Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Biol Cell ; : e202400034, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949568

ABSTRACT

BACKGROUND INFORMATION: One of the confounding factors in pancreatic cancer (PC) pathogenesis is hyperglycemia. The molecular mechanism by which high glucose (HG) influences PC severity is poorly understood. Our investigation delved into the impact of lncRNA highly upregulated in liver cancer (HULC) and its interaction with yes-associated protein (YAP) in regulating the fate of pancreatic ductal adenocarcinoma cells (PDAC) under HG-induced conditions. PDAC cells were cultured under normal or HG conditions. We thereafter measured the effect of HG on the viability of PDAC cells, their migration potential and drug resistance properties. The lncRNAs putatively dysregulated in PC and diabetes were shortlisted by bioinformatics analysis followed by wet lab validation of function. RESULTS: HG led to enhanced proliferation and drug refractoriness in PDAC cells. HULC was identified as one of the major deregulated lncRNAs following bioinformatics analysis. HULC was found to regulate the expression of the potent transcriptional regulator - YAP through selective histone modifications at the YAP promoter. siRNA-mediated ablation of HULC resulted in a concurrent decrease in YAP transcriptional activity. Importantly, HULC and YAP were found to co-operatively regulate the cellular homeostatic process autophagy, thus inculcating drug resistance and proliferative potential in PDAC cells. Moreover, inhibition of autophagy or YAP led to a decrease in HULC levels, suggesting the existence of an inter-regulatory feedback loop. CONCLUSIONS: We observed that HG triggers aggressive properties in PDAC cells. Mechanistically, up-regulation of lncRNA HULC resulted in activation of YAP and differential regulation of autophagy coupled to increased proliferation of PDAC cells. SIGNIFICANCE: Inhibition of HULC and YAP may represent a novel therapeutic strategy for PDAC. Furthermore, this study portrays the intricate molecular interplay between HULC, YAP and autophagy in PDAC pathogenesis.

2.
Biomedicines ; 12(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38790894

ABSTRACT

Long noncoding RNAs (lncRNAs) are RNA molecules of 200 nucleotides or more in length that are not translated into proteins. Their expression is tissue-specific, with the vast majority involved in the regulation of cellular processes and functions. Many human diseases, including cancer, have been shown to be associated with deregulated lncRNAs, rendering them potential therapeutic targets and biomarkers for differential diagnosis. The expression of lncRNAs in the nervous system varies in different cell types, implicated in mechanisms of neurons and glia, with effects on the development and functioning of the brain. Reports have also shown a link between changes in lncRNA molecules and the etiopathogenesis of brain neoplasia, including glioblastoma multiforme (GBM). GBM is an aggressive variant of brain cancer with an unfavourable prognosis and a median survival of 14-16 months. It is considered a brain-specific disease with the highly invasive malignant cells spreading throughout the neural tissue, impeding the complete resection, and leading to post-surgery recurrences, which are the prime cause of mortality. The early diagnosis of GBM could improve the treatment and extend survival, with the lncRNA profiling of biological fluids promising the detection of neoplastic changes at their initial stages and more effective therapeutic interventions. This review presents a systematic overview of GBM-associated deregulation of lncRNAs with a focus on lncRNA fingerprints in patients' blood.

3.
Heliyon ; 10(7): e28386, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560250

ABSTRACT

Background: Immune escape remains a major challenge in the treatment of malignant tumors. Here, we studied the mechanisms underlying immune escape in the tumor microenvironment and identified a potential therapeutic target. Methods: Pathological specimens from patients with liver cancer, soft tissue sarcoma, and liver metastasis of colon cancer were subjected to immunohistochemistry analysis to detect the expression of programmed death-1 (PD-1) in the tumor microenvironment (TME). Additionally, the expression of regulatory T cells (Tregs) and long non-coding RNAs (lncRNAs), such as highly upregulated in liver cancer (HULC) was evaluated by fluorescence in situ hybridization, and the relationship between HULC, Treg cells, and PD-1 was determined. The animals were divided into H22 hepatic carcinoma and S180 sarcoma groups. Each group was divided into Foxp3-/-C57BL/6J and C57BL/6J mice. Thereafter, mice were inoculated with 0.1 ml S180 sarcoma cells or 0.1 ml H22 hepatoma cells, at a concentration of 1 × 107/ml. The number of splenic CD4+CD25+Foxp3+ T cells was detected by flow cytometry, and serum interleukin-10 (IL-10) and transforming growth factor ß1 (TGF-ß1) levels were detected using a Luminex liquid suspension chip. Expression of PD-1, fork head box P3 (Foxp3), and HULC in the TME, were analyzed and the therapeutic effect of inhibiting the lncRNA HULC-Treg-PD-1 axis in malignant tumors was determined. Results: High expression of lncRNA HULC promotes the proliferation of Treg cells and increases PD-1 expression in the tumor microenvironment. The HULC-Treg-PD-1 axis plays an immunosuppressive role and promotes the proliferation of malignant tumors. Knocking out the Foxp3 gene can affect the HULC-Treg-PD-1 axis and reduce PD-1, IL-10, and TGF-ß1 expression to control the growth of malignant tumors. Conclusion: The lncRNA HULC-Treg-PD-1 axis promotes the growth of malignant tumors. This axis could be modulated to reduce PD-1, IL-10, and TGF-ß1 expression and the subsequent immune escape. The inhibition of immune escape in the tumor microenvironment can be achieved by controlling the LncRNA HULC-Treg-PD-1 axis.

4.
Cancers (Basel) ; 16(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38339289

ABSTRACT

Long non-coding RNAs' HOTAIR rs920778, LINC00951 rs11752942, POLR2E rs3787016, and HULC rs7763881 are progressively reported having a close genetic affinity with esophageal carcinogenesis in the East. Nonetheless, their correlation with variables already endorsed as significant prognostic factors in terms of staging, guiding treatment and predicting recurrence, metastasis, and survival have yet to be explored. Herein, we investigated their prognostic value by correlating them with clinicopathological and laboratory prognostic markers in esophageal cancer in the West. Formalin-fixed paraffin-embedded tissue specimens from 95 consecutive patients operated on for esophageal cancer between 2014 and 2018 were compared with 121 healthy community controls. HULC was not detected differently in any of the cancer prognostic subgroups. LINC00951 was underrepresented in Ca19.9 elevated subgroup. HOTAIR was more frequent in both worse differentiation grade and positive Signet-Ring-Cell and Ca19.9 subgroups. POLR2E was identified less frequently in Adenocarcinoma, Signet-Ring-Cell, and Diffuse histologies, as well as in Perineural, Lymphovascular, and Perivascular Invasion positive, while it was overrepresented in CEA positive subgroup. These lncRNAs polymorphisms may hold great potential not only as future therapeutic agents but also as novel markers for predictive analysis of esophageal cancer risk, clinical outcome, and survival. Clinical implications of these findings need to be validated with prospective larger sample-size studies.

5.
Mol Biol Rep ; 51(1): 249, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300349

ABSTRACT

BACKGROUND: The incidence of single-nucleotide-polymorphisms with malignant potential in esophageal cancer tissues has only been sparsely investigated in the west. Hence, we explored the contribution of four long non-coding RNAs' polymorphisms HOTAIR rs920778, LINC00951 rs11752942, POLR2E rs3787016 and HULC rs7763881 in esophageal cancer susceptibility. METHODS AND RESULTS: Formalin-fixed paraffin-embedded tissue specimens from 95 consecutive patients operated for esophageal/esophagogastric junction carcinoma during 25/03/2014-25/09/2018 were processed. Demographic data, histopathological parameters, surgical and oncological outcomes were collected. DNA findings of the abovementioned population were compared with 121 healthy community controls. Both populations were of European/Greek ancestry. Sixty-seven patients underwent Ivor Lewis/McKeown esophagectomy for either squamous cell esophageal carcinoma (N = 6) or esophageal/esophagogastric junction Siewert I or II adenocarcinoma (N = 61). Twenty-eight patients were subjected to extended total gastrectomy for esophagogastric junction Siewert III adenocarcinoma. Neither LINC00951 rs11752942 nor HULC rs7763881 polymorphisms were detected more frequently in esophageal cancer patients compared with healthy community subjects. A significantly higher presence of HOTAIR rs920778 TT genotype in esophagogastric junction Siewert I/II adenocarcinoma was identified. POLR2E rs3787016 C allele and CC genotypes were overrepresented in the control group, and when found in esophageal cancer carriers were associated with earlier disease stages, as well as with minor lymph node involvement and lesser metastatic potential. CONCLUSIONS: HOTAIR rs920778 may serve as a potential therapeutic suppression target, while POLR2E rs3787016 may represent a valuable biomarker to evaluate esophageal cancer predisposition and predict treatment response and prognosis. Clinical implications of these findings need to be verified with further prospective studies with larger sample-size.


Subject(s)
Adenocarcinoma , Esophageal Neoplasms , Humans , Case-Control Studies , Esophagectomy , Prospective Studies , Esophagogastric Junction , Esophageal Neoplasms/genetics , Polymorphism, Single Nucleotide/genetics , DNA-Directed RNA Polymerases
6.
Mol Biol Rep ; 50(12): 10073-10081, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37910386

ABSTRACT

BACKGROUND: Highly upregulated in liver cancer (HULC) is one of the LncRNAs that was documented to enhance cancer progression, and its downregulation is associated with cell cycle arrest and apoptosis. Myotubularin-related protein 3 (MTMR3) is required for autophagy, and many studies consider MTMR3 to be a negative regulator of autophagy processes. However, nothing is understood about how they regulate breast cancer. MATERIAL AND METHODS: This case-control study included 245 patients (Group A: 85 early BC Group B: 40 metastatic BC cases, Group C: 40 fibroadenoma cases; and Group D: 80 age matched healthy control subjects. TaqMan Real-time PCR was used to analyse rs7158663 and rs12537. MTMR3 and HULC gene expression levels were measured using RT-PCR. RESULT: Breast cancer patients exhibited elevated serum MTMR3 and HULC compared to fibroadenomas and control cases. The MTMR3 rs12537 "T/T" genotype was highly expressed in cases of breast cancer (early and metastatic) compared to controls (risk genotype). On the other hand, the HULC rs7158663 genotypes were not statistically associated with breast cancer. However, when compared to the control, the C/C genotype of the HULC gene is higher in the case.MTMR3 gene expression was higher in the T/T genotype compared to both the C/C and C/T genotypes, while HULC gene expression was lower in the A/C genotype compared to both the A/A and C/C genotypes. Positive correlation between MTMR3 and HULC. MTMR3 and ALT, as well as HULC and alkaline phosphatase, both showed a statistically significant positive correlation. CONCLUSION: Our findings reveal that MTMR3 and HULC serum expression and their SNPs (HULC rs7763881, MTMR3 rs12537) are associated with a higher risk for the development of breast cancer in the Egyptian population.


Subject(s)
Breast Neoplasms , Liver Neoplasms , RNA, Long Noncoding , Female , Humans , Breast Neoplasms/genetics , Case-Control Studies , Egypt , Genotype , Liver Neoplasms/genetics , Protein Tyrosine Phosphatases, Non-Receptor/genetics , RNA, Long Noncoding/genetics
8.
Noncoding RNA Res ; 8(3): 340-349, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37455763

ABSTRACT

Psoriasis is a persistent inflammatory skin disorder driven by T cells. The disease is characterized by aberrant keratinocytes (KCs) differentiation, epidermal proliferation, and excessive hyperplasia of veins and arteries. The purpose of the study was to identify the levels of circulating lnc-HULC, miR-122, and Sirtuin 1 (SIRT-1) in psoriatic patients, evaluate their possible roles as diagnostic biomarkers, and link their levels with the development of metabolic syndrome during psoriasis progression. This study included 176 participants. The subjects were divided into four groups, with 44 participants in each group. All patients have undergone a complete history taking and clinical examination. Laboratory investigations included Low-density lipoprotein (LDL), High-density lipoprotein (HDL), Triglycerides (TG), Fasting blood sugar (FBS), and cholesterol plasma levels. Serum levels of miR-122 and lnc-HULC were examined by qRT-PCR. Serum levels of SIRT-1 were examined by ELISA. The serum concentrations of lnc-HULC and miR-122 were significantly higher in psoriatic participants compared to controls. Psoriatic patients' serum concentrations of SIRT-1 were much lower than those of healthy individuals. There was a negative association between SIRT-1 concentration and BMI, disease duration, PASI score, LDL, and cholesterol levels. The blood levels of lnc-HULC, miR-122, and SIRT-1 in psoriasis patients provide a promising role as diagnostic biomarkers in patients with and without metabolic syndrome.

9.
Gene ; 882: 147655, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37479098

ABSTRACT

Neuropathic pain is a severe and debilitating condition caused by damage to the peripheral nerve or central nervous system. Although several mechanisms have been identified, the underlying pathophysiology of neuropathic pain is still not fully understood. Unfortunately, few effective therapies are available for this condition. Therefore, there is an urgent need to investigate the underlying mechanisms of neuropathic pain to develop more effective treatments. Long non-coding RNAs (lncRNAs) have recently gained attention due to their potential to modulate protein expression through various mechanisms. LncRNAs have been implicated in many diseases, including neuropathic pain. This study aimed to identify a novel lncRNA involved in neuropathic pain progression. The lncRNA microarray analysis showed that lncRNA Upregulated in Liver Cancer (HULC) was significantly upregulated in spinal cord tissue of sciatic nerve injury (SNI) rats. Further experiments confirmed that HULC promoted neuropathic pain progression and aggravated H2O2-induced Schwann cell injury. Mechanistically, Sine Oculis Homeobox 1 (SIX1) regulated the transcriptional expression of HULC, and both SIX1 and HULC were involved in neuropathic pain and Schwann cell injury. The results of our research indicate the existence of a previously unknown SIX1/HULC axis that plays a significant role in the development and progression of neuropathic pain, shedding light on the complex mechanisms that underlie this debilitating condition. These findings offer novel insights into the molecular pathways involved in neuropathic pain. This study underscores the potential of targeting lncRNAs as a viable approach to alleviate the suffering of patients with neuropathic pain.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , RNA, Long Noncoding , Rats , Animals , RNA, Long Noncoding/metabolism , Hydrogen Peroxide/metabolism , Schwann Cells , Peripheral Nerve Injuries/genetics , Neuralgia/genetics , Neuralgia/metabolism , Oxidative Stress , Sciatic Nerve
10.
J Orthop Surg Res ; 18(1): 551, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37525215

ABSTRACT

OBJECTIVE: Ankylosing spondylitis (AS) is a progressive systemic disease characterized by a chronic inflammatory response in the sacroiliac joints and spine. Long noncoding RNAs suggest significant actions in the progression of AS. Therefore, a specific lncRNA, highly upregulated in liver cancer (HULC), was studied here regarding its functions and related mechanisms in AS. METHODS: Measurements of miR-556-5p, HULC, and YAP1 expression were performed on AS cartilage tissues and chondrocytes. The interaction between miR-556-5p and HULC or YAP1 was verified. CCK-8, flow cytometry and enzyme-linked immunosorbent assay were used to evaluate the effects of HULC, miR-556-5p, and YAP1 on the proliferation, apoptosis, and inflammatory response of AS chondrocytes. Furthermore, the action of HULC/miR-556-5p/YAP1 was experimentally observed in AS mice. RESULTS: HULC and YAP1 levels were augmented, while miR-556-5p levels were suppressed in AS cartilage tissues and chondrocytes. Downregulating HULC or upregulating miR-556-5p stimulated chondrocyte proliferation and inhibited apoptosis and inflammation in AS. miR-556-5p was a downstream factor of HULC, and YAP1 was a potential target of miR-556-5p. The improvement effect of downregulated HULC on AS chondrocytes was saved when YAP1 expression was forced. In addition, silence of HULC improved the pathological injury of spinal cartilage in AS mice by enhancing miR-556-5p-related regulation of YAP1. CONCLUSION: HULC inhibition relieves the inflammatory response in AS by reducing miR-556-5p-mediated YAP1 expression.


Subject(s)
Liver Neoplasms , MicroRNAs , RNA, Long Noncoding , Spondylitis, Ankylosing , Animals , Mice , Apoptosis/genetics , Cell Proliferation/genetics , Chondrocytes/metabolism , Down-Regulation/genetics , Inflammation/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Spondylitis, Ankylosing/genetics
11.
Zhonghua Gan Zang Bing Za Zhi ; 31(3): 281-287, 2023 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-37137854

ABSTRACT

Objective: To investigate the association between the expression of long non-coding RNA genes and the HULC rs7763881 polymorphism, recurrence, and metastasis after radical resection in patients with hepatocellular carcinoma (HCC). Methods: Paraffin tissue samples were selected from 426 cases diagnosed with HCC between January 2004 to January 2012. The expression of different genotypes of HULC gene locus rs7763881 in paraffin tissues was detected by PCR, and the association between different genotype expressions and clinical case characteristics of HCC [gender, age, TNM stage, alpha-fetoprotein, tumor maximum diameter (cm), vascular invasion, tumor capsule, tumor grade] was analyzed. Cox proportional risk regression model was used to analyze the correlation between different genotypes and clinicopathological features, prognosis, and recurrence. Survival analysis between different genotypes was performed using the Kaplan-Meier method for a parallel log-rank test. Results: There were 27 (6.3%) cases in the whole group who lost to follow-up. A total of 399 (93.7%) specimens were included in the study, and 105 (26.3%), 211 (52.9%) and 83 (20.8%) were included in the rs77638881 AA, AC, and CC genotypes, respectively. Kaplan-Meier curve showed that the postoperative overall survival and recurrence-free survival rate were significantly higher in patients with the AA than AC/CC genotype (P < 0.05). Univariate analysis showed that the AC/CC genotype was closely related to tumor vascular invasion and recurrence or metastasis of HCC (P < 0.05). Cox multivariate analysis results showed that patients with the AA genotype were taken as references, and the results showed that the risk of recurrence and metastasis in patients with the CA/CC genotype increased to varying degrees, with statistical significance (P < 0.05). Conclusion: The rs7763881 polymorphic loci located on the HULC gene are closely related to HCC recurrence and metastasis after radical resection. Thus, it may be an indicator for evaluating HCC recurrence and metastasis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Neoplasm Metastasis , Neoplasm Recurrence, Local , Polymorphism, Genetic , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Polymorphism, Genetic/genetics , Male , Female , Neoplasm Metastasis/genetics , Survival Analysis
12.
Cell Biol Toxicol ; 39(4): 1341-1358, 2023 08.
Article in English | MEDLINE | ID: mdl-36449143

ABSTRACT

Dysregulation of microRNAs (miRNAs or miRs) is implicated in the development of gastric cancer (GC), which is possibly related to their roles in targeting tumor-suppressive or tumor-promoting genes. Herein, the current study was intended to ascertain the function of miR-488 and its modulatory mechanism in GC. Initially, human GC cells were assayed for their in vitro malignancy after miRNA gain- or loss-of-function and RNA interference or overexpression. Also, tumorigenesis and liver metastasis were evaluated in nude mouse models. Results demonstrated that miR-488 elevation suppressed GC (MKN-45 and OCUM-1) cell proliferation, migration, and invasiveness in vitro and reduced their tumorigenesis and liver metastasis in vivo. The luciferase assay identified that miR-488 bound to HULC and inhibited its expression. Furthermore, HULC could enhance EZH2-H3K27me3 enrichment at the p53 promoter region and epigenetically repress the p53 expression based on the data from RIP- and ChIP-qPCR assay. Additionally, HULC was validated to enhance GC growth and metastasis in vitro and in vivo. Overall, HULC re-expression elicited by miR-488 inhibition can enhance EZH2-H3K27me3 enrichment in the p53 promoter and repress the p53 expression, thus promoting the growth and metastasis of GC.


Subject(s)
MicroRNAs , Stomach Neoplasms , Animals , Humans , Mice , Carcinogenesis , Cell Line, Tumor , Cell Transformation, Neoplastic , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Histones , Liver Neoplasms/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Stomach Neoplasms/metabolism , Tumor Suppressor Protein p53/genetics
13.
Cancer Med ; 12(4): 5124-5136, 2023 02.
Article in English | MEDLINE | ID: mdl-36213936

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNAs) are involved in a diverse array of biological processes. While lncRNAs are commonly upregulated in hepatocellular carcinoma (HCC), the specific regulatory roles they play in this oncogenic context require further study and clarification. Although HULC (lncRNA highly upregulated in liver cancer) is involved in disease pathogenesis, its precise role in this context remains unclear. METHODS: Here, we have explored the mechanistic relevance of HULC expression by assessing its expression in patient samples. The importance of this lncRNA in the onset and progression of HCC was investigated through in vitro approaches including Western blotting, quantitative PCR, Transwell assays, electron microscopy, wound healing assays, and real-time cell analysis (RTCA). Additionally, the in vivo functions of this lncRNA were assessed using an orthotopic HCC xenograft in nude mouse model system. RESULTS: HULC was identified as a lncRNA that is highly upregulated in human liver tumors. In vitro, HULC was able to promote HCC malignancy, although its excess overexpression also led robust autophagic induction, promoting the increased expression of autophagy-associated genes including LC3 and Beclin-1. At a mechanistic level, HULC was able to promote the phosphorylation of p65 and IkBkB thus enhancing autophagy by increasing LC3II levels in a manner dependent upon the NF-κB pathway. HULC downregulation was also linked to impaired orthotopic HCC tumor growth in vivo. The link between HULC and autophagy may play a role in disease progression. CONCLUSIONS: These results suggest that HULC is an oncogenic lncRNA, and may thus offer value as a prognostic biomarker and promoter of HCC development, in addition to being a potential therapeutic target in this cancer type.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Animals , Mice , Humans , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , NF-kappa B/metabolism , Prognosis , Biomarkers , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Cell Proliferation
14.
J Atten Disord ; 27(2): 201-213, 2023 01.
Article in English | MEDLINE | ID: mdl-36254757

ABSTRACT

OBJECTIVE: ADHD is associated with increased sleep problems and circadian rhythm disturbances. This study aimed to examine ADHD patients and healthy controls in terms of chronotypic features and expression levels of CLOCK, PER1, lncRNA HULC, lncRNA UCA1. METHOD: Eighty-three children were included (43 ADHD). Conner's Parent Rating Scale-Revised Short Form, Childhood Chronotype Questionnaire, Children's Sleep Disorders Scale were administered. Gene expression levels were studied from peripheral blood. RESULTS: Evening chronotype, sleep initiation/maintenance disorder, sleep-wake transition disorder, excessive sleepiness disorder were higher in the ADHD group compared to the controls in the scales reported by the parents. Expression levels of all examined genes were statistically significantly higher in the ADHD group. There was no significant relationship between genes and sleep parameters in the ADHD group. CONCLUSION: Our study provides the first evidence that lncRNA HULC and lncRNA UCA1 might have a role in the etiology of ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , RNA, Long Noncoding , Sleep Wake Disorders , Child , Humans , Circadian Rhythm/genetics , RNA, Long Noncoding/genetics , Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/complications , Sleep Wake Disorders/etiology , Sleep
15.
Genes (Basel) ; 13(9)2022 09 18.
Article in English | MEDLINE | ID: mdl-36140836

ABSTRACT

Hepatocellular carcinoma (HCC) is a highly prevalent malignancy. It is a common type of cancer in Egypt due to chronic virus C infection (HCV). Currently, the frequently used lab test is serum α-fetoprotein. However, its diagnostic value is challenging due to its low sensitivity and specificity. Genetic biomarkers have recently provided new insights for cancer diagnostics. Herein, we quantified Lnc HULC and miR-122 gene expression to test their potential in diagnosis. Both biomarkers were tested in the sera of 60 HCC patients and 60 with chronic HCV using real-time RT-PCR. miR-122 was highly expressed in HCV patients with a significant difference from the HCC group (p = 0.004), which points towards its role in prognosis value as a predictor of HCC in patients with chronic HCV. HULC was more highly expressed in HCC patients than in the HCV group (p = 0.018), indicating its potential use in screening and the early diagnosis of HCC. The receiver operating characteristic (ROC) curve analysis showed their reliable sensitivity and specificity. Our results reveal that miR-122 can act as a prognostic tool for patients with chronic HCV. Furthermore, it is an early predictor of HCC. LncRNA HULC can be used as an early diagnostic tool for HCC.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C , Liver Neoplasms , MicroRNAs , RNA, Long Noncoding , Biomarkers , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Early Detection of Cancer , Egypt , Humans , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Liver Neoplasms/pathology , MicroRNAs/genetics , RNA, Long Noncoding/genetics , alpha-Fetoproteins/analysis
16.
Cancer Lett ; 548: 215861, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35981570

ABSTRACT

Insulin-like growth factor I receptor (IGF1R) is frequently upregulated in breast cancer. Due to its intrinsic tyrosine kinase activity, aberrant activation of the IGF1R signaling axis may enhance tumor cell proliferation and cancer stemness, causing tumor relapse, metastasis and resistance to chemotherapy. We utilized a chromatin RNA in situ reverse transcription (CRIST) approach to characterize molecular factors that regulate the IGF1R network. We identified lncRNA HULC (Highly Upregulated in Liver Cancer) as a key trans-regulator of IGF1R in breast cancer cells. Loss of HULC suppressed the expression of IGF1R and the activation of its downstream PI3K/AKT pathway, while HULC overexpression activated the axis in breast cancer cells. Using a transcription-associated trap (RAT) assay, we demonstrated that HULC functioned as a nuclear lncRNA and epigenetically activated IGF1R by directly binding to the intragenic regulatory elements of the gene, orchestrating intrachromosomal interactions, and promoting histone H3K9 acetylation. The activated HULC-IGF1R/PI3K/AKT pathway mediated tumor resistance to cisplatin through the increased expression of cancer stemness markers, including NANOG, SOX2, OCT4, CD44 and ALDH1A1. In immunodeficient mice, stimulation of the HULC-IGF1R pathway promoted tumor metastasis. These data suggest that HULC may be a new epigenetic target for IGF1R axis-targeted therapeutic intervention.


Subject(s)
RNA, Long Noncoding , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Chromatin , Cisplatin/metabolism , Cisplatin/pharmacology , Gene Expression Regulation, Neoplastic , Histones/metabolism , Insulin-Like Growth Factor I/metabolism , Mice , Neoplasm Recurrence, Local/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Receptor, IGF Type 1/metabolism
17.
BMC Cardiovasc Disord ; 22(1): 86, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35246050

ABSTRACT

INTRODUCTION: Acute myocardial infarction (AMI) is a ubiquitous cardiovascular disease ensuing adverse prognosis caused by myocardial necrosis. Effective and rapid diagnosis of AMI is essential to following treatment in clinical practice while the existed biomarkers have inherent limitations. Consequently, exploration of novel biomarkers is needed. Long noncoding RNA (lncRNA) emerges as the upcoming biomarkers adopted in clinical use, and we aim at investigating the diagnostic power of lncRNA TTTY15 and HULC in AMI patients. METHOD: We measured lncRNA level in 80 AMI patients and 36 healthy volunteers in discovering cohort and 50 AMI patients and 20 healthy volunteers in verification cohort with quantitative RT-PCR method. Receiver operating characteristic (ROC) analysis was administered to detect the diagnostic power of selected lncRNAs. Regression and correlation analyses were performed to explore the related factors. RESULTS: ROC analysis reveals the superiority of TTTY15 and HULC as biomarkers against conventional AMI biomarkers CKMB (AUC of TTTY15: 0.915 versus CKMB: 0.768 versus TnT: 0.869); AUC of HULC: 0.905 versus CKMB: 0.768 versus TnT: 0.869). Regression and correlation analysis indicates that TTTY15 and HULC may be one of the contributing factors to AMI and related to accepted risk factors. CONCLUSION: Our results revealed the diagnostic potency of lncRNA TTTY15 and HULC, and they could also be treated as novel therapeutic targets in AMI therapy, hinting inspiration to the cardiologist in clinical practice.


Subject(s)
Myocardial Infarction , RNA, Long Noncoding , Biomarkers , Humans , Myocardial Infarction/diagnosis , Myocardial Infarction/genetics , Prognosis , RNA, Long Noncoding/genetics
18.
Aging (Albany NY) ; 14(4): 1797-1811, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35183058

ABSTRACT

OBJECTIVE: This meta-analysis aimed to evaluate the correlation between lncRNA HULC, prognosis and clinicopathological characteristics in patients with digestive system tumors. METHODS: The relevant literatures were collected through PubMed, Web of Science and Embase up to February 2021. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to assess the prognostic value of HULC in patients with digestive system tumors. The clinicopathological characteristics of HULC in patients were estimated by odds ratios (ORs). RESULTS: A total of 14 studies involving 1312 patients were included. The up-regulated expression level of HULC was associated with poorer overall survival (OS) in patients with digestive system tumors (HR = 1.83, 95% CI: 1.05-3.19, P = 0.033). Subgroup analysis showed that cancer type (pancreatic cancer or gastric cancer), residence region (China, Japan or Korea), and specimen (serum) significantly associated between HULC and OS. In addition, high HULC expression significantly increased the risk of high TNM stage (OR = 2.51, 95%CI: 1.36-4.62, P < 0.05), poor differentiation (OR = 1.38, 95%CI: 1.02-1.87, P < 0.05) and lymphatic node metastasis (LNM, OR = 4.93, 95% CI: 3.47-6.99, P < 0.05). CONCLUSIONS: High expression level of HULC is related to OS, TNM stage, differentiation and LNM. Therefore, HULC can be used as a new potential predictor for prognosis and clinicopathological features of patients with digestive system tumors.


Subject(s)
Digestive System Neoplasms , Neoplasms , RNA, Long Noncoding/genetics , Biomarkers, Tumor/metabolism , Digestive System Neoplasms/genetics , Humans , Lymphatic Metastasis , Neoplasms/genetics , Prognosis , RNA, Long Noncoding/metabolism
19.
Ir J Med Sci ; 191(6): 2597-2603, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35088229

ABSTRACT

BACKGROUND: Long noncoding RNA HULC (lnc-HULC) and its target microRNA-128-3p (miR-128-3p) regulate endothelial cell function, blood lipid level, and inflammatory cytokine production, which are involved in the pathogenesis of coronary heart disease (CHD). Based on the above information, this study intended to further investigate the correlation between lnc-HULC and miR-128-3p, as well as their clinical values for CHD management. METHODS: Totally, 141 CHD patients and 70 controls were enrolled. Lnc-HULC and miR-128-3p in peripheral blood mononuclear cells were detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Serum inflammatory cytokines and cell adhesion molecules were further determined by enzyme-linked immunosorbent assay (ELISA) in CHD patients. RESULTS: Lnc-HULC was upregulated, while miR-128-3p was downregulated in CHD patients than in controls (both P < 0.001). The ROC curve further displayed that lnc-HULC (AUC: 0.906, 95% CI: 0.867-0.945) and miR-128-3p (AUC: 0.814, 95% CI: 0.756-0.873) had the potential of discriminating CHD patients from controls. Regarding the correlation between lnc-HULC and miR-128-3p, lnc-HULC was negatively associated with miR-128-3p in CHD patients (rs = - 0.307, P < 0.001), but this association was not observed in controls (rs = - 0.155, P = 0.199). Furthermore, it was discovered that upregulated lnc-HULC was associated with elevated blood lipid levels (TG, LDL-C), inflammatory cytokines (interleukin (IL)-1ß, IL-17A), cell adhesion molecules (VCAM-1), and Gensini score (all P < 0.05) in CHD patients. Meanwhile, miR-128-3p was negatively associated with blood lipid level (LDL-C), inflammatory cytokines (TNF-α, IL-1ß, IL-6), cell adhesion molecules (VCAM-1, ICAM-1), and Gensini score (all P < 0.05) in CHD patients. CONCLUSION: Lnc-HULC and its target miR-128-3p relate to lipid level, stenosis degree, inflammatory cytokines, and cell adhesion molecules in CHD patients.


Subject(s)
Coronary Disease , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/metabolism , Cytokines , Leukocytes, Mononuclear/metabolism , Vascular Cell Adhesion Molecule-1 , Cholesterol, LDL , Constriction, Pathologic , Coronary Disease/genetics
20.
Article in English | MEDLINE | ID: mdl-34865614

ABSTRACT

In recent years, several case-control studies have explored the association between the rs7763881 locus polymorphism of the HULC gene and cancer risk, however, the findings have been inconsistent. Therefore, a meta-analysis was conducted to clarify the association. Relevant case-control studies were obtained from CNKI, Embase, Web of Science and PubMed databases. RevMan software was used to perform data analysis. A total of 8 case-control studies containing 4036 cases and 5286 controls were included in the current meta-analysis. The overall analysis results showed no significant association between the rs7763881 locus polymorphism and cancer risk. However, stratified analysis based on cancer type showed that the rs7763881 locus polymorphism was associated with the decreased risk of hepatocellular cancer, colorectal cancer and esophageal cancer. In conclusion, the current findings suggest that the rs7763881 polymorphic loci located on the HULC gene may serve as a biomarker for determining an individual's risk of hepatocellular cancer, colorectal cancer and esophageal cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL