Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
Nanotoxicology ; 18(5): 499-510, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39207115

ABSTRACT

Polyethylene (PE) is one of the most widely used plastics in the world. Its degradation leads to the production of small particles including microplastics and nanoplastics (NPs). Plastic particles' presence poses a health risk. The aim of this work was to investigate the toxicity of two model surfactant-free PE NPs prepared by polymerization of ethylene from cationic and anionic water-soluble initiators on human cell lines Caco-2 and HT29-MTX. After physicochemical characterization, their acute and subacute toxicity profile, including cytotoxicity, oxidative stress, and genotoxicity, was evaluated on both cell lines. Results showed a size increase of PE NPs in culture medium. Zeta potential values close to -10 mV were no longer dependent on the initiator charge after adsorption of serum components in culture medium. However, the cellular toxicity of the cationic and anionic PE NPs was very different. A time-and-concentration dependent cytotoxic, oxidative, and genotoxic effects on Caco-2 cells were only observed for PE NPs prepared with cationic initiators. No toxicity was observed on HT29-MTX, likely due to the protective mucus layer. Genotoxicity correlated with oxidative stress of some PE NPs on Caco-2 cells was observed from a concentration of 0.1 mg.mL-1 after 48-h exposure.


Subject(s)
Cell Survival , Oxidative Stress , Polyethylene , Humans , Caco-2 Cells , Polyethylene/toxicity , Polyethylene/chemistry , Oxidative Stress/drug effects , HT29 Cells , Cell Survival/drug effects , Microplastics/toxicity , Microplastics/chemistry , Particle Size , Nanoparticles/toxicity , Nanoparticles/chemistry , DNA Damage/drug effects , Intestines/drug effects , Intestines/cytology
2.
Microorganisms ; 12(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38543553

ABSTRACT

The gastrointestinal tract's microbiota plays a crucial role in human health, with dysbiosis linked to the development of diseases such as inflammatory bowel disease (IBD). Whilst the pathogenic mechanisms underlying IBD remain poorly characterised, adherent-invasive Escherichia coli (AIEC) has been implicated as a microbiological factor in disease pathogenesis. These strains show an enhanced ability to diffusely adhere to and invade intestinal epithelial cells, along with the ability to survive and replicate within macrophages. Probiotics, such as Lactobacillus strains, have been identified as potential treatment options due to their abilities to compete with pathogens for binding sites and regulate the host immune response. In this study, we used four well-characterised Lactobacillus strains and their combination to test their ability to inhibit the adhesion, invasion, and translocation of a well-characterized AIEC strain, F44A-1, in a co-culture of Caco-2 and HT29-MTX cell lines representing the gut epithelium. The results demonstrated that the pre-inoculation of the probiotic candidates 90 min prior to the introduction of the AIEC was more effective in inhibiting AIEC interaction than the co-inoculation of the strains. While the individual probiotic strains greatly reduced AIEC colonisation and invasion of the co-cultured cells, their combination was only more effective in reducing the translocation of the AIEC. These results suggest that probiotics are more effective when used prophylactically against pathogens and that the combination of strains may enhance their efficacy against AIEC translocation once used as a prophylactic measure.

3.
Food Chem Toxicol ; 186: 114582, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460668

ABSTRACT

Mycotoxins and thermal processing hazards are common contaminants in various foods and cause severe problems in terms of food safety and health. Combined use of acrylamide (AA) and ochratoxin A (OTA) would result in more significant intestinal toxicity than either toxin alone, but the underlying mechanisms behind this poor outcome remain unclear. Herein, we established the co-culture system of Caco-2/HT29-MTX cells for simulating a real intestinal environment that is more sensitive to AA and OTA, and showed that the combination of AA and OTA could up-regulate permeability of the intestine via increasing LY permeabilization, and decreasing TEER, then induce oxidative stress imbalance (GSH, SOD, MDA, and ROS) and inflammatory system disorder (TNF-α, IL-1ß, IL-10, and IL-6), thereby leading a rapid decline in cell viability. Western blot, PAS- and AB-staining revealed that AA and OTA showed a synergistic effect on the intestine mainly through the disruption of tight junctions (TJs) and a mucus layer. Furthermore, based on correlation analysis, oxidative stress was more relevant to the mucus layer and TJs. Therefore, our findings provide a better evaluation model and a potential mechanism for further determining or preventing the combined toxicity caused by AA and OTA.


Subject(s)
Acrylamides , Intestinal Mucosa , Ochratoxins , Humans , Caco-2 Cells , Coculture Techniques , Permeability
4.
Int J Pharm ; 631: 122544, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36572261

ABSTRACT

Oromucosal films and wafers are user-friendly solid dosage forms offering easy and convenient administration, as well as rapid or controlled drug delivery. The aim of this study was to develop prednisolone containing child-friendly chitosan-based mucoadhesive films and wafers with a prolonged residence time on the buccal mucosa. Four different chitosan types (different molecular weights, degree of deacetylation (DDA), pattern of deacetylation) were studied for films prepared by solvent-cast-evaporation and wafers by freeze-drying. Mucoadhesive properties correlated with swelling abilities and were dependent on the chitosan type, the solvent, and the preparation method. Mucoadhesive forces were higher for formulations containing chitosan with higher DDA and for wafers compared to films. The drug release was relatively fast, especially for films (approx. 90 % in 15 minutes) and steadier for wafers (90 % in 45-120 minutes). Permeability was evaluated using artificial membranes and HT29-MTX cell-monolayers. The developed formulations exhibited good biocompatibility. Organoleptic properties can be improved by choosing a homogenously deacetylated chitosan type that provides a more neutral pH. Using hydroxypropyl-beta-cyclodextrin-complexation for taste masking of bitter drugs also reduced wafers' drug release rate. Mucoadhesive wafers are promising alternatives to films with a slower drug release rate and stronger mucoadhesion.


Subject(s)
Chitosan , Humans , Chitosan/chemistry , Water/chemistry , Administration, Buccal , Drug Delivery Systems/methods , Mouth Mucosa , Solvents/chemistry
5.
Toxicol Lett ; 351: 89-98, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34461197

ABSTRACT

Lipophilic phycotoxins are secondary metabolites produced by phytoplankton. They can accumulate in edible filtering-shellfish and cause human intoxications, particularly gastrointestinal symptoms. Up to now, the in vitro intestinal effects of these toxins have been mainly investigated on simple monolayers of intestinal cells such as the enterocyte-like Caco-2 cell line. Recently, the combination of Caco-2 cells with mucus secreting HT29-MTX cell line has been also used to mimic the complexity of the human intestinal epithelium. Besides, enteric glial cells (EGC) from the enteric nervous system identified in the gut mucosa have been largely shown to be involved in gut functions. Therefore, using a novel model integrating Caco-2 and HT29-MTX cells co-cultured on inserts with EGC seeded in the basolateral compartment, we examined the toxicological effects of two phycotoxins, pectenotoxin-2 (PTX2) and okadaic acid (OA). Cell viability, morphology, barrier integrity, inflammation, barrier crossing, and the response of some specific glial markers were evaluated using a broad set of methodologies. The toxicity of PTX2 was depicted by a slight decrease of viability and integrity as well as a slight increase of inflammation of the Caco-2/HT29-MTX co-cultures. PTX2 induced some modifications of EGC morphology. OA induced IL-8 release and decreased viability and integrity of Caco-2/HT29-MTX cell monolayers. EGC viability was slightly affected by OA. The presence of EGC reinforced barrier integrity and reduced the inflammatory response of the epithelial barrier following OA exposure. The release of GDNF and BDNF gliomediators by EGC could be implicated in the protection observed.


Subject(s)
Coculture Techniques/methods , Furans/toxicity , Intestines/cytology , Macrolides/toxicity , Neuroglia/drug effects , Okadaic Acid/toxicity , Caco-2 Cells , Cell Survival/drug effects , Gene Expression Regulation/drug effects , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , HT29 Cells , Humans , Inflammation/chemically induced , Inflammation/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Neuroglia/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism
6.
Int J Pharm ; 592: 120100, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33227374

