Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
1.
Mech Ageing Dev ; 220: 111951, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38825059

ABSTRACT

Animal longevity is a function of global vital organ functionality and, consequently, a complex polygenic trait. Yet, monogenic regulators controlling overall or organ-specific ageing exist, owing their conservation to their function in growth and development. Here, by using pathway analysis combined with wet-biology methods on several dynamic timelines, we identified Hnf1a as a novel master regulator of the maturation and ageing in the adult pancreatic islet during the first year of life. Conditional transgenic mice bearing suboptimal levels of this transcription factor in the pancreatic islets displayed age-dependent changes, with a profile echoing precocious maturation. Additionally, the comparative pathway analysis revealed a link between Hnf1a age-dependent regulation and immune signaling, which was confirmed in the ageing timeline of an overly immunodeficient mouse model. Last, the global proteome analysis of human islets spanning three decades of life largely backed the age-specific regulation observed in mice. Collectively, our results suggest a novel role of Hnf1a as a monogenic regulator of the maturation and ageing process in the pancreatic islet via a direct or indirect regulatory loop with immune signaling.


Subject(s)
Aging , Hepatocyte Nuclear Factor 1-alpha , Islets of Langerhans , Signal Transduction , Hepatocyte Nuclear Factor 1-alpha/metabolism , Animals , Islets of Langerhans/metabolism , Mice , Humans , Signal Transduction/physiology , Aging/metabolism , Aging/physiology , Mice, Transgenic
2.
Gene ; 927: 148625, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38830515

ABSTRACT

The orchestration of fetal kidney development involves the precise control of numerous genes, including HNF1A, HNF1B and PKHD1. Understanding the genetic factors influencing fetal kidney development is essential for unraveling the complexities of renal disorders. This study aimed to search for disease-causing variants in HNF1A, HNF1B, PKHD1 genes, among fetus and babies or via parental samples, using sanger sequencing, NGS technologie and MLPA. The study revealed an absence of gene deletions and disease-causing variants in the HNF1B gene. However, five previously SNPs in the HNF1A gene were identified in four patients (patients 1, 2, 3, and 4). These include c.51C > G (Exon1, p. Leu17=), c.79A > C (Exon1, p. Ile27Leu), c.1375C > T (Exon7, p. Leu459=), c.1460G > A (Exon7, p. Ser487Asn), and c.1501 + 7G > A (Intron7). Additionally, in addition to previously SNPs identified, a de novo heterozygous missense mutation (p.E508K) was detected in patient 4. Furthermore, a heterozygous mutation in exon 16 (p. Arg494*; c.1480C > T) was identified in both parents of patient 5, allowing predictions of fetal homozygosity. Bioinformatic analyses predicted the effects of the c.1522G > A mutation (p.E508K) on splicing processes, pre-mRNA structures, and protein instability and conformation. Similarly, the c.1480C > T mutation (p. Arg494*) was predicted to introduce a premature codon stop, leads to the production of a shorter protein with altered or impaired function. Identification of variants in the HNF1A and in PKHD1 genes provides valuable insights into the genetic landscape of renal abnormalities in affected patients. These findings underscore the heterogeneity of genetic variants contributing to renal disorders and emphasize the importance of genetic screening.


Subject(s)
Hepatocyte Nuclear Factor 1-alpha , Kidney , Polymorphism, Single Nucleotide , Humans , Female , Kidney/metabolism , Kidney/embryology , Hepatocyte Nuclear Factor 1-alpha/genetics , Male , Receptors, Cell Surface/genetics , Hepatocyte Nuclear Factor 1-beta/genetics , Mutation , Mutation, Missense , Fetus/metabolism
3.
Front Genet ; 15: 1362977, 2024.
Article in English | MEDLINE | ID: mdl-38933924

ABSTRACT

Women with maturity-onset diabetes of the young (MODY) need tailored antenatal care and monitoring of their offspring. Each MODY subtype has different implications for glycaemic targets, treatment choices and neonatal management. Hyperglycaemia of MODY is often first diagnosed in adolescence or early adulthood and therefore is clinically relevant to pregnant women. MODY remains an under-recognised and undiagnosed condition. Pregnancy represents an opportune time to make a genetic diagnosis of MODY and provide precision treatment. This review describes the nuance of antenatal care in women with MODY and the implications for pregnancies affected by a positive paternal genotype. Mutations in hepatic nuclear factor 1-alpha (HNF1A) and 4-alpha (HNF4A) genes are associated with progressive ß-cell dysfunction resulting in early onset diabetes. Patients are largely managed with sulphonylureas outside of pregnancy. Macrosomia and persistent neonatal hypoglycaemia are reported in 54% and 15% of HNF4A genotype positive offspring respectively with a median increase in birthweight of 790 g. Close observation of foetal growth in utero allows optimal timing of delivery to minimise peri- and postpartum materno-foetal complications. Glucokinase (GCK)-MODY causes mild fasting hyperglycaemia which does not require treatment outside of pregnancy. Birthweight of offspring of maternal carriers is dependent on foetal genotype; heterozygous mutation carriers are usually normal weight while genotype negative offspring are large for gestational age (600 g heavier). Affected offspring of paternal carriers may be small for gestational age (500 g lighter). Serial growth scans with measurement of the abdominal circumference indirectly differentiate foetal genotype. Measurement of cell free foetal DNA in maternal blood from the late first trimester is superior to traditionally used ultrasound to distinguish foetal genotype. Cost and accessibility may limit its use.

4.
JHEP Rep ; 6(6): 101078, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38699071

ABSTRACT

Hepatocellular adenomas (HCAs) are rare benign liver tumours. Predisposing factors and complication rates appear to differ among children and adults. In the present study, we aimed to systematically characterise paediatric HCAs and determine their course, complications, and management. Medical history, clinical symptoms, imaging, histopathology, and genetics of children with HCAs were collected through a systematic and comprehensive review of the published literature. A total of 316 children with HCAs were included in the present study. HCAs were diagnosed primarily in girls (59.3%) and at a mean age of 11.5 (range 0-17.7) years. The majority (83.6%) of HCAs occurred in children with predisposing diseases, of which glycogen storage disease was the most common, followed by portosystemic shunts and MODY3 (maturity-onset diabetes of the young type 3). Each of these diseases leads to a well-defined HCA molecular pattern. A significant number of HCAs either bled (24.7%) or transformed (14.8%) over time. HCA transformation was significantly more frequent in children with portosystemic shunts and in ß-catenin-mutated HCAs, while haemorrhages were more frequent in children exposed to hormones and those with larger lesions. Management was primarily guided by any predisposing conditions and the number of lesions. Therefore, vascular shunts were closed when possible, while complicated lesions were resected. Liver transplantation has made it possible to treat adenomatosis, as well as any underlying diseases. Progress in understanding genetic and/or malformative contributions, which appear to be significant in paediatric HCAs, have provided insights into tumour pathogenesis and will further guide patient surveillance and management.

5.
J Pathol Clin Res ; 10(3): e12377, 2024 May.
Article in English | MEDLINE | ID: mdl-38750616

ABSTRACT

Even after decades of research, pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal disease and responses to conventional treatments remain mostly poor. Subclassification of PDAC into distinct biological subtypes has been proposed by various groups to further improve patient outcome and reduce unnecessary side effects. Recently, an immunohistochemistry (IHC)-based subtyping method using cytokeratin-81 (KRT81) and hepatocyte nuclear factor 1A (HNF1A) could recapitulate some of the previously established molecular subtyping methods, while providing significant prognostic and, to a limited degree, also predictive information. We refined the KRT81/HNF1A subtyping method to classify PDAC into three distinct biological subtypes. The prognostic value of the IHC-based method was investigated in two primary resected cohorts, which include 269 and 286 patients, respectively. In the second cohort, we also assessed the predictive effect for response to erlotinib + gemcitabine. In both PDAC cohorts, the new HNF1A-positive subtype was associated with the best survival, the KRT81-positive subtype with the worst, and the double-negative with an intermediate survival (p < 0.001 and p < 0.001, respectively) in univariate and multivariate analyses. In the second cohort (CONKO-005), the IHC-based subtype was additionally found to have a potential predictive value for the erlotinib-based treatment effect. The revised IHC-based subtyping using KRT81 and HNF1A has prognostic significance for PDAC patients and may be of value in predicting treatment response to specific therapeutic agents.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Gemcitabine , Hepatocyte Nuclear Factor 1-alpha , Immunohistochemistry , Pancreatic Neoplasms , Predictive Value of Tests , Humans , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/metabolism , Female , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/metabolism , Biomarkers, Tumor/analysis , Male , Middle Aged , Aged , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Prognosis , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Erlotinib Hydrochloride/therapeutic use , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aged, 80 and over , Keratins, Hair-Specific/metabolism , Keratins, Hair-Specific/analysis , Kaplan-Meier Estimate
6.
Noncoding RNA ; 10(2)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38668386

ABSTRACT

The long non-coding RNA (lncRNA) hepatocyte nuclear factor-1 alpha (HNF1A) antisense RNA 1 (HNF1A-AS1) is an important lncRNA for liver growth, development, cell differentiation, and drug metabolism. Like many lncRNAs, HNF1A-AS1 has multiple annotated alternative transcripts in the human genome. Several fundamental biological questions are still not solved: (1) How many transcripts really exist in biological samples, such as liver samples and liver cell lines? (2) What are the expression patterns of different alternative HNF1A-AS1 transcripts at different conditions, including during cell growth and development, after exposure to xenobiotics (such as drugs), and in disease conditions, such as metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD) cirrhosis, and obesity? (3) Does the siRNA used in previous studies knock down one or multiple transcripts? (4) Do different transcripts have the same or different functions for gene regulation? The presented data confirm the existence of several annotated HNF1A-AS1 transcripts in liver samples and cell lines, but also identify some new transcripts, which are not annotated in the Ensembl genome database. Expression patterns of the identified HNF1A-AS1 transcripts are highly correlated with the cell differentiation of matured hepatocyte-like cells from human embryonic stem cells (hESC), growth and differentiation of HepaRG cells, in response to rifampicin induction, and in various liver disease conditions. The expression levels of the HNF1A-AS1 transcripts are also highly correlated to the expression of cytochrome P450 enzymes, such as CYP3A4, during HepaRG growth, differentiation, and in response to rifampicin induction.

7.
Biochem Pharmacol ; 223: 116133, 2024 May.
Article in English | MEDLINE | ID: mdl-38494066

ABSTRACT

Despite the exact biological role of HNF1 homolog A (HNF1A) in the regulatory mechanism of glioblastoma (GBM), the molecular mechanism, especially the downstream regulation as a transcription factor, remains to be further elucidated. Immunohistochemistry was used to detect the expression and clinical relevance of HNF1A in GBM patients. CCK8, TUNEL, and subcutaneous tumor formation in nude mice were used to evaluate the effect of HNF1A on GBM in vitro and in vivo. The correction between HNF1A and epidermal growth factor receptor pathway substrate 8 (EPS8) was illustrated by bioinformatics analysis and luciferase assay. Further mechanism was explored that the transcription factor HNF1A regulated the expression of EPS8 and downstream signaling pathways by directly binding to the promoter region of EPS8. Our comprehensive analysis of clinical samples in this study showed that upregulated expression of HNF1A was associated with poor survival in GBM patients. Further, we found that knockdown of HNF1A markedly suppressed the malignant phenotype of GBM cells in vivo and in vitro as well as promoted apoptosis of tumor cells, which was reversed by upregulation of HNF1A. Mechanistically, HNF1A could significantly activate PI3K/AKT signaling pathway by specifically binding to the promoter regions of EPS8. Moreover, overexpression of EPS8 was able to reverse the apoptosis of tumor cells caused by HNF1A knockdown, thereby exacerbating the GBM progression. Correctively, our study has clarified the explicit mechanism by which HNF1A promotes GBM malignancy and provides a new therapeutic target for further clinical application.


Subject(s)
Glioblastoma , Proto-Oncogene Proteins c-akt , Animals , Mice , Humans , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Glioblastoma/genetics , Glioblastoma/pathology , Mice, Nude , Cell Proliferation , Cell Line, Tumor , Signal Transduction , Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Adaptor Proteins, Signal Transducing/metabolism
8.
Hormones (Athens) ; 23(2): 345-350, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38311659

ABSTRACT

Premature ovarian failure (POF) defines the occurrence of ovarian failure prior to the age of 40. It occurs in one out of 100 women but is very rare before age 20 (1:10,000). Maturity-onset diabetes of the young (MODY), caused by mutations in the HNF1A gene, is also a rare disorder; all types of MODY account for 1-2% of adult diabetic cases. These two rare nosologic entities coexisted in an adolescent girl evaluated for delayed puberty. Although this combination could represent a chance association, an interrelation might exist. We examined HNF1A expression in human fetal and adult ovaries by immunohistochemistry using a polyclonal HNF1A antibody. HNF1A protein was expressed in both the fetal and adult human ovaries. Based on these findings, we hypothesize that HNF1A participates in ovarian organogenesis and/or function and that mutations in the HNF1A gene might represent another molecular defect causing POF, possibly in combination with other genetic factors. The study underlines the importance of rare clinical paradigms in leading the way to elucidation of the pathogenetic mechanisms of rare diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Hepatocyte Nuclear Factor 1-alpha , Mutation , Primary Ovarian Insufficiency , Humans , Female , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Primary Ovarian Insufficiency/genetics , Adolescent , Diabetes Mellitus, Type 2/genetics , Ovary/metabolism , Ovary/pathology
9.
Acta Pharmacol Sin ; 45(5): 1060-1076, 2024 May.
Article in English | MEDLINE | ID: mdl-38228910

ABSTRACT

Paclitaxel resistance is associated with a poor prognosis in non-small cell lung cancer (NSCLC) patients, and currently, there is no promising drug for paclitaxel resistance. In this study, we investigated the molecular mechanisms underlying the chemoresistance in human NSCLC-derived cell lines. We constructed paclitaxel-resistant NSCLC cell lines (A549/PR and H460/PR) by long-term exposure to paclitaxel. We found that triptolide, a diterpenoid epoxide isolated from the Chinese medicinal herb Tripterygium wilfordii Hook F, effectively enhanced the sensitivity of paclitaxel-resistant cells to paclitaxel by reducing ABCB1 expression in vivo and in vitro. Through high-throughput sequencing, we identified the SHH-initiated Hedgehog signaling pathway playing an important role in this process. We demonstrated that triptolide directly bound to HNF1A, one of the transcription factors of SHH, and inhibited HNF1A/SHH expression, ensuing in attenuation of Hedgehog signaling. In NSCLC tumor tissue microarrays and cancer network databases, we found a positive correlation between HNF1A and SHH expression. Our results illuminate a novel molecular mechanism through which triptolide targets and inhibits HNF1A, thereby impeding the activation of the Hedgehog signaling pathway and reducing the expression of ABCB1. This study suggests the potential clinical application of triptolide and provides promising prospects in targeting the HNF1A/SHH pathway as a therapeutic strategy for NSCLC patients with paclitaxel resistance. Schematic diagram showing that triptolide overcomes paclitaxel resistance by mediating inhibition of the HNF1A/SHH/ABCB1 axis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Diterpenes , Drug Resistance, Neoplasm , Epoxy Compounds , Hedgehog Proteins , Hepatocyte Nuclear Factor 1-alpha , Lung Neoplasms , Paclitaxel , Phenanthrenes , Epoxy Compounds/pharmacology , Epoxy Compounds/therapeutic use , Humans , Phenanthrenes/pharmacology , Phenanthrenes/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Diterpenes/pharmacology , Diterpenes/therapeutic use , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Drug Resistance, Neoplasm/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Hedgehog Proteins/metabolism , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Animals , Cell Line, Tumor , Signal Transduction/drug effects , Mice, Nude , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , Mice , Mice, Inbred BALB C , A549 Cells
10.
Biochem Pharmacol ; 220: 116016, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176619

ABSTRACT

Cytochrome P450 3A4 (CYP3A4) is the most important and abundant drug-metabolizing enzyme in the human liver. Inter-individual differences in the expression and activity of CYP3A4 affect clinical and precision medicine. Increasing evidence indicates that long noncoding RNAs (lncRNAs) play crucial roles in the regulation of CYP3A4 expression. Here, we showed that lncRNA hepatocyte nuclear factor 1 alpha-antisense 1 (HNF1A-AS1) exerted dual functions in regulating CYP3A4 expression in Huh7 and HepG2 cells. Mechanistically, HNF1A-AS1 served as an RNA scaffold to interact with both protein arginine methyltransferase 1 and pregnane X receptor (PXR), thereby facilitating their protein interactions and resulting in the transactivation of PXR and transcriptional alteration of CYP3A4 via histone modifications. Furthermore, HNF1A-AS1 bound to the HNF1A protein, a liver-specific transcription factor, thereby blocking its interaction with the E3 ubiquitin ligase tripartite motif containing 25, ultimately preventing HNF1A ubiquitination and protein degradation, further regulating the expression of CYP3A4. In summary, these results reveal the novel functions of HNF1A-AS1 as the transcriptional and post-translational regulator of CYP3A4; thus, HNF1A-AS1 may serve as a new indicator for establishing or predicting individual differences in CYP3A4 expression.


Subject(s)
RNA, Long Noncoding , Humans , Cytochrome P-450 CYP3A/genetics , Gene Expression Regulation , Hepatocyte Nuclear Factor 1-alpha/genetics , Liver , RNA, Long Noncoding/genetics
11.
Acta Diabetol ; 61(1): 131-134, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37730861

ABSTRACT

Maturity Onset Diabetes of the Young (MODY) is a monogenic autosomal dominant disorder affecting 1-5 % of all patients with diabetes mellitus. In Caucasians, GCK and HNF1A mutations are the most common cause of MODY. Here, we report two family members carrying a genetic variant of both GCK and HNF1A gene and their nine year clinical follow-up. Our report urges physicians to be cautious when variants in two genes are found in a single patient and suggests that collaboration with MODY genetics experts is necessary for correct diagnosis and treatment.


Subject(s)
Diabetes Mellitus, Type 2 , Nuclear Family , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/drug therapy , Family , Glucokinase/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Italy , Mutation
12.
Diabet Med ; 41(5): e15265, 2024 May.
Article in English | MEDLINE | ID: mdl-38093550

ABSTRACT

AIMS: The aim is to identify people with HNF1A-MODY among individuals in diabetic cohort solely based on low hs-CRP serum level and early diabetes onset. METHODS: In 3537 participants, we analyzed the hs-CRP levels. We analyzed the HNF1A gene in 50 participants (1.4% of the cohort) with type 1 or type 2 diabetes who had hs-CRP ≤0.25 mg/L and were diagnosed with diabetes mellitus (DM) at the age of 8-40 years. We functionally characterized two identified missense variants. RESULTS: Three participants had a rare variant in the HNF1A gene, two of which we classified as likely pathogenic: c.1369_1384dup (p.Val462Aspfs*92) and c.737T>G (p.Val246Gly), and one as likely benign: c.1573A>T (p.Thr525Ser). Our functional studies revealed that p.Val246Gly decreased HNF1α transactivation activity to ~59% and the DNA binding ability to ~16% of the wild-type, while p.Thr525Ser variant showed no effect on transactivation activity, DNA binding, nor nuclear localization. Based on the two identified HNF1A-MODY patients among 3537 people with diabetes, we estimate 0.057% as the minimal HNF1A-MODY prevalence in Slovakia. A positive predictive value of hs-CRP ≤0.25 mg/L for finding HNF1A-MODY individuals was 4.0% (95% CI 0.7%, 13.5%). CONCLUSIONS: Hs-CRP value and age of DM onset could be an alternative approach to current diagnostic criteria with a potential to increase the diagnostic rate of HNF1A-MODY.


Subject(s)
C-Reactive Protein , Diabetes Mellitus, Type 2 , Humans , Child , Adolescent , Young Adult , Adult , C-Reactive Protein/metabolism , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Biomarkers , Age of Onset , Hepatocyte Nuclear Factor 1-alpha/genetics , DNA , Mutation
13.
Front Biosci (Landmark Ed) ; 28(11): 301, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38062804

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is the third most common cancer and one of the leading causes of death worldwide. Seriously threatens human life and health. Previous studies have identified that inhibin ßA (INHBA) could induce tumorgenesis and progression of CRC through the regulation of the TGF-ß/Smad signal axis. The abnormal expression of INHBA is related to the poor prognosis of patients. The aim of this study was to identify the molecular mechanism of HNF1A-AS1 and miR-214 regulating INHBA and carcinogenesis through bioinformatics combined with experiments. METHODS: The expression of HNF1A-AS1, miRNA-214-5p, INHBA in pan-cancer and CRC were investigated in the Cancer Genome Atlas (TCGA). The correlation between HNF1A-AS1 and immune-related genes or miRNAs was explored via the Gene Expression Profiling Interactive Analysis (GEPIA) and volcano plots, respectively. The association between HNF1A-AS1 and differentially expressed miRNAs was constructed by TargetScan. The miRDB, miRWalk, and TargetScan databases were utilized to predict the target genes of hsa-miR-214. The expression of INHBA in tissues and cell lines of CRC was examined by RT-qPCR and western blot assay. RESULTS: The INHBA and HNF1A-AS1 expressions were increased in Colon adenocarcinoma (COAD) and Rectum adenocarcinoma (READ) of the TCGA database. Hsa-miR-214 was relatively less expressed in CRC tissues compared with para-cancer tissues. The expression of HNF1A-AS1 was negatively correlated with hsa-miR-214. INHBA was one of the target genes of hsa-miR-214 based on miRDB, miRWalk, and TargetScan databases. The specific binding sites of INHBA-3'UTR and miR-214-5p were identified by starBase. The expression level of INHBA was positively correlated with the T stage of tumor and negatively correlated with overall survival (OS) and disease-free survival (DFS) in CRC patients. The results of RT-qPCR and western blot indicated that the expression of INHBA in tissues and cell lines in CRC was higher than those in para-carcinoma tissues and normal colon cell lines, respectively. CONCLUSIONS: These findings suggested that HNF1A-AS1 and miRNA-214-5p were key upstream non-coding RNAs of INHBA. The HNF1A-AS1/miR-214/INHBA signal axis plays a significant role in the tumorgenesis and progression of CRC. By interfering with HNF1A-AS1 and INHBA genes on HT29 and SW480 cells, it was found that HNF1A-AS1 and INHBA genes may be important target genes in CRC.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Colorectal Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Adenocarcinoma/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
14.
Front Mol Biosci ; 10: 1249939, 2023.
Article in English | MEDLINE | ID: mdl-37908230

ABSTRACT

Hepatocyte nuclear factor 1α (HNF-1A) is a transcription factor with important gene regulatory roles in pancreatic ß-cells. HNF1A gene variants are associated with a monogenic form of diabetes (HNF1A-MODY) or an increased risk for type 2 diabetes. While several pancreatic target genes of HNF-1A have been described, a lack of knowledge regarding the structure-function relationships in HNF-1A prohibits a detailed understanding of HNF-1A-mediated gene transcription, which is important for precision medicine and improved patient care. Therefore, we aimed to characterize the understudied transactivation domain (TAD) of HNF-1A in vitro. We present a bioinformatic approach to dissect the TAD sequence, analyzing protein structure, sequence composition, sequence conservation, and the existence of protein interaction motifs. Moreover, we developed the first protocol for the recombinant expression and purification of the HNF-1A TAD. Small-angle X-ray scattering and synchrotron radiation circular dichroism suggested a disordered conformation for the TAD. Furthermore, we present functional data on HNF-1A undergoing liquid-liquid phase separation, which is in line with in silico predictions and may be of biological relevance for gene transcriptional processes in pancreatic ß-cells.

15.
Clin Pediatr Endocrinol ; 32(4): 228-234, 2023.
Article in English | MEDLINE | ID: mdl-37842141

ABSTRACT

Maturity onset diabetes of the young (MODY) is a relatively young-onset diabetes mellitus with an autosomal dominant inheritance. Among these phenotypes, MODY3, caused by mutations in HNF1A, is one of the most frequent. Although MODY3 is known to respond markedly to sulfonylureas (SU), many cases require insulin therapy. However, there are no clear guidelines for factors to consider when introducing antidiabetic drugs and insulin. This report describes a familial case in which an older sister was diagnosed with diabetes and subsequently with MODY3, followed by the onset of diabetes in the younger sister and mother. The elder sister initially denied insulin treatment and exhibited a suboptimal response to SU but finally agreed to insulin use. The mother initially selected insulin therapy because of the challenges associated with adherence to strict dietary therapy. Conversely, the younger sister responded positively to SU and maintained effective glycemic control. The management of MODY3, even though they have the same single-gene mutation and similar residual insulin secretion at diagnosis, should be flexibly individualized for each family member to ensure long-term adherence and appropriate glycemic control.

16.
Diabetologia ; 66(12): 2226-2237, 2023 12.
Article in English | MEDLINE | ID: mdl-37798422

ABSTRACT

AIMS/HYPOTHESIS: Correctly diagnosing MODY is important, as individuals with this diagnosis can discontinue insulin injections; however, many people are misdiagnosed. We aimed to develop a robust approach for determining the pathogenicity of variants of uncertain significance in hepatocyte nuclear factor-1 alpha (HNF1A)-MODY and to obtain an accurate estimate of the prevalence of HNF1A-MODY in paediatric cases of diabetes. METHODS: We extended our previous screening of the Norwegian Childhood Diabetes Registry by 830 additional samples and comprehensively genotyped HNF1A variants in autoantibody-negative participants using next-generation sequencing. Carriers of pathogenic variants were treated by local healthcare providers, and participants with novel likely pathogenic variants and variants of uncertain significance were enrolled in an investigator-initiated, non-randomised, open-label pilot study (ClinicalTrials.gov registration no. NCT04239586). To identify variants associated with HNF1A-MODY, we functionally characterised their pathogenicity and assessed the carriers' phenotype and treatment response to sulfonylurea. RESULTS: In total, 615 autoantibody-negative participants among 4712 cases of paediatric diabetes underwent genetic sequencing, revealing 19 with HNF1A variants. We identified nine carriers with novel variants classified as variants of uncertain significance or likely to be pathogenic, while the remaining ten participants carried five pathogenic variants previously reported. Of the nine carriers with novel variants, six responded favourably to sulfonylurea. Functional investigations revealed their variants to be dysfunctional and demonstrated a correlation with the resulting phenotype, providing evidence for reclassifying these variants as pathogenic. CONCLUSIONS/INTERPRETATION: Based on this robust classification, we estimate that the prevalence of HNF1A-MODY is 0.3% in paediatric diabetes. Clinical phenotyping is challenging and functional investigations provide a strong complementary line of evidence. We demonstrate here that combining clinical phenotyping with functional protein studies provides a powerful tool to obtain a precise diagnosis of HNF1A-MODY.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Child , Pilot Projects , Diabetes Mellitus, Type 2/metabolism , Phenotype , Autoantibodies/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Norway/epidemiology , Sulfonylurea Compounds , Mutation
17.
Cell Genom ; 3(7): 100339, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37492105

ABSTRACT

Loss-of-function mutations in hepatocyte nuclear factor 1A (HNF1A) are known to cause rare forms of diabetes and alter hepatic physiology through unclear mechanisms. In the general population, 1:100 individuals carry a rare, protein-coding HNF1A variant, most of unknown functional consequence. To characterize the full allelic series, we performed deep mutational scanning of 11,970 protein-coding HNF1A variants in human hepatocytes and clinical correlation with 553,246 exome-sequenced individuals. Surprisingly, we found that ∼1:5 rare protein-coding HNF1A variants in the general population cause molecular gain of function (GOF), increasing the transcriptional activity of HNF1A by up to 50% and conferring protection from type 2 diabetes (odds ratio [OR] = 0.77, p = 0.007). Increased hepatic expression of HNF1A promoted a pro-atherogenic serum profile mediated in part by enhanced transcription of risk genes including ANGPTL3 and PCSK9. In summary, ∼1:300 individuals carry a GOF variant in HNF1A that protects carriers from diabetes but enhances hepatic secretion of atherogenic lipoproteins.

18.
Front Endocrinol (Lausanne) ; 14: 1173471, 2023.
Article in English | MEDLINE | ID: mdl-37396173

ABSTRACT

The frequent misdiagnosis of MODY (Maturity-Onset Diabetes of the Young) subtypes makes it necessary to clarify the clinical spectrum of the disease phenotypes in suspected subjects so that accurate diagnosis and management plans can be introduced as early as possible in the course of the disease. We report the case of a MODY subtype that was initially characterized as variant of uncertain significance (VUS) but was later changed to a likely pathogenic variant following our report of two cases where the full expression of the clinical phenotype was described. HNF1A-MODY (Maturity Onset Diabetes of the Young type 3) is one of the most common subtypes of MODY. Due to its variable clinical presentation, and the concerns with being misdiagnosed as either type 1 or type 2 diabetes, DNA sequencing is needed to confirm the diagnosis. This case report illustrates the clinical scenario leading to the identification of the gene variant c.416T>C(p. Leu139Pro) in the HNF1A gene, initially reported as a VUS and later upgraded to a likely pathogenic variant. Though the mutation was described in two Czech family members in 2020, the clinical course and phenotype was not characterized. Therefore, there was the need to fully describe the spectrum of the disease arising from the mutation. The case report fully describes the clinical spectrum of this mutation and provides much needed clinical management approaches to the wider scientific community.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Genetic Testing , Mutation , Phenotype , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism
19.
Genes Dis ; 10(4): 1596-1612, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37397525

ABSTRACT

Non-alcoholic steatohepatitis (NASH), a progressive form of non-alcoholic fatty liver disease (NAFLD), is characterised by chronic liver inflammation, which can further progress into complications such as liver cirrhosis and NASH-associated hepatocellular carcinoma (HCC) and therefore has become a growing health problem worldwide. The type I interferon (IFN) signaling pathway plays a pivotal role in chronic inflammation; however, the molecular mechanisms underlying NAFLD/NASH from the perspective of innate immune response has not yet been fully explored. In this study, we elucidated the mechanisms of how innate immune response modulates NAFLD/NASH pathogenesis, and demonstrated that hepatocyte nuclear factor-1alpha (HNF1A) was suppressed and the type I IFN production pathway was activated in liver tissues of patients with NAFLD/NASH. Further experiments suggested that HNF1A negatively regulates the TBK1-IRF3 signaling pathway by promoting autophagic degradation of phosphorylated-TBK1, which constrains IFN production, thereby inhibiting the activation of type I IFN signaling. Mechanistically, HNF1A interacts with the phagophore membrane protein LC3 through its LIR-docking sites, and mutations of LIRs (LIR2, LIR3, LIR4, and LIRs) block the HNF1A-LC3 interaction. In addition, HNF1A was identified not only as a novel autophagic cargo receptor but also to specifically induce K33-linked ubiquitin chains on TBK1 at Lys670, thereby resulting in autophagic degradation of TBK1. Collectively, our study illustrates the crucial function of the HNF1A-TBK1 signaling axis in NAFLD/NASH pathogenesis via cross-talk between autophagy and innate immunity.

20.
Pediatr Dev Pathol ; 26(4): 394-403, 2023.
Article in English | MEDLINE | ID: mdl-37334553

ABSTRACT

BACKGROUND: Hepatocellular adenoma (HCA) in the pediatric population is very rare and there are only limited studies, especially with molecular characterization of the tumors. Main HCA subtypes recognized in the current WHO classification include HNF1A-inactivated HCA (H-HCA), inflammatory HCA (IHCA), ß-catenin-activated HCA (b-HCA), and ß-catenin-activated IHCA (b-IHCA) and sonic hedgehog HCA (shHCA) is reported as an emerging subtype. METHODS: Clinical history, pathological information, and molecular studies for a series of 2 cases of pediatric HCA were reviewed. RESULTS: Case 1 was a b-HCA characterized by somatic CTNNB1 S45 mutation in a 11-year-old male with Abernethy malformation. Case 2 was a H-HCA characterized by germline HNF1A variant (c.526+1G>A) in a 15-year-old male associated with maturity-onset diabetes of the young type 3 (MODY3). CONCLUSION: Our findings highlight the rarity of these 2 cases associated with adenomatosis, and the contribution of molecular/genetic analysis for proper sub-typing, prognosis and family surveillance.


Subject(s)
Adenoma, Liver Cell , Carcinoma, Hepatocellular , Liver Neoplasms , Male , Humans , Child , Adolescent , Adenoma, Liver Cell/diagnosis , Adenoma, Liver Cell/genetics , Adenoma, Liver Cell/pathology , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Liver Neoplasms/pathology , beta Catenin/genetics , Hedgehog Proteins , Phenotype , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL