteristics of ∼ 125,000 latently infected primary CD4+ T cells after reactivation using three different latency reversing agents. Differentially expressed genes and differentially accessible motifs were used to examine transcriptional pathways and transcription factor (TF) activities across the cell population. We identified cellular transcripts and TFs whose expression/activity was correlated with viral reactivation and demonstrated that a machine learning model trained on these data was 75%-79% accurate at predicting viral reactivation. Finally, we validated the role of two candidate HIV-regulating factors, FOXP1 and GATA3, in viral transcription. These data demonstrate the power of integrated multimodal single-cell analysis to uncover novel relationships between host cell factors and HIV latency.


Subject(s)
CD4-Positive T-Lymphocytes , GATA3 Transcription Factor , HIV-1 , Single-Cell Analysis , Virus Activation , Virus Latency , Virus Latency/genetics , Humans , Virus Activation/genetics , Single-Cell Analysis/methods , HIV-1/genetics , HIV-1/physiology , CD4-Positive T-Lymphocytes/virology , CD4-Positive T-Lymphocytes/metabolism , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , HIV Infections/virology , HIV Infections/genetics , HIV Infections/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Transcriptome/genetics , Gene Expression Regulation, Viral
4.
Heliyon ; 10(11): e31908, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845918

ABSTRACT

Currently, highly active antiretroviral therapy is unable to cure HIV/AIDS because of HIV latency. This study aimed at documenting medicinal plants used in the management of HIV/AIDS in Eastern Uganda so as to identify phytochemicals with HIV latency reversing potential. An ethnobotanical survey was conducted across eight districts in Eastern Uganda. Traditional medicine practitioners were interviewed using semi-structured questionnaires. Qualitative and quantitative phytochemical tests were respectively, performed to determine the presence and quantity of phytochemicals in frequently mentioned plant species. Data were analysed and presented using descriptive statistics and Informant Consensus Factor (ICF). Twenty-one plant species from fourteen plant families were reported to be used in the management of HIV/AIDS. Six plant species with the highest frequency of mention were: Zanthoxylum chalybeum, Gymnosporia senegalensis, Warbugia ugandensis, Leonatis nepetifolia, Croton macrostachyus and Rhoicissus tridentata. Qualitative phytochemical analysis of all the six most frequently mentioned plant species revealed the presence of flavonoids, tannins, terpenoids, alkaloids and phenolics. Quantitative analysis revealed the highest content of flavonoids in L. nepetifolia (20.4 mg/g of dry extract) while the lowest content was determined in C. macrostachyus (7.1 mg/g of dry extract). On the other hand, the highest content of tannins was observed in L. nepetifolia. (199.9 mg/g of dry extract) while the lowest content was found in R. tridentata. (42.6 mg/g of dry extract). Medicinal plants used by traditional medicine practitioners in Eastern Uganda to manage HIV/AIDS are rich in phytochemicals including flavonoids and tannins. Further studies to evaluate the HIV-1 latency reversing ability of these phytochemicals are recommended to discover novel molecules against HIV/AIDS.

5.
Sci Rep ; 14(1): 13980, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886484

ABSTRACT

Maraviroc (MVC) is an antiretroviral drug capable of binding to CCR5 receptors and block HIV entry into target cells. Moreover, MVC can activate NF-kB pathway and induce viral transcription in HIV-infected cells, being proposed as a latency reversal agent (LRA) in HIV cure strategies. However, the evaluation of immunological and metabolic parameters induced by MVC concentrations capable of inducing HIV transcription have not been explored in depth. We cultured isolated CD4 T cells in the absence or presence of MVC, and evaluated the frequency of CD4 T cell subpopulations and activation markers levels by flow cytometry, and the oxidative and glycolytic metabolic rates of CD4 T cells using a Seahorse Analyzer. Our results indicate that a high concentration of MVC did not increase the levels of activation markers, as well as glycolytic or oxidative metabolic rates in CD4 T cells. Furthermore, MVC did not induce significant changes in the frequency and activation levels of memory cell subpopulations. Our data support a safety profile of MVC as a promising LRA candidate since it does not induce alterations of the immunological and metabolic parameters that could affect the functionality of these immune cells.


Subject(s)
CD4-Positive T-Lymphocytes , Maraviroc , Maraviroc/pharmacology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Humans , Glycolysis/drug effects , HIV Infections/drug therapy , HIV Infections/metabolism , HIV Infections/immunology , Cells, Cultured , Triazoles/pharmacology , HIV-1/drug effects , Lymphocyte Activation/drug effects , Male , CCR5 Receptor Antagonists/pharmacology , Cyclohexanes/pharmacology , Adult
6.
Proteome Sci ; 22(1): 6, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750478

ABSTRACT

BACKGROUND: Patients with immunodeficiency virus-1 (HIV-1) infection are challenging to be cured completely due to the existence of HIV-1 latency reservoirs. However, the knowledge of the mechanisms and biomarkers associated with HIV-1 latency is limited. Therefore, identifying proteins related to HIV-1 latency could provide new insights into the underlying mechanisms of HIV-1 latency, and ultimately contribute to the eradication of HIV reservoirs. METHODS: An Isobaric Tags for Relative and Absolute Quantification (iTRAQ)-labeled subcellular proteomic study was performed on an HIV-1 latently infected cell model (U1, a HIV-1-integrated U937 cell line) and its control (U937). Differentially expressed proteins (DEPs) were analyzed using STRING-DB. Selected DEPs were further evaluated by western blotting and multiple reaction monitoring technology in both cell model and patient-derived cluster of differentiation 4 (CD4)+ T cells. Finally, we investigated the relationship between a specific DEP lysosome-associated membrane glycoprotein 2 (LAMP2) and HIV-1 reactivation by panobinostat or lysosome regulation by a lysosomotropic agent hydroxychloroquine in U1 and U937 cells. RESULTS: In total, 110 DEPs were identified in U1 cells comparing to U937 control cells. Bioinformatics analysis suggested associations of the altered proteins with the immune response and endosomal/lysosomal pathway. LAMP2, leukocyte surface antigen CD47, CD55, and ITGA6 were downregulated in HIV-1 latent cells. Downregulated LAMP2 was further confirmed in resting CD4+ T cells from patients with latent HIV-1 infection. Furthermore, both HIV-1 reactivation by panobinostat and stimulation with hydroxychloroquine upregulated LAMP2 expression. CONCLUSIONS: Our results indicated the involvement of the endosomal/lysosomal pathway in HIV-1 latency in macrophage cell model. The down-modulation of LAMP2 was associated with HIV latency, and the restoration of LAMP2 expression accompanied the transition of viral latency to active infection. This study provides new insights into the mechanism of HIV-1 latency and potential strategies for eradicating HIV-1 reservoirs by targeting LAMP2 expression.

7.
Microorganisms ; 12(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38674696

ABSTRACT

Combination antiretroviral therapy (ART) suppresses viral replication to undetectable levels, reduces mortality and morbidity, and improves the quality of life of people living with HIV (PWH). However, ART cannot cure HIV infection because it is unable to eliminate latently infected cells. HIV latency may be regulated by different HIV transcription mechanisms, such as blocks to initiation, elongation, and post-transcriptional processes. Several latency-reversing (LRA) and -promoting agents (LPA) have been investigated in clinical trials aiming to eliminate or reduce the HIV reservoir. However, none of these trials has shown a conclusive impact on the HIV reservoir. Here, we review the cellular and viral factors that regulate HIV-1 transcription, the potential pharmacological targets and genetic and epigenetic editing techniques that have been or might be evaluated to disrupt HIV-1 latency, the role of miRNA in post-transcriptional regulation of HIV-1, and the differences between the mechanisms regulating HIV-1 and HIV-2 expression.

8.
Proc Natl Acad Sci U S A ; 121(19): e2313823121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683980

ABSTRACT

HIV latency regulation in monocytes and macrophages can vary according to signals directing differentiation, polarization, and function. To investigate these processes, we generated an HIV latency model in THP-1 monocytes and showed differential levels of HIV reactivation among clonal populations. Monocyte-to-macrophage differentiation of HIV-infected primary human CD14+ and THP-1 cells induced HIV reactivation and showed that virus production increased concomitant with macrophage differentiation. We applied the HIV-infected THP-1 monocyte-to-macrophage (MLat) model to assess the biological mechanisms regulating HIV latency dynamics during monocyte-to-macrophage differentiation. We pinpointed protein kinase C signaling pathway activation and Cyclin T1 upregulation as inherent differentiation mechanisms that regulate HIV latency reactivation. Macrophage polarization regulated latency, revealing proinflammatory M1 macrophages suppressed HIV reactivation while anti-inflammatory M2 macrophages promoted HIV reactivation. Because macrophages rely on reactive-oxygen species (ROS) to exert numerous cellular functions, we disrupted redox pathways and found that inhibitors of the thioredoxin (Trx) system acted as latency-promoting agents in T-cells and monocytes, but opposingly acted as latency-reversing agents in macrophages. We explored this mechanism with Auranofin, a clinical candidate for reducing HIV reservoirs, and demonstrated Trx reductase inhibition led to ROS induced NF-κB activity, which promoted HIV reactivation in macrophages, but not in T-cells and monocytes. Collectively, cell type-specific differences in HIV latency regulation could pose a barrier to HIV eradication strategies.


Subject(s)
Cell Differentiation , HIV Infections , HIV-1 , Homeostasis , Macrophages , Monocytes , Oxidation-Reduction , Reactive Oxygen Species , Virus Activation , Virus Latency , Humans , Virus Latency/physiology , Macrophages/virology , Macrophages/metabolism , Monocytes/virology , Monocytes/metabolism , HIV-1/physiology , HIV Infections/virology , HIV Infections/metabolism , Virus Activation/physiology , Reactive Oxygen Species/metabolism , THP-1 Cells , Signal Transduction , Protein Kinase C/metabolism
9.
Proc Natl Acad Sci U S A ; 121(18): e2202003121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38669184

ABSTRACT

Using an immunofluorescence assay based on CRISPR-dCas9-gRNA complexes that selectively bind to the HIV LTR (HIV Cas-FISH), we traced changes in HIV DNA localization in primary effector T cells from early infection until the cells become quiescent as they transition to memory cells. Unintegrated HIV DNA colocalized with CPSF6 and HIV capsid (CA, p24) was found in the cytoplasm and nuclear periphery at days 1 and 3 post infection. From days 3 to 7, most HIV DNA was distributed primarily in the nuclear intermediate euchromatic compartment and was transcribed. By day 21, the cells had entered quiescence, and HIV DNA accumulated in the perinucleolar compartment (PNC). The localization of proviruses to the PNC was blocked by integrase inhibitor Raltegravir, suggesting it was due to chromosomal rearrangements. During the reactivation of latently infected cells through the T cell receptor (TCR), nascent viral mRNA transcripts associated with HIV DNA in the PNC were detected. The viral trans-activator Tat and its regulatory partners, P-TEFb and 7SK snRNA, assembled in large interchromatin granule clusters near the provirus within 2 h of TCR activation. As T cell activation progressed, the HIV DNA shifted away from the PNC. HIV DNA in latently infected memory T cells from patients also accumulated in the PNC and showed identical patterns of nuclear rearrangements after cellular reactivation. Thus, in contrast to transformed cells where proviruses are found primarily at the nuclear periphery, in primary memory T cells, the nuclear architecture undergoes rearrangements that shape the transcriptional silencing and reactivation of proviral HIV.


Subject(s)
Cell Nucleus , HIV Infections , HIV-1 , Proviruses , Virus Activation , Virus Latency , Humans , Proviruses/genetics , Cell Nucleus/metabolism , Cell Nucleus/virology , HIV-1/genetics , HIV-1/physiology , HIV-1/metabolism , HIV Infections/virology , HIV Infections/metabolism , DNA, Viral/genetics , DNA, Viral/metabolism , HIV Long Terminal Repeat/genetics
10.
Open Forum Infect Dis ; 11(3): ofad694, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38449916

ABSTRACT

Background: T cells in people with human immunodeficiency virus (HIV) demonstrate an exhausted phenotype, and HIV-specific CD4+ T cells expressing programmed cell death 1 (PD-1) are enriched for latent HIV, making antibody to PD-1 a potential strategy to target the latent reservoir. Methods: This was a phase 1/2, randomized (4:1), double-blind, placebo-controlled study in adults with suppressed HIV on antiretroviral therapy with CD4+ counts ≥350 cells/µL who received 2 infusions of cemiplimab versus placebo. The primary outcome was safety, defined as any grade 3 or higher adverse event (AE) or any immune-related AE (irAE). Changes in HIV-1-specific polyfunctional CD4+ and CD8+ T-cell responses were evaluated. Results: Five men were enrolled (median CD4+ count, 911 cells/µL; median age, 51 years); 2 received 1 dose of cemiplimab, 2 received 2 doses, and 1 received placebo. One participant had a probable irAE (thyroiditis, grade 2); another had a possible irAE (hepatitis, grade 3), both after a single low-dose (0.3 mg/kg) infusion. The Safety Monitoring Committee recommended no further enrollment or infusions. All 4 cemiplimab recipients were followed for 48 weeks. No other cemiplimab-related serious AEs, irAEs, or grade 3 or higher AEs occurred. One 2-dose recipient of cemiplimab had a 6.2-fold increase in polyfunctional, Gag-specific CD8+ T-cell frequency with supportive increases in plasma HIV RNA and decreases in total HIV DNA. Conclusions: One of 4 participants exhibited increased HIV-1-specific T-cell responses and transiently increased HIV-1 expression following 2 cemiplimab infusions. The occurrence of irAEs after a single, low dose may limit translating the promising therapeutic results of cemiplimab for cancer to immunotherapeutic and latency reversal strategies for HIV. Clinical Trials Registration. NCT03787095.

11.
J Infect Dis ; 229(3): 743-752, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38349333

ABSTRACT

BACKGROUND: The histone deacetylase inhibitor vorinostat (VOR) can reverse human immunodeficiency virus type 1 (HIV-1) latency in vivo and allow T cells to clear infected cells in vitro. HIV-specific T cells (HXTCs) can be expanded ex vivo and have been safely administered to people with HIV (PWH) on antiretroviral therapy. METHODS: Six PWH received infusions of 2 × 107 HXTCs/m² with VOR 400 mg, and 3 PWH received infusions of 10 × 107 HXTCs/m² with VOR. The frequency of persistent HIV by multiple assays including quantitative viral outgrowth assay (QVOA) of resting CD4+ T cells was measured before and after study therapy. RESULTS: VOR and HXTCs were safe, and biomarkers of serial VOR effect were detected, but enhanced antiviral activity in circulating cells was not evident. After 2 × 107 HXTCs/m² with VOR, 1 of 6 PWH exhibited a decrease in QVOA, and all 3 PWH exhibited such declines after 10 × 107 HXTCs/m² and VOR. However, most declines did not exceed the 6-fold threshold needed to definitively attribute decline to the study intervention. CONCLUSIONS: These modest effects provide support for the strategy of HIV latency reversal and reservoir clearance, but more effective interventions are needed to yield the profound depletion of persistent HIV likely to yield clinical benefit. Clinical Trials Registration. NCT03212989.


Subject(s)
HIV Infections , HIV-1 , Humans , Vorinostat/therapeutic use , Vorinostat/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylase Inhibitors/pharmacology , CD4-Positive T-Lymphocytes , Cell- and Tissue-Based Therapy , Virus Latency
12.
mBio ; 15(4): e0222223, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38411080

ABSTRACT

During HIV infection of CD4+ T cells, ubiquitin pathways are essential to viral replication and host innate immune response; however, the role of specific E3 ubiquitin ligases is not well understood. Proteomics analyses identified 116 single-subunit E3 ubiquitin ligases expressed in activated primary human CD4+ T cells. Using a CRISPR-based arrayed spreading infectivity assay, we systematically knocked out 116 E3s from activated primary CD4+ T cells and infected them with NL4-3 GFP reporter HIV-1. We found 10 E3s significantly positively or negatively affected HIV infection in activated primary CD4+ T cells, including UHRF1 (pro-viral) and TRAF2 (anti-viral). Furthermore, deletion of either TRAF2 or UHRF1 in three JLat models of latency spontaneously increased HIV transcription. To verify this effect, we developed a CRISPR-compatible resting primary human CD4+ T cell model of latency. Using this system, we found that deletion of TRAF2 or UHRF1 initiated latency reactivation and increased virus production from primary human resting CD4+ T cells, suggesting these two E3s represent promising targets for future HIV latency reversal strategies. IMPORTANCE: HIV, the virus that causes AIDS, heavily relies on the machinery of human cells to infect and replicate. Our study focuses on the host cell's ubiquitination system which is crucial for numerous cellular processes. Many pathogens, including HIV, exploit this system to enhance their own replication and survival. E3 proteins are part of the ubiquitination pathway that are useful drug targets for host-directed therapies. We interrogated the 116 E3s found in human immune cells known as CD4+ T cells, since these are the target cells infected by HIV. Using CRISPR, a gene-editing tool, we individually removed each of these enzymes and observed the impact on HIV infection in human CD4+ T cells isolated from healthy donors. We discovered that 10 of the E3 enzymes had a significant effect on HIV infection. Two of them, TRAF2 and UHRF1, modulated HIV activity within the cells and triggered an increased release of HIV from previously dormant or "latent" cells in a new primary T cell assay. This finding could guide strategies to perturb hidden HIV reservoirs, a major hurdle to curing HIV. Our study offers insights into HIV-host interactions, identifies new factors that influence HIV infection in immune cells, and introduces a novel methodology for studying HIV infection and latency in human immune cells.


Subject(s)
CCAAT-Enhancer-Binding Proteins , HIV Infections , HIV , TNF Receptor-Associated Factor 2 , Ubiquitin-Protein Ligases , Virus Latency , Humans , CCAAT-Enhancer-Binding Proteins/metabolism , CD4-Positive T-Lymphocytes , CRISPR-Cas Systems , TNF Receptor-Associated Factor 2/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism , Virus Replication , HIV/physiology
13.
Mol Ther Methods Clin Dev ; 32(1): 101203, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38390557

ABSTRACT

Despite the success of combination antiretroviral therapy (cART) in HIV treatment, a cure for HIV remains elusive. Scientists postulate that HIV latent reservoirs may be a vital target in curative strategies. Vorinostat is a latency-reversing agent that has demonstrated some effectiveness in reactivating latent HIV, but complementary therapies may be essential to enhance its efficacy. One such approach may utilize the CRISPR-Cas9 system, which has evolved to include transcriptional activators such as dCas9-VPR. In this study, we explored the effects of combining vorinostat coupled with gesicle-mediated delivery of dCas9-VPR in promoting the transcription of integrated HIV proviruses in HIV-NanoLuc CHME-5 microglia and J-Lat 10.6 lymphocytes. We confirmed that dCas9-VPR ribonucleoprotein complexes can be packaged into gesicles and application to cells successfully induced HIV transcription through interactions with the HIV LTR. Vorinostat also induced significant increases in proviral transcription but generated inhibition of cellular proliferation (microglia) or cell viability (lymphocytes) starting at 1,000 nM and higher concentrations. Experiments combining dCas9-VPR gesicles and vorinostat confirmed the enhanced transcriptional activation of the HIV provirus in microglia but not lymphocytes. Thus, a combination of dCas9-VPR gesicles with other latency-reversing agents may provide a complementary method to activate latent HIV in future studies utilizing patient-derived cells or small animal models.

14.
mBio ; 15(2): e0192523, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38179937

ABSTRACT

A complete cure against human immunodeficiency virus (HIV) infection remains out of reach, as the virus persists in stable cell reservoirs that are resistant to antiretroviral therapy. The key to eliminating these reservoirs lies in deciphering the processes that govern viral gene expression and latency. However, while we comprehensively understand how host proteins influence HIV gene expression and viral latency, the emerging role of long noncoding RNAs (lncRNAs) in the context of T cell activation, HIV gene expression, and viral latency remain unexplored. This review dives into the evolving significance of lncRNAs and their impact on HIV gene expression and viral latency. We provide an overview of the current knowledge regarding how lncRNAs regulate HIV gene expression, categorizing them as either activators or inhibitors of viral gene expression and infectivity. Furthermore, we offer insights into the potential therapeutic applications of lncRNAs in combatting HIV. A deeper understanding of how lncRNAs modulate HIV gene transcription holds promise for developing novel RNA-based therapies to complement existing treatment strategies to eradicate HIV reservoirs.


Subject(s)
HIV Infections , HIV-1 , RNA, Long Noncoding , Humans , Virus Activation/genetics , RNA, Long Noncoding/genetics , HIV-1/genetics , Virus Latency/genetics , CD4-Positive T-Lymphocytes
15.
Expert Opin Drug Discov ; 19(3): 353-368, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38258439

ABSTRACT

INTRODUCTION: HIV-infected cells may rebound due to the existence of the silent HIV-infected memory CD4+ T cells (HIV latency). This HIV latency makes the disease almost incurable. In latency, the integrated proviral DNA of HIV is transcriptionally silenced partly due to the activity of histone deacetylases (HDACs). Hence, inhibition of HDAC is considered a prime target for HIV latency reversal. AREAS COVERED: A brief biology and function of HDACs have been discussed to identify key points to design HDAC inhibitors (HDACis). This article summarizes recent achievements in the development of HDACis to achieve HIV latency reversal. Structure-activity relationships (SARs) of some series of compounds were also explored. EXPERT OPINION: Depletion of the HIV reservoir is the only way to end this deadly epidemic. HDACis are latency-reversing agents (LRA) that can be used to 'shock' the latently infected CD4+ T cells to induce them to produce viral proteins. It is interesting to note that HDAC3, which is extensively expressed in resting T cells, is specifically preferred by benzamide-containing HDACis for inhibition. Thus, the benzamide class of compounds should be explored. Nevertheless, more data on selective HDAC inhibition is needed for further development of HDACis in HIV latency reversal.


Subject(s)
HIV Infections , Histone Deacetylase Inhibitors , Humans , Histone Deacetylase Inhibitors/pharmacology , Virus Latency , Histone Deacetylases/metabolism , Benzamides , HIV Infections/drug therapy , Structure-Activity Relationship
16.
Front Immunol ; 14: 1270881, 2023.
Article in English | MEDLINE | ID: mdl-38130714

ABSTRACT

The immune system of people living with HIV (PLWH) is persistently exposed to antigens leading to systemic inflammation despite combination antiretroviral treatment (cART). This inflammatory milieu promotes T-cell activation and exhaustion. Furthermore, it produces diminished effector functions including loss of cytokine production, cytotoxicity, and proliferation, leading to disease progression. Exhausted T cells show overexpression of immune checkpoint molecules (ICs) on the cell surface, including programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), and lymphocyte activation gene-3 (LAG-3). The ICs also play a crucial role in T-cell exhaustion by reducing the immune response to cancer antigens. Immunotherapy based on immune checkpoint inhibitors (ICIs) has changed the management of a diversity of cancers. Additionally, the interest in exploring this approach in the setting of HIV infection has increased, including AIDS-defining cancers and non-AIDS-defining cancers in PLWH. To date, research on this topic suggests that ICI-based therapies in PLWH could be a safe and effective approach. In this review, we provide an overview of the current literature on the potential role of ICI-based immunotherapy not only in cancer remission in PLWH but also as a therapeutic intervention to restore immune response against HIV, revert HIV latency, and attain a functional cure for HIV infection.


Subject(s)
HIV Infections , HIV-1 , Neoplasms , Humans , Immune Checkpoint Inhibitors/therapeutic use , T-Cell Exhaustion , Neoplasms/drug therapy , Immunoglobulins/therapeutic use
17.
Pathog Immun ; 8(1): 161-169, 2023.
Article in English | MEDLINE | ID: mdl-38155941

ABSTRACT

The inaugural FASEB HIV Reservoirs and Immune Control Conference brought researchers together from across the globe to discuss reservoir dynamics in clinical cohorts. It extended over 4 days in the seaside town of Malahide, Ireland. The scientific sessions covered a broad range of topics, including: 1) HIV pathogenesis and control, 2) reservoirs and viral expression, 3) pediatric reservoirs, 4) innate immunity and B cell responses, 5) environmental factors affecting pathogenesis, 6) loss of virologic control, and 7) HIV-2. The following article provides a brief summary of the meeting proceedings and includes a supplementary document with the meeting abstracts.

18.
Front Cell Infect Microbiol ; 13: 1286168, 2023.
Article in English | MEDLINE | ID: mdl-38156317

ABSTRACT

Background: The latent HIV reservoir represents the major barrier to a cure. One curative strategy is targeting diseased cells for elimination based on biomarkers that uniquely define these cells. Single-cell RNA sequencing (scRNA-seq) has enabled the identification of gene expression profiles associated with disease at the single-cell level. Because HIV provirus in many cells during latency is not entirely silent, it became possible to determine gene expression patterns in a subset of cells latently infected with HIV. Objective: The primary objective of this study was the identification of the gene expression profiles of single latently infected CD4+ T cells using scRNA-seq. Different conditions of latency establishment were considered. The identified profiles were then explored to prioritize the identified genes for future experimental validation. Methods: To facilitate gene prioritization, three approaches were used. First, we characterized and compared the gene expression profiles of HIV latency established in different environments: in cells that encountered an activation stimulus and then returned to quiescence, and in resting cells that were infected directly via cell-to-cell viral transmission from autologous activated, productively infected cells. Second, we characterized and compared the gene expression profiles of HIV latency established with viruses of different tropisms, using an isogenic pair of CXCR4- and CCR5-tropic viruses. Lastly, we used proviral expression patterns in cells from people with HIV to more accurately define the latently infected cells in vitro. Results: Our analyses demonstrated that a subset of genes is expressed differentially between latently infected and uninfected cells consistently under most conditions tested, including cells from people with HIV. Our second important observation was the presence of latency signatures, associated with variable conditions when latency was established, including cellular exposure and responsiveness to a T cell receptor stimulus and the tropism of the infecting virus. Conclusion: Common signatures, specifically genes that encode proteins localized to the cell surface, should be prioritized for further testing at the protein level as biomarkers for the ability to enrich or target latently infected cells. Cell- and tropism-dependent biomarkers may need to be considered in developing targeting strategies to ensure that all the different reservoir subsets are eliminated.


Subject(s)
HIV Infections , HIV-1 , Humans , CD4-Positive T-Lymphocytes/metabolism , Virus Activation/genetics , Virus Latency/genetics , Transcriptome , HIV-1/genetics , Proviruses/genetics , Biomarkers/metabolism , Sequence Analysis, RNA
19.
Cell Chem Biol ; 30(12): 1617-1633.e9, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38134881

ABSTRACT

A long-lived latent reservoir of HIV-1-infected CD4 T cells persists with antiretroviral therapy and prevents cure. We report that the emergence of latently infected primary CD4 T cells requires the activity of histone deacetylase enzymes HDAC1/2 and HDAC3. Data from targeted HDAC molecules, an HDAC3-directed PROTAC, and CRISPR-Cas9 knockout experiments converge on a model where either HDAC1/2 or HDAC3 targeting can prevent latency, whereas all three enzymes must be targeted to achieve latency reversal. Furthermore, HDACi treatment targets features of memory T cells that are linked to proviral latency and persistence. Latency prevention is associated with increased H3K9ac at the proviral LTR promoter region and decreased H3K9me3, suggesting that this epigenetic switch is a key proviral silencing mechanism that depends on HDAC activity. These findings support further mechanistic work on latency initiation and eventual clinical studies of HDAC inhibitors to interfere with latency initiation.


Subject(s)
HIV Infections , Histone Deacetylases , Humans , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Virus Latency/genetics , Histone Deacetylase Inhibitors/pharmacology , Epigenesis, Genetic
20.
Viruses ; 15(9)2023 08 31.
Article in English | MEDLINE | ID: mdl-37766271

ABSTRACT

We sought to explore the hypothesis that host factors required for HIV-1 replication also play a role in latency reversal. Using a CRISPR gene library of putative HIV dependency factors, we performed a screen to identify genes required for latency reactivation. We identified several HIV-1 dependency factors that play a key role in HIV-1 latency reactivation including ELL, UBE2M, TBL1XR1, HDAC3, AMBRA1, and ALYREF. The knockout of Cyclin T1 (CCNT1), a component of the P-TEFb complex that is important for transcription elongation, was the top hit in the screen and had the largest effect on HIV latency reversal with a wide variety of latency reversal agents. Moreover, CCNT1 knockout prevents latency reactivation in a primary CD4+ T cell model of HIV latency without affecting the activation of these cells. RNA sequencing data showed that CCNT1 regulates HIV-1 proviral genes to a larger extent than any other host gene and had no significant effects on RNA transcripts in primary T cells after activation. We conclude that CCNT1 function is non-essential in T cells but is absolutely required for HIV latency reversal.


Subject(s)
Cyclin T , HIV Infections , HIV-1 , Virus Latency , Humans , Adaptor Proteins, Signal Transducing/genetics , CD4-Positive T-Lymphocytes , Clustered Regularly Interspaced Short Palindromic Repeats , Cyclin T/genetics , Cyclin T/metabolism , HIV-1/physiology , Ubiquitin-Conjugating Enzymes/genetics , Virus Activation
SELECTION OF CITATIONS
SEARCH DETAIL