ABSTRACT

The objective of this work was to develop and characterize solid lipid nanoparticle (SLN)-loaded mucoadhesive films to reveal their potential as successful drug formulations. SLNs based on lipid (Lipoid S100) and surfactant (polysorbate 80) were prepared using the solvent-injection method, and their properties examined using experimental designs. Further, the marker coumarin 6 (C6) was solubilized in the particles as a model for a lipophilic drug. Lipid and surfactant concentrations influenced the particle size, while C6 had minor impact. The particle size distribution was narrow and the storage stability satisfactory for 4 months (4 ℃). The incorporation of the nanoparticles into a film matrix consisting of HPMC and glycerol, increased film thickness and flexibility, and slightly decreased the mechanical strength. The mucin interaction and disintegration time of the films were unimpaired. Film uniformity was satisfactory. Solubilisation in SLNs reduced the rate and extent of permeation of C6 through a monolayer of mucus-producing HT29-MTX cells. When the particles were incorporated into the mucoadhesive film, this effect was compensated for. In conclusion, this project was a first step in the successful development of an SLN-loaded mucoadhesive film formulation and served its purpose in revealing the formulation's uniformity, mucoadhesiveness and biocompatibility.


Subject(s)
Nanoparticles , Pharmaceutical Preparations , Administration, Buccal , Lipids , Particle Size
7.
Nutrients ; 12(8)2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32731411

ABSTRACT

Alterations in the gut microbiota composition play a crucial role in the pathogenesis of inflammatory bowel disease (IBD) as specific commensal bacterial species are underrepresented in the microbiota of IBD patients. In this study, we examined the therapeutic potential of three commensal bacterial species, Faecalibacterium prausnitzii (F. prausnitzii), Roseburia intestinalis (R. intestinalis) and Bacteroides faecis (B. faecis) in an in vitro model of intestinal inflammation, by using differentiated Caco-2 and HT29-MTX cells, stimulated with a pro-inflammatory cocktail consisting of interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNFα), interferon-γ (IFNγ), and lipopolysaccharide (LPS). Results obtained in this work demonstrated that all three bacterial species are able to recover the impairment of the epithelial barrier function induced by the inflammatory stimulus, as determined by an amelioration of the transepithelial electrical resistance (TEER) and the paracellular permeability of the cell monolayer. Moreover, inflammatory stimulus increased claudin-2 expression and decreased occludin expression were improved in the cells treated with commensal bacteria. Furthermore, the commensals were able to counteract the increased release of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) induced by the inflammatory stimulus. These findings indicated that F. prausnitzii, R. intestinalis and B. faecis improve the epithelial barrier integrity and limit inflammatory responses.


Subject(s)
Bacteroides , Clostridiales , Epithelial Cells/microbiology , Faecalibacterium prausnitzii , Gastrointestinal Microbiome/physiology , Inflammatory Bowel Diseases/microbiology , Caco-2 Cells , Chemokine CCL2/metabolism , Claudin-2 , Electric Impedance , HT29 Cells , Humans , Interferon-gamma/administration & dosage , Interleukin-1beta/administration & dosage , Interleukin-8/metabolism , Intestinal Mucosa/microbiology , Lipopolysaccharides/administration & dosage , Occludin/metabolism , Permeability , Tumor Necrosis Factor-alpha/administration & dosage
8.
Food Res Int ; 133: 109201, 2020 07.
Article in English | MEDLINE | ID: mdl-32466902

ABSTRACT

The aim of this study was to investigate the probiotic properties of 174 Lactobacillus strains isolated from Mongolian dairy products, and particularly their impact on intestinal calcium uptake and absorption. All isolates underwent a first screening based on cell surface hydrophobicity, acid tolerance, tolerance to gastro-intestinal digestion, autoaggregation, adhesion and cytotoxicity against intestinal cells. Six Lactobacillus strains from different species (L. casei, L. kefiranofaciens, L. plantarum, L. fermentum, L. helveticus and L. delbrueckii) were selected, and their impact on intestinal calcium uptake and transport was investigated using Caco-2. Five strains were able to improve total calcium transport after 24 h contact with a differentiated Caco-2 cell monolayer. Concomitantly the L. plantarum strain was able to increase cellular calcium uptake in Caco-2 cells by 10% in comparison to control conditions. To determine which pathway(s) of calcium absorption was modulated by the strains, a qPCR-based study on 4 genes related to calcium/vitamin D metabolism or tight junction integrity was conducted on mucus-secreting intestinal HT-29 MTX cells. The L. plantarum strain modulates the transcellular pathway by regulating the expression of vitamin D receptor (1.79 fold of control) and calcium transporter (4.77 fold of control) while the L. delbrueckii strain acts on the paracellular pathway by modulating claudin-2 expression (2.83 fold of control). This work highlights the impact of Lactobacillus probiotic strains on intestinal calcium absorption and for the first time give some evidence about the cellular pathways involved.


Subject(s)
Lactobacillus , Probiotics , Caco-2 Cells , Calcium , Humans , Mongolia
9.
Int J Pharm ; 565: 199-208, 2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31051231

ABSTRACT

Nanoparticles (NP) have gained importance as drug delivery systems for pharmaceutical challenging drugs. Their size properties allow passive targeting of cancer tissue by exploiting the enhanced permeability and retention (EPR) effect. Furthermore, surface modifications enable an active drug targeting for diseased regions in the human body. Besides the advantages, the drug release from commonly used biodegradable NP is mostly depending on physiological circumstances. Hence, there is a need for a more controllable drug release. The use of light-responsive polymers is an innovative conception enabling a more distinct drug release by an external light stimulus. The idea provides potential for an increase in efficiency and safety of local therapies. In this study, innovative light-sensitive NP were investigated for a photodynamic therapy (PDT) of gastrointestinal tumors. Nanoparticles based on a newly developed light-responsive polycarbonate (LrPC) and poly(lactic-co-glycolic-acid) (PLGA) were loaded with the approved photosensitizer 5,10,15,20-tetrakis(m-hydroxyphenyl)chlorin (mTHPC). Mucus penetrating properties were obtained by surface PEGylation of the nanoparticles either by using LrPC in combination with a PEGylated PLA (PEG-PLA) or by a combination with PEGylated LrPC (LrPC-PEG). Cytotoxic potential in dependency of a light-induced drug release was investigated in different cytotoxicity assays. Intracellular accumulation in mucus producing colon-carcinoma cell line HT-29-MTX was analysed by HPLC and confocal laser microscopy.


Subject(s)
Intestinal Neoplasms/drug therapy , Mesoporphyrins , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Cell Survival/drug effects , DNA Damage , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/radiation effects , HT29 Cells , Humans , Light , Mesoporphyrins/administration & dosage , Mesoporphyrins/chemistry , Mesoporphyrins/radiation effects , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Nanoparticles/radiation effects , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/chemistry , Photosensitizing Agents/radiation effects , Polymers/administration & dosage , Polymers/chemistry , Polymers/radiation effects
10.
Food Sci Nutr ; 7(2): 492-498, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30847127

ABSTRACT

Mucins are a family of large glycoproteins that represent the major structural components of the mucus and are encoded by 20 different mucin genes. Mucin expression can be modulated by different stimuli. In this study, we analyzed four mucins (MUC2, MUC3, MUC13, and MUC17) in coculture of Caco-2/HT29-MTX cells to demonstrate the variation in gene expression in the presence of antioxidant compounds like chlorogenic acid, epicatechin gallate, and quercetin (apple, tea, and coffee polyphenols, respectively). coculture of Caco-2/HT29-MTX cells was treated with polyphenols, and the expression of four mucins was determined by reverse-transcriptase PCR. In addition, the secretion levels of MUC2 were established by enzyme-linked immunoassay (ELISA) analysis. The results showed that each polyphenol compound induces different expression patterns of the mucin genes. Statistically significant up-regulation of MUC17 was observed following incubation with epicatechin gallate and quercetin. ELISA results did not prove any significant differences in protein levels of MUC2 after treatment by the polyphenol compounds. The polyphenols considered in this study may influence mucin secretion and act on diverse salivary substrates to change the barrier properties of mucins for mucus secretion in different ways.

11.
Methods Mol Biol ; 1817: 107-113, 2018.
Article in English | MEDLINE | ID: mdl-29959707

ABSTRACT

Animal models are essential in drug development but present many concerns in the practical and ethical sense. To avoid the unnecessary use of animals other models are used in the beginning of any scientific discovery, the in vitro models. The relevance of in vitro cell based culture models for studying intestinal drug absorption and transcytosis during early stages of drug development is undeniable. Several in vitro co-culture models have been described for this purpose, however excluding the integration of the complex intestinal architecture and neglecting different physiological mechanisms involved in the drug transport. 2-D cell cultures are the current standard, but despite their widely use, they no longer are considered the most trustworthy in vitro models since they do not mimic many aspects that happen in vivo. The simulation of a complete microenvironment capable of mimicking the intestinal mucosa requires therefore further investigation, particularly focused in addressing the abovementioned unmet needs. 3D models came as bridge between the in vitro and in vivo models. These models are proven to be influential of the drug effect in cells, being the most adequate to mimic the live tissue especially in drug development. Supported by the great amount of studies using simple and reductionist co-culture monolayers, and pushing forward an innovative model previously reported by our group, the present study aims to describe a sophisticated and highly reproducible in vitro 3D co-culture intestinal model. Here, the components are assembled in a multistage process into Transwell filters by co-culturing human colon carcinoma Caco-2 and mucus-producing HT29-MTX cells over a layer of collagen embedding intestinal myofibroblasts (CCD-18Co). The 3D co-culture intestinal model described herein represents a particularly powerful and versatile tool that recapitulates the intestinal functioning regarding mucus production, tightness of the different cell types, and the 3D architecture, bridging the gap between simple monolayer cultures of epithelial cells and the complex in vivo physiological conditions. Importantly, it shows tremendous potential in predicting intestinal absorption of orally administered drugs when delivered alone, or encapsulated into micro- and nanosystems, the current leading force of pharmaceutical technology research.


Subject(s)
Cell Culture Techniques/methods , Coculture Techniques/methods , Intestinal Mucosa/cytology , Myofibroblasts/cytology , Animals , Caco-2 Cells , Cell Line , HT29 Cells , Humans , Intestinal Mucosa/metabolism , Mucus/metabolism , Myofibroblasts/metabolism , Permeability
12.
Tissue Eng Part B Rev ; 24(2): 98-111, 2018 04.
Article in English | MEDLINE | ID: mdl-28922991

ABSTRACT

In recent years, three-dimensional (3D) cell culture models of the small intestine have gained much attention. These models support cell proliferation, migration, and differentiation and encourage tissue organization which is not possible in two-dimensional (2D) culture systems. Furthermore, the use of a wide variety of cell culture scaffolds and support substrates has revealed considerable differences in cell behavior and tissue organization. These systems have been used in combination with intestinal stem cells, organoid units, or human colonic adenocarcinoma cell lines such as Caco-2 and HT29-MTX to generate a number of in vitro and in vivo models of the intestine. In this study, we review the current 2D and 3D tissue engineering models of the intestine to determine the most effective sources of intestinal cells and current research on support scaffolds capable of inducing the morphological architecture and function of the intestinal mucosa.


Subject(s)
Intestine, Small , Models, Biological , Tissue Engineering/methods , Animals , Caco-2 Cells , Humans , Tissue Engineering/trends
13.
Acta Biomater ; 62: 128-143, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28859901

ABSTRACT

The human intestinal cell lines: Caco-2 and HT29-MTX cells have been used extensively in 2D and 3D cell cultures as simple models of the small intestinal epithelium in vitro. This study aimed to investigate the potential of three hydrogel scaffolds to support the 3D culture of Caco-2 and HT29-MTX cells and critically assess their use as scaffolds to stimulate villi formation to model a small intestinal epithelium in vitro. Here, alginate, l-pNIPAM, and l-pNIPAM-co-DMAc hydrogels were investigated. The cells were suspended within or layered on these hydrogels and maintained under static or dynamic culture conditions for up to 21days. Caco-2 cell viability was increased when layered on the synthetic hydrogel scaffolds, but reduced when suspended within the synthetic hydrogels. In contrast, HT29-MTX cells remained viable when suspended within or layered on all 3D cultures. Interestingly, cells cultured in and on the alginate hydrogel scaffolds formed multilayer spheroid structures, whilst the cells layered on synthetic hydrogels formed villus-like structures. Immunohistochemistry staining demonstrated positive expression of enterocyte differentiation markers and goblet cell marker. In conclusion, l-pNIPAM hydrogel scaffolds supported both cell lines and induced formation of villus-like structures when cells were layered on and cultured under dynamic conditions. The ability of the l-pNIPAM to recapitulate the 3D structure and differentiate main cell types of human intestinal villi may deliver a potential alternative in vitro model for studying intestinal disease and for drug testing. STATEMENT OF SIGNIFICANCE: Forty percent of hospital referrals are linked to disorders of the digestive tract. Current studies have utilised animal models or simple cultures of isolated cells which do not behave in the same manner as human intestine. Thus new models are required which more closely mimic the behaviour of intestinal cells. Here, we tested a number of scaffolds and conditions to develop a cell culture model which closely represents the 3D environment seen within the human small intestine. We successfully created structures seen within the intestine which have not previously been possible with other culture models. These models could be used to investigate tissue engineering, drug discovery, and used asan alternative to in vivo animal models in drug toxicity studies.


Subject(s)
Antigens, Differentiation/biosynthesis , Gene Expression Regulation , Hydrogels/chemistry , Intestinal Mucosa/metabolism , Models, Biological , Tissue Scaffolds/chemistry , Caco-2 Cells , Humans , Intestinal Mucosa/cytology
14.
J Agric Food Chem ; 65(38): 8435-8442, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28853868

ABSTRACT

Due to the high levels of iodine present in seaweed, the ingestion of a large amount of this type of food can produce excessive intake of iodine. However, the food after ingestion undergoes different chemistry and physical processes that can modify the amount of iodine that reaches the systemic circulation (bioavailability). Studies on the bioavailability of iodine from food are scarce and indicate that the bioavailable amount is generally lower than ingested. Iodine in vitro bioavailability estimation from different commercialized seaweed has been studied using different in vitro approaches (solubility, dialyzability, and transport and uptake by intestinal cells). Results indicate that iodine is available after gastrointestinal digestion for absorption (bioaccessibility: 49-82%), kombu being the seaweed with the highest bioaccessibility. The incorporation of dialysis cell cultures to elucidate bioavailability modifies the estimation of the amount of iodine that may reach the systemic circulation (dialysis, 5-28%; cell culture, ≤3%). The paper discusses advantages and drawbacks of these methodologies for iodine bioavailability in seaweed.


Subject(s)
Iodine/chemistry , Seaweed/chemistry , Biological Availability , Caco-2 Cells , Digestion , Humans , Iodine/metabolism , Seaweed/metabolism , Vegetables/chemistry , Vegetables/metabolism
15.
Am J Surg ; 213(3): 489-493, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28242029

ABSTRACT

OBJECTIVE: Intraluminal pancreatic trypsin and other digestive enzymes injure the gut barrier following trauma-hemorrhagic shock (T/HS). Intestinal proteases (sheddases) exert important effects on normal gut function but may cause barrier disruption due to exaggerated production following T/HS. We hypothesized that the protective mechanism of TXA on the gut barrier following T/HS includes inhibition of these "downstream" proteases. This was studied in vitro. METHODS: Trypsin, matrix metalloproteinase (MMP-9) and ADAM-17 activity were measured in intestinal epithelial cells (IEC) exposed to HR + trypsin. TXA was added to IEC subsets. Pulmonary microvascular endothelial cells (HMVEC) were exposed to IEC supernatants and syndecan release and ICAM-1 expression determined. RESULTS: Trypsin activity and the activity of the "downstream" sheddases ADAM-17, MMP was increased in IEC lysates following exposure to HR + trypsin. Syndecan and ICAM-1 were increased in HMVEC exposed to IEC supernatants. TXA administration 'early' abrogated these effects. CONCLUSIONS: TXA administration early after shock protects the gut barrier by inhibiting trypsin uptake and activity and the subsequent downstream protease cascade. To be effective, TXA should be administered early in all "at risk" patients.


Subject(s)
Antifibrinolytic Agents/pharmacology , Tranexamic Acid/pharmacology , Trypsin/metabolism , ADAM17 Protein/drug effects , ADAM17 Protein/metabolism , Cell Line , Cells, Cultured , Epithelial Cells/metabolism , Humans , Intercellular Adhesion Molecule-1/drug effects , Intercellular Adhesion Molecule-1/metabolism , Intestines/cytology , Lung/cytology , Matrix Metalloproteinase 9/drug effects , Matrix Metalloproteinase 9/metabolism , Shock, Hemorrhagic/complications , Syndecans/metabolism , Trypsin/drug effects
16.
J Biomed Mater Res B Appl Biomater ; 104(4): 782-8, 2016 May.
Article in English | MEDLINE | ID: mdl-26313639

ABSTRACT

Although fewer in number, M-cells are considered antigen sampling cells, acting as a gateway for antigens from the gut lumen and presenting an impressive aptitude for particle transcytosis. These features make M-cells attractive targets for oral drug delivery studies, but this has been poorly explored. New and reproducible tissue-like in vitro models for studying intestinal sampling and permeability mechanisms are needed. The combination of different cell players in such models offers improved microenvironments with higher physiologic relevance. Here, a tissue-engineered model was established, by co-culturing Caco-2 absorptive cells, HT29-MTX mucus-producing cells and Raji B lymphocytes. After 3 weeks of cell co-culture, the presence of M-like cells was evidenced by the loss of brush-border organization, detected by the lack of microvilli. The triple-culture model showed to be efficient for insulin transport, a process that was influenced by the tightness of junctions between epithelial cells and the presence of mucus and M-like cells. Ultimately, the proposed tissue-engineered model provides a more complete and reliable tool to perform drug permeability tests, as compared to traditional models, and may also find applicability as an in vitro system to study transdifferentiation mechanisms of M cells.


Subject(s)
Antigen-Presenting Cells/metabolism , B-Lymphocytes/metabolism , Intestinal Mucosa/metabolism , Tissue Engineering , Antigen-Presenting Cells/cytology , B-Lymphocytes/cytology , Caco-2 Cells , Humans , Intestinal Mucosa/cytology
17.
Int J Pharm ; 498(1-2): 225-33, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26706437

ABSTRACT

Drug delivery to the oral cavity poses a significant challenge due to the short residence time of the formulations at the site of action. From this point of view, nanoparticulate drug delivery systems with ability to adhere to the oral mucosa are advantageous as they could increase the effectiveness of the therapy. Positively, negatively and neutrally charged liposomes were coated with four different types of polymers: alginate, low-ester pectin, chitosan and hydrophobically modified ethyl hydroxyethyl cellulose. The mucoadhesion was studied using a novel in vitro method allowing the liposomes to interact with a mucus-producing confluent HT29-MTX cell-line without applying any external force. MTT viability and paracellular permeability tests were conducted on the same cell-line. The alginate-coated liposomes achieved a high specific (genuine) mucin interaction, with a low potential of cell-irritation. The positively charged uncoated liposomes achieved the highest initial mucoadhesion, but also displayed a higher probability of cell-irritation. The chitosan-coated liposomes displayed the highest potential for long lasting mucoadhesion, but with the drawback of a higher general adhesion (tack) and a higher potential for irritating the cells.


Subject(s)
Adhesives/chemistry , Liposomes/chemistry , Liposomes/metabolism , Mucus/metabolism , Polymers/chemistry , Polymers/metabolism , Cell Membrane/metabolism , Cell Survival/physiology , Cells, Cultured , HT29 Cells , Humans
18.
Biomaterials ; 56: 36-45, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25934277

ABSTRACT

Absorption evaluation plays an increasingly important role at the early stage of drug discovery due to its potential to scan the ADME (absorption, distribution, metabolism and excretion) properties of new drug candidates. Therefore, a new three-dimensional (3D) in vitro model replicating the intestinal functioning is herein proposed aiming to dissect the stromal-epithelial interactions and evaluate the permeation of a model drug, insulin. Inspired on the intestinal mucosal architecture, the present model comprises intestinal myofibroblasts (CCD18-Co cells) embedded in Matrigel, onto which epithelial enterocytes (Caco-2 cells) and mucus-producing cells (HT29-MTX cells) were seeded. CCD18-Co myofibroblasts showed to have a central role in the remodeling of the surrounding matrix confirmed by the production of fibronectin. Subsequently, this matrix revealed to be essential to the maintenance of the model architecture by supporting the overlying epithelial cells. In terms of functionality, this model allowed the efficient prediction of insulin permeability in which the presence of mucus, the less tight character between Caco-2 and HT29-MTX epithelial cells and the 3D assembly were critical factors. Concluding, this model constitutes a robust tool in the drug development field with potential to bridge the traditional 2D cell culture models and in vivo animal models.


Subject(s)
Cell Culture Techniques/methods , Coculture Techniques/methods , Epithelial Cells/cytology , Intestines/cytology , Stromal Cells/cytology , Caco-2 Cells , Cell Line, Tumor , Cell Proliferation , Enterocytes/cytology , Fibronectins/chemistry , HT29 Cells , Humans , Insulin/metabolism , Intestinal Absorption , Intestinal Mucosa/pathology , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Myofibroblasts/cytology , Permeability
19.
Int J Pharm ; 458(1): 128-34, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24120728

ABSTRACT

Caco-2 based cell models have been the gold standard in vitro method to study intestinal drug permeability, despite the absence of many important features with major influence in the drug absorption mechanism. In the present work, a triple co-culture comprising Caco-2, HT29-MTX and Raji B cells was established to mimic in a closely way the human intestinal epithelium, presenting the main components in the process of drug absorption, namely the absorptive cells that resemble enterocytes, mucus producers cells and cells able to induce M-cell phenotype on Caco-2 cells. All the three cell lines maintained their function when cultured together with each other being, thus, an asset to new orally administrated drugs development. The seeding ratio of 90:10 between Caco-2 and HT29-MTX showed to be the best to achieve physiological proportions after cells maturation and differentiation in culture. The formation of M-cells phenotype from enterocytes was identified for the first time in a co-culture system comprising Caco-2 and HT29-MTX cells through immunocytochemical techniques. Thus, the triple co-culture model presented in the herein work is a good and reliable alternative to the in vitro methods already existents for the study of drugs permeability.


Subject(s)
Intestinal Absorption/physiology , Intestinal Mucosa/metabolism , Intestines/physiology , Caco-2 Cells , Cell Differentiation/physiology , Cell Line, Tumor , Coculture Techniques/methods , Enterocytes/metabolism , Enterocytes/physiology , HT29 Cells , Humans , Intestinal Mucosa/physiology , Permeability
20.
J Microbiol Methods ; 94(3): 274-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23835135

ABSTRACT

Human intestinal cell models are widely used to study host-enteric pathogen interactions, with different cell lines exhibiting specific characteristics and functions in the gut epithelium. In particular, the presence of mucus may play an important role in adhesion and invasion of pathogens. The aim of this study was to evaluate the suitability of the mucus-secreting HT29-MTX intestinal epithelial cell model to test adhesion and invasion of Salmonella strains and compare with data obtained with the more commonly used Caco-2 and HT-29 models. Adhesion of Salmonella to HT29-MTX cell model was significantly higher, likely due to high adhesiveness to mucins present in the native human mucus layer covering the whole cell surface, compared to the non- and low-mucus producing Caco-2 and HT-29 cell models, respectively. In addition, invasion percentages of some clinical Salmonella strains to HT29-MTX cultures were remarkably higher than to Caco-2 and HT-29 cells suggesting that these Salmonellae have subverted the mucus to enhance pathogenicity. The transepithelial electrical resistances of the infected HT29-MTX cell model decreased broadly and were highly correlated with invasion ability of the strain. Staining of S. Typhimurium-infected cell epithelium confirmed the higher invasion by Salmonella and subsequent disruption of tight junctions of HT29-MTX cell model compared with the Caco-2 and HT-29 cell models. Data from this study suggest that the HT29-MTX cell model, with more physiologically relevant characteristics with the mucus layer formation, could be better suited for studying cells-pathogens interactions.


Subject(s)
Bacterial Adhesion/physiology , Intestinal Mucosa/cytology , Models, Biological , Salmonella/physiology , Analysis of Variance , Caco-2 Cells , Electric Impedance , HT29 Cells , Humans , Tight Junctions
SELECTION OF CITATIONS
SEARCH DETAIL