Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000442

ABSTRACT

Human defensins are cysteine-rich peptides (Cys-rich peptides) of the innate immune system. Defensins contain an ancestral structural motif (i.e., γ-core motif) associated with the antimicrobial activity of natural Cys-rich peptides. In this study, low concentrations of human α- and ß-defensins showed microbicidal activity that was not associated with cell membrane permeabilization. The cell death pathway was similar to that previously described for human lactoferrin, also an immunoprotein containing a γ-core motif. The common features were (1) cell death not related to plasma membrane (PM) disruption, (2) the inhibition of microbicidal activity via extracellular potassium, (3) the influence of cellular respiration on microbicidal activity, and (4) the influence of intracellular pH on bactericidal activity. In addition, in yeast, we also observed (1) partial K+-efflux mediated via Tok1p K+-channels, (2) the essential role of mitochondrial ATP synthase in cell death, (3) the increment of intracellular ATP, (4) plasma membrane depolarization, and (5) the inhibition of external acidification mediated via PM Pma1p H+-ATPase. Similar features were also observed with BM2, an antifungal peptide that inhibits Pma1p H+-ATPase, showing that the above coincident characteristics were a consequence of PM H+-ATPase inhibition. These findings suggest, for the first time, that human defensins inhibit PM H+-ATPases at physiological concentrations, and that the subsequent cytosolic acidification is responsible for the in vitro microbicidal activity. This mechanism of action is shared with human lactoferrin and probably other antimicrobial peptides containing γ-core motifs.


Subject(s)
Cell Membrane , Proton-Translocating ATPases , Humans , Cell Membrane/metabolism , Cell Membrane/drug effects , Proton-Translocating ATPases/metabolism , Proton-Translocating ATPases/antagonists & inhibitors , Cell Membrane Permeability/drug effects , Anti-Infective Agents/pharmacology , Defensins/pharmacology , Defensins/metabolism , Hydrogen-Ion Concentration , Saccharomyces cerevisiae/metabolism , beta-Defensins/metabolism , beta-Defensins/pharmacology , Lactoferrin/pharmacology , Lactoferrin/metabolism , Potassium/metabolism , Microbial Sensitivity Tests , Candida albicans/drug effects
2.
Front Microbiol ; 11: 1147, 2020.
Article in English | MEDLINE | ID: mdl-32582092

ABSTRACT

The occurrence and spread of multidrug-resistant bacteria is a prominent health concern. To curb this urgent threat, new innovative strategies pursuing novel antimicrobial agents are of the utmost importance. Here, we unleashed the antimicrobial activity of human neutrophil peptide-4 (HNP-4) by tryptic digestion. We identified a single 11 amino acid long fragment (HNP-41 - 11) with remarkable antimicrobial potential, exceeding that of the full length peptide on both mass and molar levels. Importantly, HNP-41 - 11 was equally bactericidal against multidrug-resistant and non-resistant strains; a potency that was further enhanced by N- and C-terminus modifications (acetylation and amidation, respectively). These observations, combined with negligible cytotoxicity not exceeding that of the full length peptide, presents proteolytic digestion of innate host-defense-peptides as a novel strategy to overcome the current health crisis related to antibiotic-resistant bacteria.

3.
Biochim Biophys Acta Biomembr ; 1861(4): 835-844, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30658057

ABSTRACT

Defensins are a family of cationic antimicrobial peptides of innate immunity with immunomodulatory properties. The prototypic human α-defensins, also known as human neutrophil peptides 1-3 or HNP1-3, are extensively studied for their structure, function and mechanisms of action, yet little is known about HNP4 - the much less abundant "distant cousin" of HNP1-3. Here we report a systematic mutational analysis of HNP4 with respect to its antibacterial activity against E. coli and S. aureus, inhibitory activity against anthrax lethal factor (LF), and binding activity for LF and HIV-1 gp120. Except for nine conserved and structurally important residues (6xCys, 1xArg, 1xGlu and 1xGly), the remaining 24 residues of HNP4 were each individually mutated to Ala. The crystal structures of G23A-HNP4 and T27A-HNP4 were determined, both exhibiting a disulfide-stabilized canonical α-defensin dimer identical to wild-type HNP4. Unlike HNP1-3, HNP4 preferentially killed the Gram-negative bacterium, a property largely attributable to three clustered cationic residues Arg10, Arg11 and Arg15. The cationic cluster was also important for HNP4 killing of S. aureus, inhibition of LF and binding to LF and gp120. However, F26A, while functionally inconsequential for E. coli killing, was far more deleterious than any other mutations. Similarly, N-methylation of Leu20 to destabilize the HNP4 dimer had little effect on E. coli killing, but significantly reduced the ability of HNP4 to kill S. aureus, inhibit LF, and bind to LF and gp120. Our findings unveil the molecular determinants of HNP4 function, completing the atlas of structure and function relationships for all human neutrophil α-defensins.


Subject(s)
Anti-Bacterial Agents , Escherichia coli/growth & development , Mutation , Protein Multimerization , Staphylococcus aureus/growth & development , alpha-Defensins , Amino Acid Substitution , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antigens, Bacterial/chemistry , Bacterial Toxins/antagonists & inhibitors , Bacterial Toxins/chemistry , Humans , Structure-Activity Relationship , alpha-Defensins/chemistry , alpha-Defensins/genetics , alpha-Defensins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL