Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.326
Filter
1.
Iran J Basic Med Sci ; 27(10): 1323-1330, 2024.
Article in English | MEDLINE | ID: mdl-39229579

ABSTRACT

Objectives: Hepatic ischemia-reperfusion (HIR) is a severe process in pathophysiology that occurs clinically in hepatectomy, and hepatic transplantations. The present study aimed to investigate the effect of PKC θ deletion against HIR injury and elucidate its mechanism in pathophysiology. Materials and Methods: HIR injury was induced in wild-type and PKC θ deletion mice treated with or without heme. The ALT and AST levels were determined to evaluate liver function. HIR injury was observed via histological examination. Oxidative stress and inflammatory response markers, and their signaling pathways were detected. Results: The study found that PKC θ knockout decreased serum AST and ALT levels when compared to the WT mice. Furthermore, heme treatment significantly reduced the ALT and AST levels of the PKC θ deletion mice compared with the untreated PKC θ deletion mice. PKC θ deletion markedly elevated superoxide dismutase activity in the liver tissue, reduced malondialdehyde content in the tissue, and the serum TNF-α and IL-6 levels compared with the WT mice. Heme treatment was observed to elevate the activity of SOD and reduced MDA content and serum of TNF-α and IL 6 in the PKC θ deletion animals. Meanwhile, heme treatment increased HO-1 and Nrf 2 protein expression, and reduced the levels of TLR4, phosphorylated NF-κB, and IKB-α. Conclusion: These findings suggested that PKC θ deletion ameliorates HIR, and heme treatment further improves HIR, which is related to regulation of PKC θ deletion on Nrf 2/HO-1 and TLR4/NF-κB/IKB α pathway.

2.
Phytomedicine ; 134: 155990, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39243750

ABSTRACT

Diabetic foot ulcers (DFUs) represent a severe complication of diabetes mellitus. Ramulus Mori (Sangzhi) alkaloids (SZ-A), an approved oral medication for type 2 diabetes, have not been explored for their potential to enhance the processes involved in diabetic wound healing. This study aims to investigate SZ-A's role in diabetic wound healing mechanisms. The in vivo experimentation involves dividing the subjects into NC and SZ-A groups, with SZ-A dosed at 200 and 400 mg/kg, to assess the therapeutic efficacy of SZ-A. The results of the animal studies show that SZ-A intervention accelerates the processes of diabetic angiogenesis and wound healing in a manner dependent on its concentration. Additionally, a pathological model using advanced glycation end products (AGEs) in HUVECs demonstrates SZ-A's cytoprotective effect. In vitro, SZ-A intervention significantly increases cell proliferation, migration and tube formation, protecting HUVECs from oxidative stress injury induced by AGEs. Mechanistically, SZ-A exerts a protective effect on HUVECs from oxidative stress damage through the activation of the NRF2/HO-1/eNOS signaling pathway. The findings suggest that SZ-A exhibits considerable potential as a promising candidate for treating DFUs, which will aid in more effectively integrating plant-based therapies into clinical settings.

3.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167496, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39237046

ABSTRACT

Liver ischemia-reperfusion (I/R) injury is a detrimental complication of organ transplantation, shock, and sepsis. However, the available drugs to mitigate I/R injury remain limited. Jujuboside A (JuA) is renowned for its antioxidant, anti-inflammatory, and anti-apoptotic properties; nevertheless, its potential in liver I/R injury remains unknown. Thus, this study aimed to explore the role and underlying mechanisms of JuA in liver I/R injury. Mouse models of I/R and AML12 cell models of hypoxia/reoxygenation (H/R) were constructed. Haematoxylin and eosin staining, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) detection, and cell viability analysis were used to assess liver injury. To evaluate oxidative stress, inflammation, apoptosis, and mitochondrial damage, immunofluorescence staining, transmission electron microscopy analysis, enzyme-linked immunosorbent assay, and flow cytometry were conducted. Moreover, molecular docking techniques and western blot were employed to identify downstream target molecules and pathways affected by JuA. The results showed that JuA pretreatment effectively attenuated liver necrosis and ALT and AST level elevations induced by I/R while enhancing AML12 cell viability following H/R. Furthermore, JuA pretreatment suppressed oxidative stress triggered by I/R and H/R, thereby inhibiting the level of pro-inflammatory factors and NLRP3 inflammasome activation. Notably, JuA pretreatment alleviated mitochondrial damage and apoptosis. Mechanistically, JuA pretreatment resulted in the activation of the AKT/NRF2/HO-1 signalling pathways, whereas MK2206, the inhibitor of AKT, partially reversed the hepatoprotective effects of JuA during liver I/R. Collectively, our findings illustrated that JuA mitigated oxidative stress, inflammation, apoptosis, and mitochondrial damage by facilitating the AKT/NRF2/HO-1 signalling pathway, thereby alleviating liver I/R injury.

4.
J Orthop Surg Res ; 19(1): 531, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218922

ABSTRACT

BACKGROUND: Bone loss caused by microgravity exposure presents a serious threat to the health of astronauts, but existing treatment strategies have specific restrictions. This research aimed to investigate whether salidroside (SAL) can mitigate microgravity-induced bone loss and its underlying mechanism. METHODS: In this research, we used hindlimb unloading (HLU) and the Rotary Cell Culture System (RCCS) to imitate microgravity in vivo and in vitro. RESULTS: The results showed that salidroside primarily enhances bone density, microstructure, and biomechanical properties by stimulating bone formation and suppressing bone resorption, thereby preserving bone mass in HLU rats. In MC3T3-E1 cells cultured under simulated microgravity in rotary wall vessel bioreactors, the expression of osteogenic genes significantly increased after salidroside administration, indicating that salidroside can promote osteoblast differentiation under microgravity conditions. Furthermore, the Nrf2 inhibitor ML385 diminished the therapeutic impact of salidroside on microgravity-induced bone loss. Overall, this research provides the first evidence that salidroside can mitigate bone loss induced by microgravity exposure through stimulating the Nrf2/HO-1 pathway. CONCLUSION: These findings indicate that salidroside has great potential for treating space-related bone loss in astronauts and suggest that Nrf2/HO-1 is a viable target for counteracting microgravity-induced bone damage.


Subject(s)
Glucosides , NF-E2-Related Factor 2 , Phenols , Weightlessness Simulation , Glucosides/pharmacology , Glucosides/therapeutic use , Animals , Phenols/pharmacology , Phenols/therapeutic use , NF-E2-Related Factor 2/metabolism , Mice , Weightlessness Simulation/adverse effects , Rats , Male , Heme Oxygenase-1/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Weightlessness/adverse effects , Osteogenesis/drug effects , Osteoblasts/drug effects , Osteoblasts/metabolism , Hindlimb Suspension , Bone Resorption/prevention & control , Bone Resorption/etiology , Bone Resorption/metabolism , Bone Density/drug effects , Membrane Proteins
5.
Br J Pharmacol ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39233316

ABSTRACT

BACKGROUND AND PURPOSE: Skin flaps are among the most important means of wound repair in clinical settings. However, partial or even total distal necrosis may occur after a flap operation, with severe consequences for both patients and doctors. This study investigated whether tert-butylhydroquinone (TBHQ), a known agonist of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), and an antioxidant, could promote skin flap survival. EXPERIMENTAL APPROACH: McFarlane skin flap models were established in male Sprague-Dawley rats and then randomly divided into control, low-dose TBHQ, and high-dose TBHQ treatment groups. On postoperative day 7, the survival and blood flow of the skin flaps were assessed. Using flap tissue samples, angiogenesis, inflammation, apoptosis, autophagy, and Nrf2/haem oxygenase 1 (HO-1) signalling pathway activity were measured with immunohistochemical techniques and western blotting. KEY RESULTS: TBHQ dose-dependently stimulated the Nrf2/HO-1 signalling pathway, inducing autophagy through the up-regulation of LC3B and beclin 1 and concurrently suppressing p62 expression. Additionally, TBHQ hindered apoptosis by enhancing Bcl-2 expression while inhibiting the expression of Bax. It suppressed inflammation by inhibiting the expression of interleukin 1ß, interleukin 6, and tumour necrosis factor-α and enhanced angiogenesis by promoting the expression of vascular endothelial growth factor. CONCLUSION AND IMPLICATIONS: In summary, TBHQ promoted flap survival in rats by up-regulating the Nrf2/HO-1 signalling pathway. As TBHQ is already widely used as a food additive, it could offer an acceptable means of improving clinical outcomes following skin flap surgery in patients.

6.
Med Princ Pract ; : 1-10, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134017

ABSTRACT

OBJECTIVE: The cannabinoid receptor-2 agonist AM1241 exhibits notable cardioprotective effects against myocardial infarction, positioning it as a promising therapeutic candidate for cardiovascular disease. This study explores AM1241's protective role in myocardial ischemia-reperfusion (IR) injury and its association with the Nrf2/HO-1 pathway. METHODS: In an established Sprague-Dawley rat IR model, AM1241's impact on cardiac injury was assessed through echocardiography, 2,3,5-triphenyl tetrazolium chloride staining, and histological analysis. H9c2 cells underwent hypoxia-reoxygenation, with AM1241's influence on cell viability determined by the CCK-8 assay. Reactive oxygen species (ROS) production was measured using the DCFH-DA assay, and Nrf2 and HO-1 protein expressions were evaluated through immunofluorescence and Western blot. RESULTS: Myocardial ischemia-reperfusion injury (MIRI) increased infarct size, inflammatory cell presence, oxidative and nitrosative stress, impaired cardiac function, and elevated apoptosis rates. AM1241 mitigated these effects, enhancing cell viability, reducing ROS production, and upregulating Nrf2 and HO-1 expression. The antioxidant effect of AM1241 was inhibited by ML385 intervention. CONCLUSIONS: AM1241 attenuates oxidative stress, alleviates MIRI, and activates the Nrf2/HO-1 signaling pathway, underscoring its potential as a therapeutic strategy for MIRI.

7.
Free Radic Biol Med ; 223: 430-442, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39159887

ABSTRACT

Ferroptosis, a recently identified non-apoptotic form of cell death, is strongly associated with neurological diseases and has emerged as a potential therapeutic target. Nevertheless, the fundamental mechanisms are still predominantly unidentified. In the current investigation, sulfiredoxin-1 (SRXN1) has been identified as a crucial regulator that enhances the susceptibility to ferroptosis in HT-22 mouse hippocampal cells treated with erastin. Utilizing TMT-based proteomics, a significant increase in SRXN1 expression was observed in erastin-exposed HT-22 cells. Efficient amelioration of erastin-induced ferroptosis was achieved via the knockdown of SRXN1, which resulted in the reduction of intracellular Fe2+ levels and reactive oxygen species (ROS) in HT-22 cells. Notably, the activation of Heme Oxygenase-1 (HO-1) was found to be crucial for inducing SRXN1 expression in HT-22 cells upon treatment with erastin. SRXN1 increased intracellular ROS and Fe2+ levels by activating HO-1 expression, which promoted erastin-induced ferroptosis in HT-22 cells. Inhibiting SRXN1 or HO-1 alleviated erastin-induced autophagy in HT-22 cells. Additionally, upregulation of SRXN1 or HO-1 increased the susceptibility of HT-22 cells to ferroptosis, a process that was counteracted by the autophagy inhibitor 3-Methyladenine (3-MA). These results indicate that SRXN1 is a key regulator of ferroptosis, activating the HO-1 protein through cellular redox regulation, ferrous iron accumulation, and autophagy in HT-22 cells. These findings elucidate a novel molecular mechanism of erastin-induced ferroptosis sensitivity and suggest that SRXN1-HO-1-autophagy-dependent ferroptosis serves as a promising treatment approach for neurodegenerative diseases.


Subject(s)
Ferroptosis , Heme Oxygenase-1 , Hippocampus , Neurons , Oxidoreductases Acting on Sulfur Group Donors , Piperazines , Reactive Oxygen Species , Ferroptosis/drug effects , Ferroptosis/genetics , Animals , Mice , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Reactive Oxygen Species/metabolism , Piperazines/pharmacology , Hippocampus/metabolism , Hippocampus/pathology , Hippocampus/drug effects , Oxidoreductases Acting on Sulfur Group Donors/genetics , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Cell Line , Iron/metabolism , Gene Expression Regulation/drug effects , Membrane Proteins
8.
Environ Toxicol ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105397

ABSTRACT

In patients with chronic kidney disease, the uremic toxin indoxyl sulfate (IS) accelerates kidney damage and the progression of cardiovascular disease. IS may contribute to vascular diseases by inducing inflammation in endothelial cells. Luteolin has documented antioxidant and anti-inflammatory properties. This study aimed to investigate the effect of luteolin on IS-mediated reactive oxygen species (ROS) production and intercellular adhesion molecule (ICAM-1) and monocyte chemoattractant protein (MCP-1) expression in EA.hy926 cells and the possible mechanisms involved. IS significantly induced ROS production (by 6.03-fold, p < 0.05), ICAM-1 (by 2.19-fold, p < 0.05) and MCP-1 protein expression (by 2.18-fold, p < 0.05), and HL-60 cell adhesion (by 31%, p < 0.05), whereas, luteolin significantly decreased IS-induced ROS production, ICAM-1 and MCP-1 protein expression, and HL-60 cell adhesion. Moreover, luteolin attenuated IS-induced nuclear accumulation of p65 and c-jun. Luteolin dose-dependently increased heme oxygenase-1 (HO-1) expression and the maximum fold induction of HO-1 by luteolin was 3.68-fold (p < 0.05), whereas, HO-1 knockdown abolished the suppression of ICAM-1 and MCP-1 expression by luteolin. Luteolin may protect against IS-induced vessel damage by inducing HO-1 expression in vascular endothelial cells, which suppresses nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1) mediated ICAM-1 and MCP-1 expression.

9.
Toxicol Sci ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110510

ABSTRACT

Hyperoxia-induced acute lung injury (HALI) is a complication of oxygen therapy. Ferroptosis is a vital factor in HALI. This paper was anticipated to investigate the underlying mechanism of Wedelolactone (WED) on ferroptosis in HALI. The current study used hyperoxia to injure two models, one HALI mouse model and one MLE-12 cell injury model. We found that WED treatment attenuated HALI by decreasing the lung injury score and lung wet/dry weight ratio and alleviating pathomorphological changes. Then, the inflammatory reaction and apoptosis in HALI mice and hyperoxia-mediated MLE-12 cells were inhibited by WED treatment. Moreover, WED alleviated ferroptosis with less iron accumulation and reversed expression alterations of ferroptosis markers, including MDA, GSH, GPX4, SLC7A11, FTH1, and TFR1 in hyperoxia-induced MLE-12 cells in vitro and in vivo. Nrf2-KO mice and Nrf2 inhibitor (ML385) decreased WED's ability to protect against apoptosis, inflammatory response, and ferroptosis in hyperoxia-induced MLE-12 cells. Collectively, our data highlighted the alleviatory role of WED in HALI by activating the Nrf2/HO-1 pathway.

10.
Int Immunopharmacol ; 141: 112882, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39151383

ABSTRACT

Recent research found artesunate could inhibit ocular fibrosis; however, the underlying mechanisms are not fully known. Since the ocular fibroblast is the main effector cell in fibrosis, we hypothesized that artesunate may exert its protective effects by inhibiting the fibroblasts proliferation. TGF-ß1-induced ocular fibroblasts and glaucoma filtration surgery (GFS)-treated rabbits were used as ocular fibrotic models. Firstly, we analyzed fibrosis levels by assessing the expression of fibrotic marker proteins, and used Ki67 immunofluorescence, EdU staining, flow cytometry to determine cell cycle status, and SA-ß-gal staining to assess cellular senescence levels. Then to predict target genes and pathways of artesunate, we analyzed the differentially expressed genes and enriched pathways through RNA-seq. Western blot and immunohistochemistry were used to detect the pathway-related proteins. Additionally, we validated the dependence of artesunate's effects on HO-1 expression through HO-1 siRNA. Moreover, DCFDA and MitoSOX fluorescence staining were used to examine ROS level. We found artesunate significantly inhibits the expression of fibrosis-related proteins, induces cell cycle arrest and cellular senescence. Knocking down HO-1 in fibroblasts with siRNA reverses these regulatory effects of artesunate. Mechanistic studies show that artesunate significantly inhibits the activation of the Cyclin D1/CDK4-pRB pathway, induces an increase in cellular and mitochondrial ROS levels and activates the Nrf2/HO-1 pathway. In conclusion, the present study identifies that artesunate induces HO-1 expression through ROS to activate the antioxidant Nrf2/HO-1 pathway, subsequently inhibits the cell cycle regulation pathway Cyclin D1/CDK4-pRB in an HO-1-dependent way, induces cell cycle arrest and senescence, and thereby resists periorbital fibrosis.

11.
Chem Biol Interact ; 401: 111188, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39121897

ABSTRACT

The random flap is one of the commonly used techniques for tissue defect repair in surgery and orthopaedics, however the risk of ischaemic necrosis at the distal end of the flap limits its size and clinical application. Metformin (Met) is a first-line medication in the treatment of type 2 diabetes, with additional effects such as anti-tumor, anti-aging, and neuroprotective properties. In this study, we aimed to investigate the biological effects and potential mechanisms of Met in improving the survival of random skin flaps. Twenty-four male Sprague-Dawley rats and 12 male C57BL/6J mice underwent McFarlane flap surgery and divided into control (Ctrl) and Met groups (100 mg/kg). The survival rate of the flap were evaluated on day 7. Angiography, Laser doppler blood flow imaging, and H&E staining were used to assess blood flow supply and the levels of microvascular density. Then, reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were measured by test kits. Immunohistochemistry analysis was conducted to evaluate the expression of Vascular Endothelial Growth Factor A (VEGFA), Vascular endothelial cadherin (VE-cadherin) and CD31. Rats and mice in the Met group exhibited higher flap survival rate, microcirculatory flow, and higher expression levels of VEGFA and VE-cadherin compared with the Ctrl group. In addition, the level of oxidative stress was significantly lower in the met group. And then we demonstrated that the human umbilical vein endothelial cells (HUVECs) treated with Met can alleviate tert-butyl hydroperoxide (TBHP)-stimulated cellular dysfunction and oxidative stress injury. Mechanistically, Met markedly stimulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), and promoted Nrf2 nuclear translocation. Silencing of Nrf2 partially abolished the antioxidant and therapeutic effects of Met. In summary, our data have confirmed that Met has a positive effect on flap survival and reduces necrosis. The mechanism of action involves the regulation of the Nrf2/HO-1 signaling pathway to combat oxidative stress and reduce damage.


Subject(s)
Metformin , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Rats, Sprague-Dawley , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Metformin/pharmacology , Male , Signal Transduction/drug effects , Rats , Mice , Humans , Surgical Flaps/pathology , Skin/drug effects , Skin/metabolism , Vascular Endothelial Growth Factor A/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Heme Oxygenase-1/metabolism , Malondialdehyde/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Superoxide Dismutase/metabolism
12.
Front Oncol ; 14: 1431362, 2024.
Article in English | MEDLINE | ID: mdl-39091910

ABSTRACT

Introduction: Chemotherapy, notably docetaxel (Doc), stands as the primary treatment for castration-resistant prostate cancer (CRPC). However, its efficacy is hindered by side effects and chemoresistance. Hypoxia in prostate cancer (PC) correlates with chemoresistance to Doc-induced apoptosis via Heme Oxygenase-1 (HO-1) modulation, a key enzyme in heme metabolism. This study investigated targeting heme degradation pathway via HO-1 inhibition to potentiate the therapeutic efficacy of Doc in PC. Methods: Utilizing diverse PC cell lines, we evaluated HO-1 inhibition alone and with Doc on viability, apoptosis, migration, and epithelial- to- mesenchymal transition (EMT) markers and elucidated the underlying mechanisms. Results: HO-1 inhibition significantly reduced PC cell viability under hypoxic and normoxic conditions, enhancing Doc-induced apoptosis through interconnected mechanisms, including elevated reactive oxygen species (ROS) levels, glutathione cycle disruption, and modulation of Signal Transducer and Activator of Transcription 1 (STAT1) pathway. The interplay between STAT1 and HO-1 suggests its reliance on HO-1 activation. Additionally, a decrease in cell migration and downregulation of EMT markers (vimentin and snail) were observed, indicating attenuation of mesenchymal phenotype. Discussion: In conclusion, the combination of HO-1 inhibition with Doc holds promise for improving therapeutic outcomes and advancing clinical management in PC.

13.
Fitoterapia ; 178: 106146, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089591

ABSTRACT

Ganweikang tablet (GWK) is a traditional Chinese prescription and has been clinically used in treating liver diseases for decades. Although GWK has been shown to exert potential therapeutic effect for hepatotoxicity protection, the underlying biological mechanisms are still not well clarified. In the present study, the compositional analysis of GWK was performed by HPLC analysis, and the hepato-protective effects of GWK were assessed in H2O2-stimulated acute oxidative injured HL-7702 hepatocytes in vitro. As a result, 7 components in GWK were quantified to be 0.06 ± 0.01% (calycosin), 0.46 ± 0.02% (calycosin-7-glucoside), 0.13 ± 0.01% (liquiritin), 0.17 ± 0.02% (glycyrrhizic acid), 0.45 ± 0.02% (forsythoside A), 0.07 ± 0.01% (5-O-methylvisammioside) and 0.45 ± 0.02% (forsythin), respectively. Furthermore, GWK (100, 200 and 400 µg/mL, 24 h) dose-dependently alleviated HL-7702 hepatocytes from H2O2 (200 µM, 2 h)-induced cell apoptosis by decreasing the intracellular reactive oxygen species (ROS) generation and malondialdehyde (MDA) level, as well as the cellular aminotransferases (ALT and AST) activities. GWK increased the expressions of HO-1, NQO1 and Nrf2, while suppressing the expression of KEAP1 in H2O2-stimulated HL-7702 cells. A specific Nrf2 inhibitor, ML385, was further employed to investigate the regulation of Nrf2 in HL-7702 cells stimulated by H2O2. In addition, the activation of MAPKs (JUN, ERK and p38) was simultaneously detected in H2O2-stimulated HL-7702 cells. In conclusion, GWK exerted potential therapeutic effect to protect hepatocytes from acute oxidative injury through activating the Nrf2/HO-1 and MAPKs pathways.

14.
Nat Prod Bioprospect ; 14(1): 44, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133435

ABSTRACT

Xiaoyankangjun tablet (XYKJP) is a traditional Chinese medicine formulation used to treat intestinal disorders in clinical practice. However, the specific therapeutic mechanism of action of XYKJP in colitis has not yet been elucidated. This study aimed to reveal the multifaceted mechanisms of action of XYKJP in treating colitis. The model established based on DSS-induced colitis in C57BL/6 mice was employed to estimate the effect of XYKJP on colitis, which was then followed by histological assessment, 16S rRNA sequencing, RT-qPCR, ELISA, and Western blot. XYKJP alleviated the symptoms of DSS-induced colitis mainly by reducing oxidative stress, inflammatory responses, and intestinal mucosal repair in colitis tissues. In addition, XYKJP regulated the intestinal flora by increasing the relative abundance of Akkermansia and Bifidobacterium and reducing the relative abundance of Coriobacteriaceae_UCG-002. Mechanistically, XYKJP increased the content of short-chain fatty acids (SCFAs) in the feces, particularly propanoic acid and butyric acid, activated their specific receptor GPR43/41, furthermore activated the Nrf2/HO-1 pathway, and suppressed the JAK2/STAT3 pathway. XYKJP significantly alleviated the symptoms of experimental colitis and functioned synergistically by regulating the intestinal flora, increasing the production of SCFAs, and activating their specific receptors, thereby repressing oxidative stress and inflammation.

15.
Exp Cell Res ; 441(2): 114195, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39098466

ABSTRACT

Chondrocyte ferroptosis induces the occurrence of osteoarthritis (OA). As a key gene of OA, C5a receptor 1 (C5AR1) is related to ferroptosis. Here, we investigated whether C5AR1 interferes with chondrocyte ferroptosis during OA occurrence. C5AR1 was downregulated in PA-treated chondrocytes. Overexpression of C5AR1 increased the cell viability and decreased ferroptosis in chondrocytes. Moreover, Tumor necrosis factor superfamily member 13B (TNFSF13B) was downregulated in PA-treated chondrocytes, and knockdown of TNFSF13B eliminated the inhibitory effect of C5AR1 on ferroptosis in chondrocytes. More importantly, the PI3K/Akt/GSK3ß/Nrf2/HO-1 pathway inhibitor LY294002 reversed the inhibition of C5AR1 or TNFSF13B on ferroptosis in chondrocytes. Finally, we found that C5AR1 alleviated joint tissue lesions and ferroptosis in rats and inhibited the progression of OA in the rat OA model constructed by anterior cruciate ligament transection (ACLT), which was reversed by interfering with TNFSF13B. This study shows that C5AR1 reduces the progression of OA by upregulating TNFSF13B to activate the PI3K/Akt/GSK3ß/Nrf2/HO-1 pathway and thereby inhibiting chondrocyte sensitivity to ferroptosis, indicating that C5AR1 may be a potential therapeutic target for ferroptosis-related diseases.


Subject(s)
Chondrocytes , Ferroptosis , Glycogen Synthase Kinase 3 beta , NF-E2-Related Factor 2 , Osteoarthritis , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Receptor, Anaphylatoxin C5a , Animals , Ferroptosis/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Chondrocytes/drug effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Rats , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Male , Receptor, Anaphylatoxin C5a/metabolism , Receptor, Anaphylatoxin C5a/genetics , Signal Transduction , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase (Decyclizing)
16.
Life Sci ; 353: 122936, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39094904

ABSTRACT

Diclofenac (DF), a non-steroidal anti-inflammatory drug, is commonly used to relieve pain and inflammation. High doses of DF might induce acute kidney injury (AKI), particularly in elderly, a known vulnerable population. AIM: We aimed to assess the protective role of melatonin (Mel) on DF-induced AKI in aged rats and to highlight the underpinning mechanisms include, oxidative stress and inflammation focusing on microRNA-34a (miR-34a), nuclear factor erythroid-2-related factor-2/hemeoxygenase-1 (Nrf2/HO-1) and NLR family-pyrin domain containing-3 (NLRP3) inflammasome pathways, and to elucidate the possibility of epithelial sodium channel (ENaC) involvement. MATERIALS AND METHODS: Thirty old male Wistar rats were allocated randomly into 3 groups: Control, DF and Mel-DF groups. KEY FINDINGS: Melatonin provided nephroprotective effects against DF-induced AKI via attenuating the expression of renal miR-34a and subsequently promoting the signaling of Nrf2/HO-1 with elevation of the antioxidant defense capacity and suppressing NLRP3 inflammasomes. Melatonin alleviated DF-induced hypernatremia via decreasing the ENaC expression. Renal histopathological examination revealed significant reduction in vascular congestion, mononuclear infiltration, glomerulo-tubular damage, fibrosis and TNF-α optical density. SIGNIFICANCE: It can be assumed that melatonin is a promising safe therapeutic agent in controlling DF-induced AKI in elderly.


Subject(s)
Acute Kidney Injury , Anti-Inflammatory Agents, Non-Steroidal , Diclofenac , Melatonin , Oxidative Stress , Rats, Wistar , Animals , Melatonin/pharmacology , Melatonin/therapeutic use , Male , Acute Kidney Injury/metabolism , Acute Kidney Injury/prevention & control , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/pathology , Rats , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Oxidative Stress/drug effects , Antioxidants/pharmacology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-E2-Related Factor 2/metabolism , Protective Agents/pharmacology , Kidney/drug effects , Kidney/pathology , Kidney/metabolism
17.
Res Sq ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39108479

ABSTRACT

Intracerebral hemorrhage (ICH) poses acute fatality and long-term neurological risks due to hemin and iron accumulation from hemoglobin breakdown. Our observation that hemin induces DNA double-strand breaks (DSBs), prompting a senescence-like phenotype in neurons, necessitating deeper exploration of cellular responses. Using experimental ICH models and human ICH patient tissue, we elucidate hemin-mediated DNA damage response (DDR) inducing transient senescence and delayed expression of heme oxygenase (HO-1). HO-1 co-localizes with senescence-associated ß-Galactosidase (SA-ß-Gal) in ICH patient tissues, emphasizing clinical relevance of inducible HO-1 expression in senescent cells. We reveal a reversible senescence state protective against acute cell death by hemin, while repeat exposure leads to long-lasting senescence. Inhibiting early senescence expression increases cell death, supporting the protective role of senescence against hemin toxicity. Hemin-induced senescence is attenuated by a pleiotropic carbon nanoparticle that is a catalytic mimic of superoxide dismutase, but this treatment increased lipid peroxidation, consistent with ferroptosis from hemin breakdown released iron. When coupled with iron chelator deferoxamine (DEF), the nanoparticle reduces hemin-induced senescence and upregulates factors protecting against ferroptosis. Our study suggests transient senescence induced by DDR as an early potential neuroprotective mechanism in ICH, but the risk or iron-related toxicity supports a multi-pronged therapeutic approach.

18.
Int J Mol Sci ; 25(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39126007

ABSTRACT

Diabetic retinopathy (DR) is one of the most prevalent secondary complications associated with diabetes. Specifically, Type 1 Diabetes Mellitus (T1D) has an immune component that may determine the evolution of DR by compromising the immune response of the retina, which is mediated by microglia. In the early stages of DR, the permeabilization of the blood-retinal barrier allows immune cells from the peripheral system to interact with the retinal immune system. The use of new bioactive molecules, such as 3-(2,4-dihydroxyphenyl)phthalide (M9), with powerful anti-inflammatory activity, might represent an advance in the treatment of diseases like DR by targeting the immune systems responsible for its onset and progression. Our research aimed to investigate the molecular mechanisms involved in the interaction of specific cells of the innate immune system during the progression of DR and the reduction in inflammatory processes contributing to the pathology. In vitro studies were conducted exposing Bv.2 microglial and Raw264.7 macrophage cells to proinflammatory stimuli for 24 h, in the presence or absence of M9. Ex vivo and in vivo approaches were performed in BB rats, an animal model for T1D. Retinal explants from BB rats were cultured with M9. Retinas from BB rats treated for 15 days with M9 via intraperitoneal injection were analyzed to determine survival, cellular signaling, and inflammatory markers using qPCR, Western blot, or immunofluorescence approaches. Retinal structure images were acquired via Spectral-Domain-Optical Coherence Tomography (SD-OCT). Our results show that the treatment with M9 significantly reduces inflammatory processes in in vitro, ex vivo, and in vivo models of DR. M9 works by inhibiting the proinflammatory responses during DR progression mainly affecting immune cell responses. It also induces an anti-inflammatory response, primarily mediated by microglial cells, leading to the synthesis of Arginase-1 and Hemeoxygenase-1(HO-1). Ultimately, in vivo administration of M9 preserves the retinal integrity from the degeneration associated with DR progression. Our findings demonstrate a specific interaction between both retinal and systemic immune cells in the progression of DR, with a differential response to treatment, mainly driven by microglia in the anti-inflammatory action. In vivo treatment with M9 induces a switch in immune cell phenotypes and functions that contributes to delaying the DR progression, positioning microglial cells as a new and specific therapeutic target in DR.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Retinopathy , Disease Models, Animal , Microglia , Animals , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/pathology , Diabetic Retinopathy/immunology , Rats , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/complications , Mice , Microglia/drug effects , Microglia/metabolism , Retina/drug effects , Retina/pathology , Retina/metabolism , RAW 264.7 Cells , Male , Benzofurans/pharmacology , Benzofurans/therapeutic use , Immunomodulation/drug effects , Inflammation/drug therapy , Inflammation/pathology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Rats, Inbred BB
19.
Bioorg Chem ; 152: 107732, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39178702

ABSTRACT

Phytochemical analysis of the peeled stems of Syringa pinnatifolia Hemsl. led to the discovery of 13 undescribed lignans, namely helanols A and B (1 and 2) and alashanenols W-G1 (3-13), as well as four known analogues, of which helanols A and B were lignans with novel skeleton of α-ß' linkage. The structures were unambiguously established by extensive spectroscopic analyses, NMR calculations, ECD calculations, and single crystal X-ray crystallography. Five lignans (1, 2, 5, 11 and 13) exhibited a moderate protective effect against H2O2-induced oxidative injuries in H9c2 cells with the protective rates of 11.3-20.6 % at the concentration of 0.3-20 µM, while the positive control quercetin showed protective rates of 58.7 % at 10 µM. Further mechanism investigation suggested that 1 and 2 exerted the protective effect by regulating the expression of Nrf2/HO-1.


Subject(s)
Hydrogen Peroxide , Lignans , NF-E2-Related Factor 2 , Oxidative Stress , Syringa , Lignans/pharmacology , Lignans/chemistry , Lignans/isolation & purification , NF-E2-Related Factor 2/metabolism , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/antagonists & inhibitors , Oxidative Stress/drug effects , Syringa/chemistry , Molecular Structure , Rats , Structure-Activity Relationship , Animals , Dose-Response Relationship, Drug , Heme Oxygenase-1/metabolism , Protective Agents/pharmacology , Protective Agents/chemistry , Protective Agents/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Cell Line , Cell Survival/drug effects
20.
Antioxidants (Basel) ; 13(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39199146

ABSTRACT

Lespedeza bicolor Turcz. (L. bicolor) honey, a monofloral honey, has garnered increased attention due to its origin in the L. bicolor plant. A previous study has shown that L. bicolor honey can ameliorate inflammation. In this study, we aimed to investigate the effects of L. bicolor honey extract and its biomarker (Trifolin) on DSS-induced ulcerative colitis (UC). Our results demonstrated that L. bicolor honey extract and Trifolin significantly increased the expression levels of the tight junction cytokines Claudin-1 and ZO-1. Additionally, they decreased the pro-inflammatory factors TNF-α and IL-6 and enhanced the antioxidant factors NQO1 and GSTA1. Based on metabolomic analyses, L. bicolor honey extract and Trifolin regulated the progression of UC by inhibiting ferroptosis. Mechanistically, they improved the levels of SOD and iron load, increased the GSH/GSSG ratio, reduced MDA content and ROS release, and upregulated the Nrf2/HO-1 pathway, thereby inhibiting DSS-induced UC. Moreover, the expression levels of ferroptosis-related genes indicated that they decreased FTL, ACSL4, and PTGS2 while increasing SLC7A11 expression to resist ferroptosis. In conclusion, our study found that L. bicolor honey improves DSS-induced UC by inhibiting ferroptosis by activating the Nrf2/HO-1 pathway. These findings further elucidate the understanding of anti-inflammatory and antioxidant activities of L. bicolor honey.

SELECTION OF CITATIONS
SEARCH DETAIL